Give exact answers, not decimal answers.

4(9). \(a = 3, \ b = 1, \ c = 3 \). Find \(\angle B \).

3 side, 1 angle problem with angle \(\angle B \).
Use the cosine law for \(\angle B \).
\[b^2 = a^2 + c^2 - 2ac \cos B \]
Solve for \(\cos B \).
\[2ac \cos B = a^2 + c^2 - b^2 \]
\[\cos B = \frac{(a^2 + c^2 - b^2)}{2ac} \]
\[B = \cos^{-1}\left(\frac{(a^2 + c^2 - b^2)}{2ac}\right) \]
\[= \cos^{-1}\left(\frac{(3^2 + 3^2 - 1^2)}{(2 \cdot 3 \cdot 3)}\right) \]
\[= \cos^{-1}(17/18) \]

3(9). \(\angle C = 40^\circ, \ b = 3, \ a = 5 \). Find \(c \).

3 side, 1 angle problem with angle \(\angle C \).
Use the cosine law for \(\angle C \).
\[c^2 = b^2 + a^2 - 2ba \cos C \]
Solve for \(c \).
\[c = \sqrt{b^2 + a^2 - 2ba \cos C} \]
\[= \sqrt{3^2 + 5^2 - 2(3)(5) \cos 40^\circ} \]
\[= \sqrt{34 - 30 \cos 40^\circ} \]

5(6). \(\angle A = 50^\circ, \ a = 4, \ c = 5 \). Find the two values of \(\angle C \).
There are two values since the side opposite is < side adjacent.
2 sides, 2 angle problem.
Use the sine law with sides \(a, c \).
\[\frac{\sin C}{c} = \frac{\sin A}{a} \]
\[\sin C = \frac{c \sin A}{a} = \frac{5 \sin 50^\circ}{4} \]
\[C = \sin^{-1}\left(\frac{5 \sin 50^\circ}{4}\right) \] and
\[C = 180^\circ - \sin^{-1}\left(\frac{5 \sin 50^\circ}{4}\right) \text{ or} \]
\[C = \pi - \sin^{-1}\left(\frac{5 \sin 50^\circ}{4}\right) \]

5(10, may omit). A 100 foot tall building is viewed from a point \(S \), the angle of inclination from \(S \) to point \(P \) at the top of the building is 3°. The angle of declination from \(S \) to the point \(Q \) at the bottom of the building is 5°. Find the distance \(d \) between \(S \) and the bottom \(Q \) of the building?
Solve for the one large triangle, not the two smaller right triangles. Include units. This problem is done only if it can be completed before the hour.

\[\angle PSQ = 8, \ \angle SPQ = 90^\circ - 3^\circ = 87^\circ, \]
\[\angle SQP = 90^\circ - 5^\circ = 85^\circ \]
\[\frac{d}{\sin 87^\circ} = \frac{100}{\sin 8^\circ} \]
\[d = \frac{100 \sin 87^\circ}{\sin 8^\circ} \text{ feet} \]