Math 241 Lecture 15

Trigonometric derivatives

Trigonometric identities

\[
\sin^2 x + \cos^2 x = 1
\]
\[
\tan x = \frac{\sin x}{\cos x} \quad \cot x = \frac{\cos x}{\sin x}
\]
\[
\sec x = \frac{1}{\cos x} \quad \csc x = \frac{1}{\sin x}
\]

Trigonometric derivatives

\[
\sin' x = \cos x \quad \cos' x = -\sin x
\]
\[
\tan' x = \sec^2 x \quad \cot' x = -\csc^2 x
\]
\[
\sec' x = \sec x \tan x \quad \csc' x = -\csc x \cot x
\]

Dual functions starting with "c" have derivatives starting with "-".

- \(\tan' x = \frac{\sin x}{(\cos x)^2} \)
- \(\sec' x = \frac{1}{\cos x} \)

Chain rule

Write the following as a composition \(f(g(x)) \) of an outer function \(f \) and an inner function \(g \).

- \((x^2 + 1)^6 \) Start with \(x \) and work inside out.
 - The inner function acts on \(x \) first.
 - The outer function then does what remains to be done.
 - You can get this by replacing the inner function with \(x \).

 - inner function: \(g(x) = x^2 + 1 \) or \(g(x) = x^2 \)
 - outer function: \(f(x) = x^6 \) or \(f(x) = (x + 1)^6 \)

- \(\sqrt{1-x^2} \)
 - inner function: \(g(x) = \)
 - (A) \(\sqrt{x} \)
 - (B) \(1 - x \)
 - (C) \(x^2 \)
 - (D) \(1 - x^2 \)
 - (E) \(\sqrt{1-x} \)
 - outer function: \(f(x) = \)
 - (A) \(\sqrt{x} \)
 - (B) \(1 - x \)
 - (C) \(x^2 \)
 - (D) \(1 - x^2 \)
 - (E) \(\sqrt{1-x} \)

Chain rule If \(f \) and \(g \) are differentiable, then so is \(f(g(x)) \) and

\[
(f(g(x)))' = f'(g(x)) \cdot g'(x)
\]

- \((x^2 + 1)^6 \)' = ?

Detailed way. \((x^2 + 1)^6 = f(g(x))\) where

- \(g(x) = x^2 + 1 \), \(f(x) = x^6 \)
- \(g'(x) = 2x \), \(f'(x) = 6x^5 \)

\[
((x^2 + 1)^6)' = (f(g(x)))' = f'(g(x))g'(x) = 6(x^6)(2x) = 12x(x^2 + 1)^5
\]

Direct way.

\[
((x^2 + 1)^6)' = 6(x^2 + 1)^5(2x) = 12x(x^2 + 1)^5
\]

Recall: \((\sqrt{x})' = \frac{1}{2\sqrt{x}} \) \((\frac{1}{x})' = -\frac{1}{x^2} \)

- \(\sqrt{\tan x} ' = \frac{1}{2\sqrt{\tan x}} \sec^2 x \)
- \(\tan(\sqrt{x}) ' = \)
 - (A) \(\sqrt{x} \)
 - (B) \(\frac{1}{\sqrt{x}} \)
 - (C) \(\frac{1}{2\sqrt{x}} \)
 - (D) \(\sec^2(\sqrt{x}) \)
 - (E) \(\frac{1}{2\sqrt{x}} \)

- \((\sqrt{1-x^2})' = ? \)
 - (A) \(\frac{1}{2\sqrt{2x}} \)
 - (B) \(\frac{-2x}{\sqrt{1-x^2}} \)
 - (C) \(\frac{1}{2\sqrt{1-x^2}} \)
 - (D) \(\frac{-x}{\sqrt{1-x^2}} \)

The chain rule in \(\frac{dy}{dx} \)-notation.

Suppose \(y = f(u) \) and \(u = g(x) \), then \(y = f(g(x)) \) and

\[
\frac{dy}{dx} = f'(u) \quad \frac{du}{dx} = g'(x)
\]

\[
\frac{dy}{dx} = (f(g(x)))' = f'(g(x)) \cdot g'(x)
\]

\[
= f'(u) \cdot g'(x) = \frac{dy}{du} \cdot \frac{du}{dx}
\]

Theorem If \(y \) is a function of \(u \) and \(u \) is a function of \(x \) then

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
\]

- \(y = u^5 \) and \(u = x^2 + 5x \), \(\frac{dy}{dx} = \)

One way

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{dy}{du} (x^2 + 5x)^5 = 5(x^2 + 5x)^4(2x + 5)
\]

Better way

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 5u^4(2x + 5) = 5(x^2 + 5x)^4(2x + 5)
\]

Final answer for \(\frac{dy}{dx} \) must be in \(x \) and no other variable.

For \(\frac{dw}{dz} \), the answer would have to be in \(z \).
For \(\frac{dy}{dt} \) the answer would be in \(t \) and no other variable.

- \(y = \frac{1}{u}, \quad u = x^2 - 1, \quad x = t + 3, \quad \frac{dy}{dt} = \) unsimplified answer

\[
\frac{dy}{dt} = \frac{dy}{du} \frac{du}{dx} \frac{dx}{dt} = \frac{-1}{u^2}(2x)(1) = \text{ careful}
\]

(A) \(\frac{-1}{u^2}(2x)(1) \)
(B) \(\frac{-1}{(x^2 - 1)^2}(2x)(1) \)
(C) \(\frac{-1}{u^2}[2(t + 3)](1) \)
(D) \(\frac{-1}{(x^2 - 1)^2}[2(t + 3)](1) \)
(E) #