7. Given: \(\tan \theta = \frac{3}{2}, \pi < \theta < \frac{3\pi}{2} \).

Draw a triangle with \(\theta \) and the opposite side marked 3 and the adjacent side marked 2 and find the third side.

\[\frac{\sqrt{13}}{2} \]

\(\tan (\frac{\pi}{2} - \theta) \). In the triangle above, locate the angle \(\pi/2 - \theta \), it is the complementary angle.

\[\tan (\frac{\pi}{2} - \theta) = \frac{\sqrt{13}}{2} \]

\(\sin (\theta) \). Use \(\pi < \theta < \frac{3\pi}{2} \) to determine the sign \(\pm \).

\[\sin (\theta) = \frac{3\sqrt{13}}{13} \]

\(\cos (\theta) \).

\[\cos (\theta) = \frac{2\sqrt{13}}{13} \]

\(\sin (2\theta) \). Use the double-angle formula

\[\sin (2\theta) = 2 \sin \theta \cos \theta \]

\[\sin (2\theta) = \frac{6\sqrt{13}}{13} \]

\(\cos (\theta/2) \). Use the half-angle formula

\[\cos (\theta/2) = \pm \frac{\sqrt{1+\cos \theta}}{2} \]

To determine the sign \(\pm \), find the quadrant for \(\theta/2 \).

To find the quadrant for \(\theta/2 \), divide \(\pi < \theta < \frac{3\pi}{2} \) by 2.

Your answer should not have a fraction of fractions. You may leave \(\sqrt{13} \) in the denominator.

\[\cos (\theta/2) = \frac{3}{\sqrt{13}} \]