Lecture 3 vectors and matrices

Open Lecture 3 on class website: www.math.hawaii.edu/190 See Chapter 2 of text for detailed explanations.

Vectors are sequences of numbers.
Row Vectors Enter the following in SciLab:
[1,2,3] notation for row vectors
[8]= =8
$a=\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$ separate entries with spaces or commas
$b=[10,10,10]$ commas preferred, required in Fortran
$\mathrm{a}+\mathrm{b}, \mathrm{b}-\mathrm{a}$ add, subtract the respective coordinates
2*a, a+1 scalar product and addition
$a^{\wedge} 2,2^{\wedge} a$
$a * b \quad$ wrong dimensions for matrix multiplication
a.*b pointwise multiplication is not matrix muliplication
$\mathrm{a}(1), \mathrm{a}(2), \mathrm{a}(3), a(i)=i^{\text {th }}$ entry of vector a
$a(\$)=$ last, $\quad a(\$-1)=$ next to last element.

Column Vectors

$a=[4 ; 3 ; 2]$ notation for column vectors
b
b' transpose
b why didn't b change?
$\mathrm{b}=\mathrm{b}$ ', $\mathrm{b} \quad \mathrm{b}$ doesn't change unless a change is assigned. $a+b, b-a, a . * b$ operations are performed component wise.

Vector operations

$\operatorname{sum}(a) \quad$ sum of entries,$\quad \operatorname{sum}([4 ; 3 ; 2])=9$
$\operatorname{prod}(a) \quad$ product of entries, $\quad \operatorname{prod}([4 ; 3 ; 2])=24$
$\max (a) \quad$ largest entry $\quad \max ([4 ; 3 ; 2])=4$
$\min (a) \quad$ smallest entry $\quad \min ([4 ; 3 ; 2])=2$
length(a) number of entries in the vector, length($[4 ; 3 ; 2]$)=3
(not the geometric length or magnitude of the vector)
$\mathrm{a}($ length $(\mathrm{a}))$ = last element $=\mathrm{a}(\$), \mathrm{a}(1)=$ first.
Dot (INNER) PRODUCT classwork problem 2. $\left[a_{1}, a_{2}, \ldots, a_{n}\right] \cdot\left[b_{1}, b_{2}, \ldots, b_{n}\right]=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}$ $=$ the dot product. The dot_product function (built into Matlab but not Scilab) must work for vectors of any length without using "...".
Example e3.1 dot_product Write a function dot_product (a, b) for the dot product of vectors a, b
function $P=$ dot_product (a, b)
$P=\operatorname{sum}(a . * b)$
endfunction
clc; disp(dot_product([1,2],[3,4]))//Answer 11 disp(dot_product([1,2,3],[4,5,6])) //Answer 32

Example e3.2 Write a function $\mathrm{H}(\mathrm{a})$ for the sum of the cubes of the components of a vector a, i.e., $a_{1}^{3}+a_{2}{ }^{3}+\ldots+a_{n}{ }^{3}$.
Test it on user input. Must work on vectors of any length.

```
function x=H(a)
    x=sum(a^3)
endfunction
clc
a=input('Enter a vector. > ') //try [1,2]
disp(H(a)) //on [1,2] ans. is 9
```


Magnitude (Geometric length) $\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+\ldots+a_{n}^{2}}$

This formula only for vectors of length 3 . The classwork function code below must work for vectors of any length.

Classwork c3.1(2) mag Together. Define a function mag (a) which calculates the geometric length of a. Entering the formula one step-and-test at a time, starting with fixed input. After the
function, include lines to get the vector a from the user and to display mag (a). If you enter " $[1,2,3]$ " you should get 3.7416574 Copy lines, File/New in SciNotes, paste, File/Save as c3.1(2)mag(a)
//c3.1(2)mag mag(a)=geometric length of a.
//Test on user input: a = input('Enter a vector. > ')
// Entering [1, 2, 3] should give 3.7416574
//delete this line, write in the three lines for the function
clc;printf('\n')
a=input('Enter a vector.>')
disp(mag(a))

