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Some classes of subshifts

Definitions. Let A be a finite alphabet. Let d be a positive integer. In this
talk, usually d = 2 and sometimes d = 1.

A subshift is a subset X ⊆ AZd

which is obtained by forbidding some set
of local patterns.

A local pattern is an element of AD where D is any finite subset of Zd

If F is a set of local patterns,

{x ∈ AZd

: for all p ∈ F , p does not appear in x} is a subshift.

A subshift is called a shift of finite type if it can be obtained by
forbidding a finite set of local patterns.

A subshift X on an alphabet A is called sofic if there is a shift of finite
type Y on an alphabet B, and a map f : B → A, such that X = f(Y )
(abusing some notation here)

A subshift is effectively closed if it can be obtained by forbidding a c.e.
set of local patterns; or equivalently, a computable set.
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Examples: SFT, effectively closed

A a finite alphabet
d = 1, 2

Subshift
X ⊆ AZd

all
elements that omit
forbidden patterns

SFT finitely many
forbidden patterns

Sofic X = f(Y )

SFT Y ⊆ BZd

f : B → A.

Effectively
closed c.e. set of
forbidden
patterns.

Examples

SFT example: Forbid
�
�

and
�
�

, get the

subshift of elements with constant columns.

Effectively closed, not SFT: Forbid any
n× n pattern not consistent with a sea of
black squares on a white background.

← consistent, not forbidden

This subshift is not an SFT

Reason: large rectangles.
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Examples: sofic, effectively closed

A a finite alphabet
d = 1, 2

Subshift
X ⊆ AZd

all
elements that omit
forbidden patterns

SFT finitely many
forbidden patterns

Sofic X = f(Y )

SFT Y ⊆ BZd

f : B → A.

Effectively
closed c.e. set of
forbidden
patterns.

Examples

Sofic, not SFT: Same sea of squares.
Extended alphabet:

Forbid every 3× 3 pattern not consistent with
a sea of squares with concentric annotations.
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Relation SFT ⊆ sofic ⊆ effectively closed

A a finite alphabet
d = 1, 2

Subshift
X ⊆ AZd

all
elements that omit
forbidden patterns

SFT finitely many
forbidden patterns

Sofic X = f(Y )

SFT Y ⊆ BZd

f : B → A.

Effectively
closed c.e. set of
forbidden
patterns.

Every SFT is sofic. (A = B, X = Y ).

Every sofic shift is effectively closed. Algorithm:
given Y and f , and given a pattern p in alphabet
A, forbid p if and only for all q ∈ f−1(p), q is
forbidden in Y .

These implications are strict.

Motivating question

What properties of a c.e. set of forbidden
words can guarantee that the resulting effectively

closed shift is sofic?
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Further examples

Sofic shifts

Various substitution-rule shifts

Even connected components shift

Odd connected components shift (Cassaigne, unpublished)

Stacked 1D sofic shifts

Stretched 1D effectively closed shift (Durand-Romashchenko-Shen 2012,
Aubrun-Sablik 2013)

Effectively closed, non-sofic shifts

2D Shift-complex shift (Durand-Levin-Shen 2008, ?)

Stacked 1D effectively closed shifts without a synchronizing word (Pavlov
2013)
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Main result

Definition:
For any set S ⊆ N, let the S-square shift be the Z2-shift on the alphabet
{black, white} whose elements consist of seas of non-overlapping black squares
on a white background, where the size of each square is in S.

Theorem (W):
For any Π0

1 set S, the S-square shift is sofic.
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Tiling problems and Z2 SFTs

Historically, work on Z2 SFTs took place in the context of tiling problems.

Tiling problems and Z2 SFTs are essentially the same thing.
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Embedding TMs with Anchor symbols

Kahr, Moore, Wang (1962): for any Turing machine, there is a finite set of
tiles, with one designated “anchor tile” so that any tiling of the plane that
includes the anchor tile encodes the space-time diagram of the computation of
that machine.

qt 1 qt 0
∆

qt b

qs 1
∆

qs b qs b

Looks consistent.

∆
q0 b

Anchor symbol.

The anchor tile is made from the close area of the anchor symbol, like in the
previous slide.

If the computation halts, the tiling cannot be continued.
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Durand, Romashchenko & Shen (2012)

Problem: If we enforce multiple heads, the computation regions collide,
making no tilings.

Another solution: DRS (2012). Using a tileset format,

Fill the entire plane with small
computation regions.

Each region has a computation on the
inside, but viewed from the outside, the
region is a tile, or “macrotile”.

Double purpose computation.

Accept the “data” of what tiles are
appearing at the edge of the region as
input. Analyze the input to see if the
edges make a good macrotile. Kill the
computation if not.

Also do whatever computation was
originally interesting.

