Theorem. Changing the value \(f(x) \) changes the vertical position of the graph. Changing the argument \(x \) changes the horizontal position in the opposite direction.

<table>
<thead>
<tr>
<th>(f(x) + a)</th>
<th>(f(x) - a)</th>
<th>(f(x) + d)</th>
<th>(f(x) - d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x)) up 1</td>
<td>(f(x)) down 1</td>
<td>(f(x)) right 1</td>
<td>(f(x)) left 1</td>
</tr>
</tbody>
</table>

Basic graphs

- **Graph Reflect in y-axis.**
- **Graph Reflect in x-axis.**
- **Graph Shift left 1.**
- **Graph Shift right 1.**

- **Graph Parabola with roots 0, 1.**
- **Graph Vertical shift 1.**

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(f(x) + a)</th>
<th>(f(x) - a)</th>
<th>(f(x) + d)</th>
<th>(f(x) - d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(f(x)) + 1</td>
<td>(f(x)) - 1</td>
<td>(f(x)) + 1</td>
<td>(f(x)) - 1</td>
</tr>
</tbody>
</table>

Key transformations:
- Horizontal shift: \(f(x+c) \)
- Vertical shift: \(f(x)+d \)
- Reflection in x-axis: \(f(-x) \)
- Reflection in y-axis: \(-f(x) \)
- Vertical stretch: \(af(x) \)
- Horizontal stretch: \(f(bx) \)
- Vertical reflection: \(f(x)+1 \)
- Horizontal reflection: \(f(x+1) \)

By changing the value \(f(x) \), the graph's vertical position is altered. By changing the argument \(x \), the horizontal position is changed in the opposite direction.

For a formula with several shifts and reflections of \(f(x) \), rewrite it in the graph-translation form:

\[f(x) = af(bx - c) + d \]

The shifts and reflections occur in the left-to-right order.

- A negative \(c \) gives a horizontal reflection. The horizontal shift is determined by \(|c| \); right if \(c \) is positive, left if \(c \) is negative.
- A positive \(d \) gives a vertical reflection. The vertical shift is determined by \(d \); up if \(d \) is positive, down if \(d \) is negative.

- **Horizontal moves with argument changes:**
 - By \(x \rightarrow x+c \) the graph \(c \) units to the left.
 - By \(x \rightarrow x/b \) the graph stretches horizontally by a factor of \(b \).

- **Vertical moves with value changes:**
 - By \(f(x) \rightarrow f(x)+a \) the graph shifts \(a \) units up.
 - By \(f(x) \rightarrow f(x)-a \) the graph shifts \(a \) units down.

The value \(f(x) = \) the height; \(x \) is the horizontal position of a point on the graph. Changing \(f(x) \) changes the vertical position of the graph. Changing \(x \) changes the horizontal position of the coordinate system. Replacing \(x \) by \(x-2 \) shifts the coordinate system 2 units to the left.

Given \(f(x) = \sqrt{x} \), graph \(f(x+2), f(x-2), f(x^2), f(x^2) \).