Rolle's Theorem For any differentiable \(f \), any two distinct numbers \(a \) and \(b \), if \(f(a) = f(b) = 0 \) then \(f'(c) = 0 \) for some \(c \) between \(a \) and \(b \).

Proof. If \(f \) is 0 on \([a, b]\) then \(f' = 0 \) for all \(c \) in \([a, b]\). Otherwise \(f(x) > 0 \) or \(f(x) < 0 \) somewhere in \([a, b]\). Consider the first case. In this case \(f \) has a maximum \(f(c) > 0 \) at some \(c \in (a, b) \). Thus \(c \) is a critical point. \(c \) is not an endpoint since \(c \in (a, b) \). \(f'(c) \) is not undefined since \(f \) is differentiable. Hence \(f'(c) = 0 \).
Corollary For any differentiable \(f \), if \(f \) has \(n + 1 \) zeros, then \(f' \) has \(n \) or more zeros. I.e., \(f \) has at most one more zero than \(f' \).

Proof. By the above theorem, between every two zeros of \(f \) there is a zero of \(f' \). Hence if \(f \) has three zeros, \(a, b, c \), then \(f' \) has two or more zeros, one between \(a, b \) and another between \(b, c \).

The derivative of a degree \(n \) polynomial has degree \(n - 1 \). Hence a degree \(n \) polynomial has at most one more zero than possible for a degree \(n - 1 \) polynomial. A degree 1 polynomial is a nonconstant straight line with exactly 1 root. A degree 2 polynomial has at most one more, i.e., at most 2 roots. ... A degree \(n \) polynomial has at most \(n \) roots.

More generally, for any secant from \((a,f(a))\) to \((b,f(b))\) there is a tangent at some \(c \) between \(a \) and \(b \) which is parallel to the secant, i.e.,
Mean Value Theorem For any differentiable f and any two distinct numbers a and b,

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

for some c between a and b.

The expression $\frac{f(b) - f(a)}{b - a}$ is the slope of the secant $(a, f(a))$ to $(b, f(b))$ and it is also the average rate of change over $[a, b]$.
Corollary If \(f' \) is zero everywhere, then \(f \) is some constant \(C \): \(f(x) = C \) for all \(x \).

Proof by contradiction. Assume the hypothesis: \(f' \) is zero everywhere. Assume, for sake of a contradiction, that \(f \) is not constant. Thus \(f(b) \neq f(a) \) for some points \(a \) and \(b \). Thus \(f(b) - f(a) \neq 0 \) and \(\frac{f(b) - f(a)}{b - a} \neq 0 \). By the Mean Value Theorem, there is a \(c \) between \(a \) and \(b \) such that \(f'(c) = \frac{f(b) - f(a)}{b - a} \). Hence \(f'(c) \neq 0 \) which contradicts our hypothesis. Hence \(f \) is constant (the assumption that is was not led to a contradiction).

Corollary For any differentiable functions \(f, g \), if \(f'(x) = g'(x) \), then \(f(x) = g(x) + C \) for some constant \(C \).

Proof. \(f' = g' \) implies \((f - g)' = f' - g' = 0 \). By the previous Corollary, this implies \(f - g = C \) for some constant \(C \). Hence \(f(x) = g(x) + C \).
Definition f is an antiderivative of g iff $f' = g$ iff f is a solution to $y' = g(x)$.

Corollary If f is a solution to $y' = g(x)$, then every solution is $f(x) + C$ for some constant C. I.e., if f is an antiderivative of g then any other antiderivative of g is $f(x) + C$ for some constant C.

Proof. Suppose that $f'(x) = g(x)$. If h is another solution, then $h'(x) = g(x)$. Thus $h'(x) = f'(x)$. By the previous Corollary, h and f differ by a constant: $h(x) = f(x) + C$.

- Find all functions $y(x)$ such that $y' = x^2$.

 $(?)' = x^2$
 $(x^3)' = 3x^2$
 $(\frac{1}{3}x^3)' = x^2$

 Hence every solution is $\frac{1}{3}x^3 + C$ for some C.

Differential Equations

Find \(f \) if \(f'(x) = 2 \cos(x) \) and \(f(0) = 4 \).

\[(\sin(x))' = \cos(x) \]
\[(2 \sin(x))' = 2 \cos(x) \]

Hence \(f(x) = 2 \sin(x) + C \) for some \(C \) which we must find.

\[f(0) = 4 \implies 2 \sin(0) + C = 4 \implies 2(0) + C = 4 \]
implies \(C = 4 \). Hence \(f(x) = 2 \sin(x) + 4 \).

Find \(s \) if \(a(x) = 2x, \ s(0) = 0, \ v(1) = 2 \). Stated another way

Find \(s \) if \(v'(x) = 2x, \ v(1) = 2, \ s'(x) = v(x), \ s(0) = 0 \).

\[v(x) = ? \quad \text{Use the facts} \quad v'(x) = 2x, \ v(1) = 2 \]
(A) \(x^2 \) (B) \(\frac{1}{2} x^2 \) (C) \(x^2 + 1 \) (D) \(x^2 + 2 \) (E) #

\[s(x) = ? \quad \text{Use the facts} \quad s'(x) = v(x), \ s(0) = 0 \]
(A) \(x^3 \) (B) \(\frac{1}{3} x^3 \) (C) \(x^3 + 1 \) (D) \(\frac{1}{3} x^3 + x \) (E) #
Prove that \(f(x) = \frac{1}{x^2} - x^3 \) has at most one zero in the interval \((0, \infty)\).

Solution: \(f'(x) = (x^{-2})' - (x^3)' = -2x^{-3} - 3x^2 = \frac{-2}{x^3} - 3x^2 \). For \(x \in (0, \infty) \) this is negative and can’t be 0. By the Corollary, if \(f' \) has \(n = 0 \) zeros, then \(f \) has at most \(n + 1 = 0 + 1 = 1 \) zero in the interval \((0, \infty)\).

\(\square \)