Image source: DRS 2012
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Parent Tile, Child Tile

Consider a parent “macrotile” made from an N ×N array of child tiles.

Child side colors contain:

2 logN bits to communicate a location (i, j)

Finite number of bits associated to a universal Turing
Machine computation.

Finite number of bits corresponding to a wire.

The child tile’s computation verifies:

Coordinates increment appropriately?

If (i, j) is in the computation region, are TM bits
coherent?

If (i, j) is in a wire location, are wire bits coherent?

If (i, j) is at the nth bit of the program tape for the
universal TM, is the nth bit of this program written
on the tape?

(i, j) (i+ 1, j)

(i, j)

(i, j + 1)

TM

Parent TM
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Universal TM simulation and the Recursion theorem

Input size: O(logN).

Algorithm: Polynomial time, as written before application of the recursion
theorem.

Universal TM simulation: polytime overhead

Recursion theorem: polytime overhead

Runtime of resulting program: poly(logN).

Available time: N/2

Since poly(logN) << N/2, can choose N large enough that no computation
runs out of room.
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Expanding tilesets (DRS 2012)

The previous construction layers computations of fixed finite size ∼ N . But
computations of increasing size will be needed.

Let N0 < N1 < N2 . . . be a “nice” increasing sequence.

Many possibilities: Nk = k, k2, 2k, k!, 22
k

, 22
2k

, . . . (Nk = 2Nk−1 too fast)

The previous construction can be modified so that every macrotile at level k is
made out of Nk−1 ×Nk−1 child tiles, giving time for ever longer computations.

From now on, all constructions involve ever increasing numbers of children to
form the next parent.
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Effectively closed Z-shifts, stretched (DRS 2012)

Given any one-dimensional effectively closed shift, consider this Z2 shift:

elements have constant columns

an element’s common row is contained in the given Z-shift.

Theorem (Durand-Romashchenko-Shen 2012): All such shifts are sofic.
(this result independenly obtained by Aubrun-Sablik 2013)

Idea: Given an configuration with constant columns, superimpose TM tiles to

“read” the common row

make what has been read available at all levels

simultaneously, enumerate forbidden Z-patterns

kill the element if a pattern it contains is enumerated.

Issue: How can a higher-level macrotile learn about what is written on the
pixel level, since it can’t interact with that level directly?
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Reading and remembering from constant columns

Child parameter tape contains:

One short string, which this child is
checking for forbidden words.

The location of the child in its parent.

Child side colors contain:

A copy of what is allegedly on the
parent parameter tape.

Algorithm:

If I’m seeing a bit of the parent
parameter tape, check it agrees with
my alleged copy.

Use all location data (mine and
parent) to figure out if the parent was
supposed to learn any bit of its string
from me. If so, make sure they match.

Image source: DRS 2012
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S-square shift: plan and obstacles

Plan: Given a sea of squares (unrestricted sizes), superimpose TM tiles to

“read” and record the sizes of squares that appear inside them

propagate this information to their parents

simultaneously, enumerate forbidden sizes

kill the element if one of the collected sizes is enumerated

Obstacles:

A forbidden-size square can appear once and disqualify the whole sea, so
each tile must record every single size inside itself.

The parent’s parameter tape becomes too large for children to copy it, yet
each child must make sure the parent received its records.

The input to each computation region is large relative to the region; the
algorithm must run in less than quadratic time to fit inside.
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Recording all the sizes

A macrotile at level k has ∼ Nk−1 tape size and a pixel width of
Lk = Nk−1 . . . N1N0.

Maximum number of distinct sizes of square that can fit in an L× L region?

Bound by x2
1 + · · ·+ x2

m < L2. To maximise m, let xi = i.

Result: m is bounded by ∼ L2/3.

To record all sizes from a macrotile at level k, ∼ L
2/3
k bits are needed.

For that to fit on the tape, we need: (N0N1 . . . Nk−1)2/3 << Nk−1.

Triple exponential Nk = 22
2k

is fast enough. Double exponential is too slow.

Note: Unavoidably, N
2/3
k−1 << L

2/3
k . Therefore, the algorithm that is run using

this input must be polynomial with exponent strictly less than 3/2, or it will
overrun the computation region.

Conclusion: asymptotics of holding and processing info are ok.
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Communicating with the parent

Lk =
∏k−1

i=k0
Ni.

In DRS, all bits of the parent’s parameter tape are passed among all children.
Impossible here:

Bits of parent data ≈ L
2/3
k+1 > N

2/3
k >> Nk−1 ≈ length of child tape.

Idea: Each child nondeterministically chooses what parental information to
share with each of its neighbors, and hopes to receive parental reassurance
about each of its own recorded sizes.

Left: sharing everything

Right: selective sharing

Use a counter to certify the
information is genuinely
from the parent.
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The question

So far our algorithm achieves:

If the parent tape does not contain a record which some child needs, there
will be no legal message chain to that child, so the tiling cannot be made.