Matrices

Enter in SciLab: -- repeat all these steps at home.
$a=[12 ; 35]$
$\mathrm{b}=[1,1 ; 1,1]$
[a,b] a followed on the right by b.
[a;b] a, with b appended below it.
2*b, a+b, a-b, a.*b, a*b
[n, m]=size(a) $/ / \mathrm{n}=$ number of rows, $\mathrm{m}=$ number columns $a(1,2), a(2,1) \quad a(i, j)=$ entry in $i^{\text {th }}$ row, $j^{\text {th }}$ column $a(2,2)=4$
changes $a(2,2)$ to 4

```
\(a, a(:,:)\)
\(\mathrm{a}, \mathrm{a}(:, 1), \mathrm{a}(:, 2) \mathrm{a}(:, j)=\) all rows of \(j^{\text {th }}\) column \(=j^{\text {th }}\) column
\(\mathrm{a}, \mathrm{a}(1,:), \mathrm{a}(2,:) \mathrm{a}(\mathrm{i},:)=\) all columns of \(i^{\text {th }}\) row \(=i^{\text {th }}\) row
\(a\),
\(a(1,2)=10\)
\(a(:, 2)=9\)
\(a(1,:)=[7,8]\)
\(\mathrm{z}=\mathrm{b} \quad\) saves b to z
\(b(1,:)=b(1,:)+2 \quad\) What does this do?
\(b=z\)
    recovers \(\mathbf{b}\) from \(\mathbf{Z}\)
\(b(:, 1)=b(:, 1)-2 \quad\) What does this do?
\(a([2,1],:)\) result of swapping rows 1, 2 //homework problem
a(: , \([2,1])\) result of swapping columns 1,2
zeros \((2,3)\)
ones (2,3)
8 * ones \((2,3)\)
MATRIX MULTIPLICATION, IDENTITY MATRIX, MATRIX INVERSES
```

a*b matrix multiplication

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] *\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{21}+a_{22} b_{22}
\end{array}\right] }
\end{aligned}
$$

The entry $a_{i j}$ in the $i^{\text {th }}$ row and $j^{\text {th }}$ column of the product
$=$ dot (or inner) product of the $i^{\text {th }}$ row of the first matrix and the $j^{\text {th }}$ column of the second matrix.

I=eye (2, 2) This is Scilab notation, Matlab uses eye (2).
I is the 2×2 identity matrix.

1 is the identity for multiplication of numbers: $1 x=x 1=x$. I is the identity for matrix multiplication: $\mathrm{I} * a=a * \mathrm{I}=a$ $a, ~ I * a, ~ a * I$,
x^{-1} is the inverse operation of multiplication of numbers:

$$
x\left(x^{-1}\right)=\left(x^{-1}\right) x=1
$$

x^{-1} is also the inverse operation of multiplication of matrices:

$$
a * a^{-1}=a^{-1} * a=I
$$

In Matlab/Scilab, the inverse a^{-1} is inv(a). $a=[1,2 ; 3,4]$
inv(a)
$a^{*} \operatorname{inv}(a), \operatorname{inv}(a) * a$
$2.220 \mathrm{D}-16=2.22 \times 10^{-16} \approx 0$
Computer arithmetic isn't always exact.

$$
\begin{aligned}
1 / 3 & =.3333333333333333 \ldots \\
& \approx .333333
\end{aligned}
$$

Classwork c3.2(3) id Together. Write a function id (n) which generates the $n \times n$ identity matrix. Test on $n=4,6$. Copy lines, File/New in SciNotes, paste, File/Save as c3.2(3)id
//c3.2(3)id id(n)=nxn identity matrix.
//delete this line, fill in the function
clc; disp(id(3)); disp(id(4))
Classwork c3.3(3) add_mult Together. Write a function add_mult (a, i, r, j) which adds r times row j to row i. Test add_mult $(a, 2,8,3)$ for $a=[1,0,0 ; 01,0 ; 0,0,1]$. Copy lines, File/New in SciNotes, paste, File/Save as c3.3(3)add_mult
//c3.3(3)add_mult add_mult(a,i,r,j) //delete this line, fill in the function
$a=[1,0,0 ; 0,1,0 ; 0,0,1] ; c l c$
disp(a); disp(add_mult(a,2,8,3))

Classwork problems due end of class

c3.1(2)mag, c3.2(3)id, c3.3(3)add_mult
email to: dale@math.hawaii.edu subject line: 190 c3(8) To enable automatic routing, copy the subject line exactly.
Closed-book quiz at beginning of class No computer; no text.
Like the Hw problems. Be on time. There will be one problem. It will be like a homework problem.

