Rate of change problems

- A 6’ ladder leans against a wall. The base is pulled away at 1/2 ft/sec. How fast is the top falling when the base is 5’ from the wall?

Picture & variables

<table>
<thead>
<tr>
<th>Want</th>
<th>(A) dy/dt</th>
<th>(B) -dy/dt</th>
<th>(C) dy/dt</th>
<th>(D) -dy/dt</th>
<th>(E) #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given x² + y² = 6² and the second given is</td>
<td>(A) y = 5</td>
<td>(B) x = 5</td>
<td>(C) dx/dt = 1/2</td>
<td>(D) dy/dt = -1/2</td>
<td>(E) #</td>
</tr>
</tbody>
</table>

Diff. Differentiate the equation.

(A) 2x + 2y = 0 (B) 2x + 2y dy/dt = 0

(C) 2x dx/dt + 2y = 0 (D) 2x dx/dt + 2y dy/dt = 0 (E) #

Replace dx/dt with its value and then solve for dy/dt.

(A) \[\frac{x}{y} \] (B) \[-\frac{x}{2y} \] (C) \[\frac{y}{2x} \] (D) \[-\frac{y}{x} \] (E) #

Ans. dy/dt | x=5, y=?

y² + 5² = 6², y = \[\sqrt{36-25} = \sqrt{11} \]

Final Ans. Rate of fall = \[-\frac{dy}{dt} \mid _{x=5, y=\sqrt{11}} = \text{? ft/sec} \]

(A) \[\frac{1}{5\sqrt{11}} \] (B) \[-\frac{1}{5\sqrt{11}} \] (C) \[-\frac{5}{\sqrt{11}} \] (D) \[\frac{5}{2\sqrt{11}} \] (E) #

- A conical cup has radius 2" and height 6". It leaks water at a rate of 5 cubic inches/min. How fast is the water level falling when the level is 3"?

The volume V of a cone of radius r, height h is \[V = \frac{\pi}{3} r^2 h. \]

Picture & variables

<table>
<thead>
<tr>
<th>Want</th>
<th>(A) [\frac{dh}{dt} \mid _{h=3}]</th>
<th>(B) [-\frac{dh}{dt} \mid _{h=3}]</th>
<th>(C) [\frac{dr}{dt} \mid _{h=3}]</th>
<th>(D) [-\frac{dr}{dt} \mid _{r=3}]</th>
<th>(E) #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given [V = \frac{\pi}{3} r^2 h,] [\frac{dV}{dt} = -5], find the third given which relates r and h.</td>
<td>(A) h = 6</td>
<td>(B) h = 3</td>
<td>(C) r = 2</td>
<td>(D) [\frac{r}{h}] = [\frac{2}{6}]</td>
<td>(E) #</td>
</tr>
</tbody>
</table>

Eq. Want eq. in V (known rate of change) and h (wanted rate of change) and nothing else -- no r. Need r in h.

\[V = \frac{\pi}{3} r^2 h \]

To get an equation in just V and h we need to write r in terms of h.

\[\frac{r}{h} = \frac{2}{6}, \] \[6r = 2h, \] \[3r = h, \] \[r = \frac{h}{3} \]

Write V in terms of h.

\[V = \frac{\pi}{27} h^3 \]

Diff. Differentiate both sides of the equation \[V = \ldots \]

\[\frac{dV}{dt} = \]

(A) \[3\pi h^2 \] (B) \[3\pi h^2 \frac{dh}{dt} \] (C) \[\frac{\pi h^2}{9} \] (D) \[\frac{\pi h^2}{9} \frac{dh}{dt} \] (E) #

Ans. Find \[\frac{dh}{dt} \mid _{h=3}. \]

In the equation \[\frac{dV}{dt} = \ldots \] set \[\frac{dV}{dt} = -5. \]

Solve for \[\frac{dh}{dt} \] and set \[h = 3. \]

Final Ans: Water is falling at \[-\frac{dh}{dt} \mid _{h=3} = \text{? inches/min} \]

(A) \[5\pi \] (B) \[\frac{1}{5\pi} \] (C) \[3\pi \] (D) \[\frac{1}{3\pi} \] (E) #

- A 6’ man walks toward from a 10’ streetlight at 6 feet/second. Find the rate of change of the shadow’s length when he is 6’ from the base of the light. ... -9 ft/sec