One-sided Limits

Definition For a function f and a number c,

$$\lim_{x\to c^-} f(x)$$

means the limit of $f(x)$ as x approaches c from the left ($-$) side.

$$\lim_{x\to c^+} f(x)$$

means the limit of $f(x)$ as x approaches c from the right ($+$) side.

These are called **one-sided** limits. The regular limit is called the **two-sided** limit.
Find the limits.

- \(\lim_{x \to a^-} f(x) \)
- \(\lim_{x \to b^+} f(x) \) # means “none of these”
- \(\lim_{x \to c^-} f(x) \) (A) 1 (B) 2 (C) 3 (D) 4 (E) #
- \(\lim_{x \to c^+} f(x) \) (A) 1 (B) 2 (C) 3 (D) 4 (E) #
- \(\lim_{x \to d^-} f(x) \) (A) 1 (B) 2 (C) 3 (D) 4 (E) #
- \(\lim_{x \to e^+} f(x) \) (A) 1 (B) 2 (C) 3 (D) 4 (E) #

Fact The two-sided limit exists iff both one-sided limits exist and have the same value. The 2-sided at \(b \) at \(c \)?
\[\lim_{x \to 0^-} \left(\frac{5}{3 + \frac{1}{x}} \right) \]. First try calculating the two-sided limit. If the two-sided exists it is also the one-sided limit.

\[= \lim_{x \to 0} \left(\frac{5x}{3x + 1} \right) = \frac{5 \cdot 0}{3 \cdot 0 + 1} = 0. \]

If \(\lim_{x \to a^+} \) or \(\lim_{x \to a^-} \) is nonzero/0, write \(\infty \) or \(-\infty \) instead of “d.n.e.”. To determine if it is \(\infty \) or \(-\infty \), plug in a number \(a^+ \) (or \(a^- \)) which is slightly larger (or smaller) than \(a \).

\[\lim_{x \to 2^+} \frac{x}{x - 2} = \frac{2^+}{2^+ - 2} = \frac{+}{0^+} = +\infty \]

\[\lim_{x \to 2^-} \frac{x}{x - 2} = \frac{2^-}{2^- - 2} = \frac{+}{0^-} = -\infty \]

\[\lim_{x \to 2^+} \frac{3}{2 - x} = (A) -\infty \quad (B) 0 \quad (C) \infty \quad (D) \text{d.n.e.} \quad (E) \# \]

\[\lim_{x \to 2^-} \frac{3}{2 - x} = (A) -\infty \quad (B) 0 \quad (C) \infty \quad (D) \text{d.n.e.} \quad (E) \# \]
Note the graphs of $\sin x$, x, $\tan x$ as $x \to 0^+$.

As $x \to 0$ we have $1 - \cos x$ goes to 0 faster than x and we have $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$.

However $\tan x$, x, $\sin x$ all go to 0 at the same speed. For each graph, the tangent at 0 is 1.
As \(x \to 0^+ \) we have
\[
\sin(x) \leq x \leq \tan(x) = \frac{\sin x}{\cos x}.
\]
\[\therefore 1 \leq \frac{x}{\sin x} \leq \frac{1}{\cos x} \quad -- \text{divide the above line by } \sin x
\]
\[\therefore \lim_{x \to 0^+} 1 \leq \lim_{x \to 0^+} \frac{x}{\sin x} \leq \lim_{x \to 0^+} \frac{1}{\cos x}.
\]
\[\therefore 1 \leq \lim_{x \to 0^+} \frac{x}{\sin x} \leq \frac{1}{1} = 1 \quad \text{and so } \lim_{x \to 0^+} \frac{\sin x}{x} = 1.
\]

The case for \(x \to 0^- \), is similar but with the inequality being \(\frac{\sin x}{\cos x} = \tan(x) < x < \sin(x) \). Since both one-sided limits are 1, so is the two-sided limit: \(\lim_{x \to 0} \frac{x}{\sin x} = 1 \).

Taking reciprocals gives \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \).

Theorem

\[\lim_{x \to 0} \frac{x}{\sin x} = 1, \quad \lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0\]
THEOREM

\[\lim_{x \to 0} \frac{x}{\sin x} = 1, \quad \lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \]

In the theorem, \(x \) can be replaced by any variable, say \(h \), or, in fact, any term which goes to 0 as \(x \) goes to 0. Hence

\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{y \to 0} \frac{\sin y}{y} = \lim_{x \to 0} \frac{\sin 2x}{2x}. \]

\[\lim_{x \to 0} \frac{\tan x}{x} = ? \] Note \(\frac{\tan x}{x} = \frac{1}{\cos x} \frac{\sin x}{x} \)

\[\lim_{x \to 0} \frac{x \sin(3x)}{\sin(2x) \sin(4x)} = \lim_{x \to 0} \frac{x}{1} \frac{\sin(3x)}{\sin(2x)} \frac{1}{\sin(4x)} \]

\[= \lim_{x \to 0} \frac{x}{1} \frac{\sin(3x)}{3x} \frac{2x}{\sin(2x)} \frac{4x}{\sin(4x)} \frac{(3x)}{(2x)(4x)} \]

\[= \lim_{x \to 0} \frac{\sin(3x)}{3x} \frac{2x}{\sin(2x)} \frac{4x}{\sin(4x)} \frac{3}{8} \]

\[= (1)(1)(1)(\frac{3}{8}) = \frac{3}{8}. \]

\[\lim_{x \to 0} \frac{\sin(4x)}{2x} = \] (A) 0 (B) 1 (C) 2 (D) 4 (E) #