3. \(y = 2(x + 4)^2 - 3 \). Rewrite in the completed-square form \(a(x - x_0)^2 + y_0 \). Hint: \(x_0, y_0 \) can be negative.

\[\frac{3}{1} \]

3. \(y = 2x^2 + 8x + 3 \). Find the vertex, intercepts, graph.

Do the “horns” of the parabola point up \(\cup \) or down \(\cap \)?

Leave the constant 3 alone. Factor the 2 out of \((2x^2 + 8x)\) then complete the square.

If your equation looks like \(a(x + x_0)^2 - y_0 \), rewrite it in the completed-square form \(a(x - x_0)^2 + y_0 \).

\[\frac{3}{1} \]

vertex =

You must use “()”. E.g., vertex=(3,4), not vertex = 3,4. 7 symbols.

\begin{align*}
\text{x-intercept(s)? Set } y & = 0. \\
\text{Either factor } 2x^2 + 8x + 3 \text{ or use the quadratic formula } x & = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \text{ No roots if the radical is undefined.} \\
\text{8 symbols counting } \pm \text{ as 1 symbol.}
\end{align*}

\begin{align*}
\text{y-intercept? Equation has 3 symbols}
\end{align*}

Draw the graph. Label the vertex with its coordinates.

\[\frac{3}{2} \]