Rate of change problems

- A 6' ladder leans against a wall. The base is pulled away at 1/2 ft/sec. How fast is the top falling when the base is 5' from the wall?

Picture & variables

\[x \quad \rightarrow \quad 1/2 \]

\[y \quad 6 \]

Want

(A) \(\frac{dy}{dt} \) \hspace{1cm} (B) \(\frac{-dy}{dt} \) \hspace{1cm} (C) \(\frac{dy}{dt} \big|_{x=5} \) \hspace{1cm} (D) \(\frac{-dy}{dt} \big|_{x=5} \) \hspace{1cm} (E) \#

Given \(x^2 + y^2 = 6^2 \) and the second given is

(A) \(y = 5 \) \hspace{1cm} (B) \(x = 5 \) \hspace{1cm} (C) \(\frac{dx}{dt} = \frac{1}{2} \) \hspace{1cm} (D) \(\frac{dy}{dt} = -\frac{1}{2} \) \hspace{1cm} (E) \#
Eq. \(x^2 + y^2 = 36 \)

Diff. Differentiate the equation.

(A) \(2x + 2y = 0 \) (B) \(2x + 2y \frac{dy}{dt} = 0 \)

(C) \(2x \frac{dx}{dt} + 2y = 0 \) (D) \(2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0 \) (E) #

Replace \(\frac{dx}{dt} \) with its value and then solve for \(\frac{dy}{dt} \)

\[
\frac{dy}{dt} = \]

(A) \(\frac{x}{y} \) (B) \(\frac{-x}{2y} \) (C) \(\frac{y}{2x} \) (D) \(\frac{-y}{x} \) (E) #

\[
\frac{dy}{dt} \bigg|_{x=5, \ y=\ ?}
\]

\(y^2 + 5^2 = 6^2 \), \(y = \sqrt{36 - 5^2} = \sqrt{11} \)

Ans. Rate of fall = \(\frac{-dy}{dt} \bigg|_{x=5, \ y=\sqrt{11}} = ? \) ft/sec

(A) \(\frac{1}{5\sqrt{11}} \) (B) \(\frac{-1}{5\sqrt{11}} \) (C) \(\frac{-5}{\sqrt{11}} \) (D) \(\frac{5}{2\sqrt{11}} \) (E) #
A conical cup has radius 2" and height 6". It leaks water at a rate of 5 cubic inches/min. How fast is the water level falling when the level is 3"? The volume V of a cone of radius r, height h is $V = \frac{\pi}{3} r^2 h$

Picture & variables

![Diagram of a conical cup with dimensions 2" radius, 6" height, and 5 cubic inches/min leak rate]

Want

(A) $\frac{dh}{dt} \big|_{h=3}$ (B) $-\frac{dh}{dt} \big|_{h=3}$ (C) $\frac{dr}{dt} \big|_{h=3}$ (D) $-\frac{dr}{dt} \big|_{r=3}$ (E) #

Given $V = \frac{\pi}{3} r^2 h$, $\frac{dV}{dt} = -5$, find the third given which is an equation between r, h.

(A) $h = 6$ (B) $h = 3$ (C) $r = 2$ (D) $\frac{r}{h} = \frac{2}{6}$ (E) #
Eq. Want eq. in V (known rate of change) and h (wanted rate of change) and nothing else -- no r. Need r in h.

$V = \frac{\pi}{3} r^2 h$ involves r and h.

To get an equation in just V and h we need to write r in terms of h.

$6r = 2h, \ 3r = h, \ r = \frac{h}{3}$

Write V in terms of h. $V =$

(A) $\frac{\pi}{27} h^3$ (B) $\frac{\pi}{27} h^2$ (C) $3\pi h^2$ (D) $-3\pi h^2$ (E) #

Diff. Differentiate both sides of the equation $V =$...

$\frac{dV}{dt} =$

(A) $3\pi h^2$ (B) $3\pi h^2 \frac{dh}{dt}$ (C) $\frac{\pi h^2}{9}$ (D) $\frac{\pi h^2}{9} \frac{dh}{dt}$ (E) #
Ans. Find $\frac{dh}{dt}|_{h=3}$.

In the equation $\frac{dV}{dt} = ...$ set $\frac{dV}{dt} = -5$.

Solve for $\frac{dh}{dt}$ and set $h = 3$.

Answer: Water is falling at $-\frac{dh}{dt}|_{h=3} = ?$ inches/min

(A) 5π (B) $\frac{1}{5\pi}$ (C) 3π (D) $\frac{1}{3\pi}$ (E) #

- A 6’ man walks toward from a 10’ streetlight at 6 feet/second. Find the rate of change of the shadow’s length when he is 6’ from the base of the light. ... -9 ft/sec