If the parent has all the needed records, and IF there is some way to
simultaneously connect each record on the parent tape with the
individual children who need it without overloading any child by
passing too many records through it, the children will
nondeterministically find this way.

So, is there always a way?
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A cooperative game of Ticket to Ride

There are ∼ N2
k vertices (cities, child tiles), arranged in a square grid.

There are ∼ L
2/3
k+1 players (train companies, parental records).

Each vertical or horizontal edge (connector, child side color) has ∼ L
2/3
k tracks.

In any N ×N subgrid of vertices, at most ∼ (NLk)2/3 players have a city in
that grid.

The players cooperatively win if there is a way to divvy up the tracks so that
every player can connect all their cities together.

The S-square algorithm works if and only if the players can always win.

The players won.
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Necessity of the N ×N subgrid condition

There are ∼ N2
k vertices (cities, child tiles), arranged in a square grid.

There are ∼ L
2/3
k+1 players (train companies, parental records).

Each vertical or horizontal edge (connector, child side color) has ∼ L
2/3
k tracks.

At most ∼ L
2/3
k players care about any given city.

Counterexample:

Consider a square subgrid of cities where each city has the full ∼ L
2/3
k

number of players, but each player has at most once city.

Side length of this subgrid is N
1/3
k

Fill the whole board with N
4/3
k such subgrids.

Each player must connect N
4/3
k cities, each at distance N

1/3
k from each

other: N
5/3
k connections needed

Multplying by all players, total connections needed: L
2/3
k+1N

5/3
k .

Total connections available: ∼ L
2/3
k N2

k .
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Multiscale plaid concept

The players can win the game with a multiscale plaid track pattern:

All players take turns laying vertical tracks, top-to-bottom, as tightly as

reasonable (L
2/3
k players per vertical track.)

All players lay horizontal tracks in the same fashion. (1st layer of plaid).

This makes natural square subregions, in which each player has a vertical
and horizontal track.

Within each N ×N subregion, N(Lk)2/3 players have tracks, but only
(NLk)2/3 players have cities there.

Make another layer of tight plaid, within that subregion only, using only
the players that have cities in that subregion.

This tighter plaid makes smaller subregions, more players drop out.

Recurse in all subregions until some fixed small size of subregion is
reached, then let the small number of remaining players connect directly
to their cities.
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Multiscale plaid analysis

All players make a single connected component that includes all their cities.

How many tracks per edge were used?

At each level of recursion, L
2/3
k tracks per edge.

Some fixed constant number of tracks per edge for the bottom step.

Using Nk = 22
2k

, there are ∼ 2k levels of recursion.

Relative to L
2/3
k , this 2k is an ignorable log factor.

Total (2k + C)L
2/3
k ∼ L

2/3
k tracks per edge. Done.
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Algorithm skeleton

(Expanding tileset stuff is also happening, but omitted for brevity.)

Child parameter tape contains:

List of square sizes contained within the child tile

List of deep coordinates for squares partially within the child tile

Child side colors contain:

List of square sizes written on the parent tape.

List of deep coordinates of partial squares passing through this tile.

Algorithm:

Do something that ensures the sizes on my colors are actually on the
parent tape.

Do something with deep partial square coordinates from me and my side
colors to figure out sizes of some large squares contained in my parent.

For each square size contained in me, plus the ones just discovered, check
that size appears somewhere in the list of sizes on my colors.

Enumerate forbidden sizes and kill the tiling if I have one.
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Runtime considerations

We need to make sure this algorithm runs in polynomial exponent-3/2 time.

Things to check:

Familiar operations which are fast on modern architectures are slow on
Turing machines. Turns out a multi-tape TM is necessary for our
algorithm to be subquadratic. (On an MTM, it is linear.)

Good news: MTM just as easy to implement in a tiling.

A given MTM can be simulated, with only constant overhead, by a
universal MTM.

The constant-overhead recursion theorem works.
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Entropy

In any subshift, given an n× n region, there is some number of ways to fill in
that region without using any forbidden words.

Definition: If X is a subshift, and if the number of possibilities for an n× n
region grows as 2sn, then then entropy of X is s.

The entropy of a subshift cannot increase when an alphabet distinction is lost.

In one dimension, for every sofic X, there there an SFT Y such that
f(Y ) = X and X and Y have the same entropy (Coven-Paul 1965). In two
dimensions, it is open whether the same is true.

In general, superimposing a Turing machine adds no entropy, because once a
computation is started, there is only one option for how to continue it.

The construction just discussed makes an SFT of greater entropy because of
all the different ways the children can divvy up the parent’s records. But it
can be modified to cement the plaid protocol, at zero extra entropy.
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