A circle is the set of all points such that the distance to a center point is some constant r.

Definition. An *ellipse* is the set of all points such that the sum of the distances to two *focus* points = the largest diameter = the distance between the vertices.

The *vertices* are the two points farthest apart.

The *major axis* runs between the two *vertices*. It has the largest diameter.

The *minor axis* is a perpendicular bisector of the major axis. It has the smallest diameter.

Mark the foci with a compass.
- Set your compass to a major radius.

- Put the point end on a minor axis endpoint.

- Draw an arc intersecting the major radius at the two foci.

By the Pythagorean Theorem,

\[a^2 = b^2 + c^2 \]
\[a^2 - b^2 = c^2 \]
\[\therefore c^2 = a^2 - b^2 \]
\[\therefore c = \sqrt{a^2 - b^2} \]
\(a = \text{major radius} = \frac{1}{2} \) the major axis length.
\(b = \text{minor radius} = \frac{1}{2} \) the minor axis length.
\(c = \text{focal radius} = \frac{1}{2} \) the distance between the foci.

Theorem. \(a^2 = b^2 + c^2 \).
\[
\therefore \quad c = \sqrt{a^2 - b^2}.
\]

The equation of a circle with center \((0, 0)\) and radius \(r\) is \(x^2 + y^2 = r^2\). Dividing both sides by \(r^2\) gives
\[
\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1.
\]

The equation of an ellipse with center \((0, 0)\) and horizontal radius \(a\) and vertical radius \(b\) is
\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.
\]
For ellipse equations, put the larger radius first.

Theorem. For \(a \geq b > 0\) (larger denominator first), the graphs of

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad \text{and} \quad \frac{y^2}{a^2} + \frac{x^2}{b^2} = 1
\]

are ellipses.

(0, 0) is the center.

\(a\) = the major radius.

\(b\) = the minor radius.

\(c = \sqrt{a^2 - b^2}\) = the focal radius.

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad \text{is a horizontal ellipse.}
\]

\(x\) has the bigger radius.

foci: \((c, 0)\) and \((-c, 0)\)

major axis: \((-a, 0)(a, 0)\)

minor axis: \((0, -b)(0, b)\)
\(\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1 \) is a **vertical** ellipse.

\(y \) has the **bigger** radius \(a \).

- **Axes:**
 - **Minor axis:** \((-b,0)(b,0)\)
 - **Major axis:** \((0,-a)(0,a)\)
 - **Foci:** \((0,-c)\) and \((0,c)\)

To graph:

- Complete the squares if necessary.
- Get 1 on the right.

- Write the equation in one of the two **ellipse forms**.
 The term with the larger denominator \(a \) comes first.

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad \text{horizontal ellipse, } a > b
\]

\(x \) has the larger denominator.

\[
\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1 \quad \text{vertical ellipse, } a > b
\]

\(y \) has the larger denominator.

- Add any needed horizontal or vertical shifts.
Find the major and minor axes and foci; graph:
- \(x^2 + 9y^2 = 9 \)
- \(4x^2 + y^2 = 4 \)

Write the equation in ellipse form.

Find \(a \).
Find \(b \).
Find \(c \).

Find the correct shape.

(A) horizontal ellipse (B) vertical ellipse
(C) horizontal parabola (D) vertical parabola

(E) #
Continued.

\[x^2 + 9y^2 = 9. \]

Find the major axis.
\((-a, 0)(a, 0) \text{ or } (0, -a)(0, a)\)

Find the minor axis.
\((-b, 0)(b, 0) \text{ or } (0, -b)(0, b)\)

Find foci. \((\pm c, 0) \text{ or } (0, \pm c)\)

Graph.

\[4x^2 + y^2 = 4. \]
THEOREM In any equation, replacing each
 \[x \text{ by } x-a \rightarrow \text{right } a \text{ units} \]
 \[x \text{ by } x+a \rightarrow \text{left } a \text{ units} \]
 \[y \text{ by } y-b \uparrow \text{up } b \text{ units} \]
 \[y \text{ by } y+b \downarrow \text{down } b \text{ units} \]

Shifting a graph also shifts its vertices, foci, and axes.
Find the major and minor axes and the foci:
\[4x^2 + y^2 + 2y = 3. \quad \text{and} \quad 16x^2 - 96x + 25y^2 = 256. \]

Write equation in ellipse form.

Find \(a \).
Find \(b \).
Find \(c \).
Find the shift.

Find the correct shape.
Continued.

- $4x^2 + y^2 + 2y = 3$.

Find the major axis.

- $16x^2 - 96x + 25y^2 = 256$.

Find the minor axis.

Find foci.
Continued.

- $4x^2 + y^2 + 2y = 3$

Find the graph.
Identify the type of graph:
\[y^2 + 2y = 4x - 5. \]
\[y^2 + 2y = 3 - 4x^2. \]
\[y^2 + 2y = 3 + 4x^2. \]

On the final, you get almost as many points for writing the foci and axes in symbolic form, \((a, b)(c, d)\), as for the graph.