60(9) \( y|_{x=0} = f(0) = 0 \). \( f \) is defined everywhere.
\[
y' = f'(x) = x^{1/5} + x^{-4/5} = \frac{x + 1}{x^{4/5}} \quad \text{lead term } x^{1/5}
\]
- List the two critical point(s). \( x = ? \)

- List the two intervals of increase and decrease in order.

- Classify the two critical points (x coordinates only).

- Find and factor the second derivative, list its lead term.
\[
y'' = \quad \text{lead term 7 symbols, checksum}=15
\]
- List the two possible inflection point(s). \( x = ? \)

- List the three intervals of concavity in order.

- List the two inflection points (x coordinates only).

- Graph as well as possible. The graph crosses the origin. You don’t know the heights of other points. But you can determine the graph’s shape.

26(10) \( y = f(x) = x^{3/5} \)
- Find the 1st derivative (write as a fraction), list lead term.
\[
y' = \quad \text{lead term 7 symbols, checksum}=15
\]
- List the critical point. \(( f(?) = ? )\)

- List the one interval of increase and decrease.

- Classify the one critical point \(( f(?) = ? \text{ loc. ... })\).

- Find the 2nd derivative (write as a fraction), list lead term.
\[
y'' = \quad \text{lead term 9 symbols, checksum}=25
\]
- List the possible inflection point. \((x = ?)\)

- List the two intervals of concavity in order.

- List the one inflection point \((?, ?)\).

- Graph. List critical and inflection point coordinates on the graph. Draw short line segments critical point tangents.