Write domain in interval notation.
K. (a) \(f(t) = t^2 - 8t + 15 \).
 There are no divisions by 0, no square roots of negative numbers. Hence \(f(t) \) is defined everywhere.
 Answer: Domain \((-\infty, \infty) \).

(b) \(g(t) = \frac{1}{(t^2 - 8t + 15)} \).
 Factoring gives
 \[g(t) = \frac{1}{(t-3)(t-5)} \]. Thus \(g(t) \) is undefined at \(t=3,5 \).
 Answer: Domain \((-\infty, 3) \cup (3,5) \cup (5, \infty) \).

(c) \(h(t) = \sqrt{t^2 - 8t + 15} \).
 This is defined provided \(t^2 - 8t + 15 \geq 0 \).
 By part (b), the key numbers are 3, 5.
 The key intervals are \((-\infty, 3), [3,5), [5, \infty) \).
 We use \([\) since the inequality is \(\geq \) rather than \(> \).
 Now evaluate \(t^2 - 8t + 15 \) at a point in each interval.
 \(0 \in (-\infty, 3), 0^2 - 8 \cdot 0 + 15 = 15 = + \)
 \(4 \in [3,5), 4^2 - 8 \cdot 4 + 15 = -1 = - \)
 \(10 \in [5, \infty), 10^2 - 8 \cdot 10 + 15 = 35 = + \)
 Hence \(h(t) \) is undefined between 3 and 5.
 Answer: (c) Domain = \((-\infty, 3] \cup [3,5) \).

(d) \(k(t) = \sqrt{t^2 - 8t + 15} \).
 You can't take the square root of a negative number but you can take the cube root of any number. Hence \(k(t) \) is defined everywhere.
 Answer: Domain = \((-\infty, \infty) \).

L. Let \(f(x) = 3x^2 \). Find the following.
 (c) \(f(x^2) \).
 \[f(x^2) = 3(x^2)^2 = 3x^4 \] Answer: \(3x^4 \).

(d) \(f(x)^2 \).
 \[[f(x)]^2 = [3x^2]^2 = 9x^4 \] Answer: \(9x^4 \).

(e) \(f(x/2) \).
 \[f(x/2) = 3(x/2)^2 = 3x^2/4 \] Answer: \(\frac{3}{4}x^2 \).

M. Let \(H(x) = x - 2x^2 \). Find the following.
 (f) \(H(x + h) \).
 \[H(x+h) = 1 - 2(x+h)^2 = 1 - 2(x^2 + 2xh + h^2) \]
 Answer: \(-4x^2 - 4xh - 2h^2 \).

(h) \(\frac{H(x+h) - H(x)}{h} \).
 \[\frac{H(x+h) - H(x)}{h} = \frac{[1 - 2x^2 - 4xh - 2h^2] - [1 - 2x^2]}{h} = \frac{1 - 2x^2 - 4xh - 2h^2 - 1 + 2x^2}{h} = \frac{-4xh - 2h^2}{h} = -4x - 2h \]
 Answer: \(-4x - 2h \).

O. Find the quotient \(\frac{g(x) - g(a)}{x-a} \).
 \[g(x) = 4x^2 \]
 \[\frac{g(x) - g(a)}{x-a} = \frac{4x^2 - 4a^2}{x-a} = 4(x-a) \]
 Answer: \(4x + 4a \)