Номеworк н3.1(3) distance. The distance between points

$$
a=\left[a_{1}, a_{2}, \ldots, a_{n}\right] \text { and } b=\left[b_{1}, b_{2}, \ldots, b_{n}\right] \text { is }
$$

$$
\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\ldots+\left(a_{n}-b_{n}\right)^{2}}
$$

Write a Scilab function for the distance $\mathrm{D}=$ distance (a, b) between vectors a and b. Use it to find the distance between $[1,2]$ and $[3,3]$ and the distance between $[1,2,3]$ and $[3,3,3]$. Your function must work for vectors of any length, it may not use $+\ldots+$. See example E3.2 above. Try entering the formula one step-and-test at a time.
//h3.1(3)distance Use it to find the
//distance between $[1,2],[3,3]$ Answer: 2.23
//distance between [1,2,3],[3,3,3] Answer: 2.23
Homework н3.2(3) swap Write a Scilab function swap(a, i, j) which swaps rows i and j. For example,

123123
swap $(456,2,3)=789$
789456
Fill in the blank line. See example above.

```
//h3.2(3)swap swaps rows i, j
function b=swap(a,i,j)
    b=a
    b([i,j],:)=
endfunction
//Testing lines
a=[1, 2, 3;4,5,6;7, 8, 9]; disp(a), disp(swap(a, 1, 3))
a=[3 3; 6 6]; disp(a),disp(swap(a,1,2))
```

Homework h3.3(3) mult Write a Scilab function mult ($\mathrm{a}, \mathrm{i}, \mathrm{r}$) which multiplies row i by r. For example,
\(\operatorname{mult}\left(\begin{array}{lll}1 \& 2 \& 3

4 \& 5 \& 6,2,10)

7 \& 8 \& 9\end{array}\right)=\)| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 40 | 50 | 60 |
| 7 | 8 | 9 |

//h3.3(3)mult mult(a,i,r) multiplies row i by r //test on $a=[1,0,0 ; 0,1,0 ; 0,0,1]$, mult (a,2,8)

Homework due before next class Write these from scratch. н3.1(3)distance, н3.2(3)swap, н3.3(3)mult email to: dale@math.hawaii.edu subject line: 190 h3(9)

Elementary row operations

Given a matrix, there are three types of elementary row operations: You may

- switch (permute) rows, -- swap
- multiply a row by a nonzero constant, -- mult
- add a multiple of one row to another row -- add_mult

To pivot on the i-jth entry of a matrix (assumed nonzero) means using elementary row operations to make that entry 1 and all other entries in the j th column 0 . The leading coefficient of a row is the first nonzero entry. A matrix is in refuced row echelon form (rref) iff the leading coefficient of each row is 1 and it is to the right of the leading coefficient of the previous row.

Classwork c4.1(3) pivot Write a function pivot (a,i,j) which pivots matrix a on row i and column j. Assume $a(i, j) \neq 0$. Use a sequence of these pivots and swaps (see н3.2(3)) which converts $a=[0,2,3,5 ; 2,3,4,6 ; 5,6,6,7]$ to reduced row echelon form (rref)
Copy lines, File/New in SciNotes, paste, File/Save as c4.1(3)pivot
//c4.1(3)pivot pivot(a,i,j) pivots on $a(i, j)$
//copy the code for swap here (not its testing lines).
//delete this line, fill in the function
$a=[0,2,3,5 ; 2,3,4,6 ; 5,6,6,7]$
//convert a to rref.
clc;disp(a)
//delete this line, add a sequence of pivots and swaps to get rref
Homework н4.1(3) pivot Use the classwork function pivot (a,i, j) to convert a=[3,0,3,5;2,0,4,6;5,6,6,7] to reduced row echelon form.
//h4.1(3)pivot add lines to convert //a=[3,0,3,5;2,0,4,6;5,6,6,7] to rref.

