1(3) Given the graph of \(f(x) \) shown above, draw the graph of \(f'(x) \). Draw it on the same coordinate system as \(f \) above, i.e., draw the graph of \(f'(x) \) on top of the graph of \(f(x) \). Graph must be smooth. It has a quadratic shape with one \(x \)-intercept.

2(3) Given the graph of \(g(x) \) shown above, draw the graph of \(g'(x) \). Draw it on the same coordinate system as \(g \) above, i.e., draw the graph of \(g'(x) \) on top of the graph of \(g(x) \). Graph should have two \(x \)-intercepts.

\[
3(1) \ f(x) = \begin{cases}
 x, & x \leq 1 \\
 0, & x > 1
\end{cases}
\]

Find the left-hand derivative at \(x = 1 \).