More Limits

Find:

\[\lim_{x \to \pi} \tan^2 x \]
\[\lim_{x \to 0} \frac{x^2 + 1}{2 + \cos x} \]
\[\lim_{x \to 0} \sin \left(\frac{1}{x} \right) \]
\[\lim_{x \to \infty} \sin \left(\frac{1}{x} \right) \]
\[\lim_{x \to 0} \frac{x^2 - 4}{x(x+2)} \]
\[\lim_{x \to 4} \left(\frac{2x}{x+4} + \frac{8}{x+4} \right) \]
\[\lim_{h \to 0} \frac{1 - \frac{1}{h}}{1 - \frac{1}{h}} \]

Recall: **Limit Laws** If \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) are defined then:

- \(\lim_{x \to c} d = d \), \(\lim_{x \to c} x = c \), \(\lim_{x \to c} t = t \) independent of \(x \).
- \(\lim_{x \to c} (f(x) \pm g(x)) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x) \)
- \(\lim_{x \to c} (af(x)) = a \lim_{x \to c} f(x) \)
- \(\lim_{x \to c} (f(x)^r) = \lim_{x \to c} f(x)^r \) for a reduced rational \(r \).
- \(\lim_{x \to c} f(x)g(x) = \lim_{x \to c} f(x) \lim_{x \to c} g(x) \)

Find:

- \(\lim_{x \to c} f(x) = a \) and \(\lim_{x \to c} g(x) = b \) and \(a, b \geq 0 \). Find:
 \[\lim_{x \to c} (f(x) - xg(x)) \]
 \[\lim_{x \to c} \sqrt{1 + f(x)g(x)} \]
 \[\lim_{x \to c} \frac{1 - f(x)}{1 + f(x)} \]

Recall: **Definition** \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \).

Find:

- \(f(x) = x^3 \). Find \(f'(x) \) using the derivative definition.
 \[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} \]
 \[= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h} \]
 \[= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h} \]
 \[= \lim_{h \to 0} (3x^2 + 3xh + h^2) = 3x^2 \]
 \[f'(2) = 3(2^2) = 12 \]. Just replace \(x \) with 2. \(\Box \)

Limit Definition

When does a function \(f(x) \) approach a limit \(L \) as the argument \(x \) approaches \(c \)? We want a precise definition, what does it mean to say that \(f(x) \) “approaches \(L \)” as \(x \) approaches \(c \)?

Saying “\(f(x) \) approaches \(L \)” can be made precise by saying that for any measure \(\varepsilon > 0 \) of closeness, eventually \(f(x) \) is \(\varepsilon \)-close to \(L \). I.e.,

- For any \(\varepsilon > 0 \), eventually, \(|f(x) - L| < \varepsilon \).

Now we have to make “eventually” precise, we need to say that when \(x \) is sufficiently close to \(c \), then \(f(x) \) is \(\varepsilon \)-close to \(L \). We formalize this by saying that for some measure \(\delta > 0 \) of closeness, when \(x \) is \(\delta \)-close to \(c \), i.e., \(|x - c| < \delta \) then \(f(x) \) is \(\varepsilon \)-close to \(L \).

Here is the formal definition:

Limit Definition For any function \(f \), any \(c, L \):

- \(\lim_{x \to c} f(x) = L \) iff for every \(\varepsilon > 0 \), there is a \(\delta > 0 \) such that for any \(x \), \(|x - c| < \delta \) \(\Rightarrow |f(x) - L| < \varepsilon \). \(\Box \)