Definite integral

DEFINITION \(\int_{a}^{b} f(x) \, dx \), the definite integral of \(f(x) \) from \(a \) to \(b \), (here \(a < b \)) is the signed area between the \(x \)-axis and \(f(x) \) - and between the points \(a \) and \(b \). \(a \) is the lower limit, \(b \) is the upper limit, \(x \) is the variable of integration. By signed area, we mean that area below the \(x \)-axis is negative.

Integrating in the backward, right-to-left direction changes the sign. \(\int_{b}^{a} f(x) \, dx = -\int_{a}^{b} f(x) \, dx \)
\[\int_0^2 1 \, dx = 2 \]
\[\int_0^2 (-1) \, dx = -2 \]
\[\int_0^2 1 \, dx = -2 \]
\[\int_0^2 (-1) \, dx = 2 \]
1. \(\int_0^1 x \, dx = ? \)

2. \(\int_{-1}^0 x \, dx = ? \)

3. \(\int_{-1}^1 x \, dx = ? \)

4. \(\int_1^0 x \, dx = ? \)

5. \(\int_{-1}^{-1} x \, dx = ? \)
The x in $\int_{b}^{a} f(x) \, dx$ is the **variable of integration**, it is the name of the variable for the horizontal axis which could also be any other variable, e.g., t or s. Since the name we give to the horizontal axis doesn’t affect the size of the region,

$$\int_{b}^{a} f(x) \, dx = \int_{a}^{b} f(t) \, dt = \int_{a}^{b} f(s) \, ds$$

For this reason, the variable of integration is called a **dummy variable**.
Summation (sigma) notation

The greek letter Σ sigma designates summation.

$$\sum_{i=n}^{m} a_i = a_n + a_{n+1} + a_{n+2} + \ldots + a_{m-1} + a_m$$

i is the **index**, n is the **lower bound**, m is the **upper bound**.

- $\sum_{i=1}^{4} \frac{1}{i} x^i = \frac{1}{1} x^1 + \frac{1}{2} x^2 + \frac{1}{3} x^3 + \frac{1}{4} x^4$
- $\sum_{k=0}^{3} (-1)^k \frac{1}{2^k} = (-1)^0 \frac{1}{2^0} + (-1)^1 \frac{1}{2^1} + (-1)^2 \frac{1}{2^2} + (-1)^3 \frac{1}{2^3}$

$k : 1, 2, 3, 4, \ldots$
Starting with $k = 1$:

$2k : 2, 4, 6, 8, \ldots$
$2k - 1 : 1, 3, 5, 7, \ldots$

$k^2 : 1, 4, 9, 16, \ldots$

$2^k : 2, 4, 8, 16, \ldots$

$(-1)^k : -1, 1, -1, 1, \ldots$
$(-1)^{k+1} : 1, -1, 1, -1, \ldots$

- Write in summation (sigma) notation with index k starting at 1:
 $1 + 3 + 5 + 7 + 9$
 $$\sum_{k=1}^{5} (2k - 1)$$

- Write in summation (sigma) notation with index k starting at 1:
 $2 + 2^2 x + 2^3 x^2 + 2^4 x^3 + 2^5 x^4 + \ldots$

 $= 2^1 x^0 + 2^2 x^1 + 2^3 x^2 + 2^4 x^3 + 2^5 x^4 + \ldots$

 $$\sum_{i=0}^{\infty} 2^{i+1} x^i = \sum_{k=1}^{\infty} 2^k x^{k-1} \quad \leftarrow$$
Write in summation (sigma) notation.
\[2x + 3x^2 + 4x^3 + 5x^4 + \ldots\]
(A) \(\sum_{i=0}^{\infty} ix^{i+1}\)
(B) \(\sum_{i=0}^{\infty} (i + 1)x^i\)
(C) \(\sum_{i=1}^{\infty} ix^{i+1}\)
(D) \(\sum_{i=1}^{\infty} (i + 1)x^i\)
(E) #

Write in summation (sigma) notation.
\[1 - x + x^2 - x^3 + x^4 + \ldots\]
(A) \(\sum_{i=0}^{\infty} (-1)^i x^i\)
(B) \(\sum_{i=0}^{\infty} (-1)^{i+1} x^i\)
(C) \(\sum_{i=0}^{\infty} (-1)^i x^{i+1}\)
(D) \(\sum_{i=0}^{\infty} (-1)^{i+1} x^{i+1}\) (E) #