Areas (geometric area) between curves
If \(f \) and \(g \) are curves with and \(f(x) \geq g(x) \) on \([a, b]\) then the area (geometric area or total area) between the graphs is

\[
\int_a^b (f(x) - g(x)) \, dx
\]

This formula is always correct, even for areas below the \(x \)-axis.

If \(f(x) \leq g(x) \), the area is

\[
\int_a^b (g(x) - f(x)) \, dx = -\int_a^b (f(x) - g(x)) \, dx = \int_a^b (f(x) - g(x)) \, dx
\]

As long as \(f \) and \(g \) are continuous and don’t cross on the interval \([a, b]\), then one of \(f(x) \geq g(x) \) or \(f(x) \leq g(x) \) will be true on the interval. In either case the area will be

\[
\left| \int_a^b (f(x) - g(x)) \, dx \right|
\]

As long as the functions don’t intersect over an interval, just calculate the integral. If the answer is negative, drop the negation sign.

Enclosed Area Calculation Procedure

Intersects: To find where the graphs intersect, set the functions equal to each other and solve for \(x \).

Areas: In each interval between intersects, calculate the area \(\int_a^b (f(x) - g(x)) \, dx \) over the interval. Then total the absolute values of these integrals.

- Find the enclosed area between
 \(y = 1 - x^2 \) and \(y = x - 1 \)

 Intersects:
 \(x - 1 = 1 - x^2 \) iff \(x^2 + x - 2 = 0 \)
 \((x + 2)(x - 1) = 0 \) iff \(x = -2, 1 \)

 Integral(s):
 \[
 \int_{-2}^{1} [(x - 1) - (1 - x^2)] \, dx = \int_{-2}^{1} (x^2 + x - 2) \, dx
 \]
 \[
 = \left[\frac{x^3}{3} + \frac{x^2}{2} - 2x \right]_{-2}^{1}
 \]
 \[
 = \left[\left(\frac{1}{3} \right)^3 + \frac{1}{2} - 2 \right] - \left[\left(\frac{-2}{3} \right)^3 + \frac{(-2)^2}{2} - 2(-2) \right]
 \]
 \[
 = \left(\frac{1}{3} + \frac{1}{2} - 6 \right) = 3 + \frac{1}{2} - 8 = \frac{1}{2} - \frac{10}{2} = -\frac{9}{2}
 \]

 Area(s):
 area = \(\left| \int_{-2}^{1} [(x - 1) - (1 - x^2)] \, dx \right| = \left| -\frac{9}{2} \right| = \frac{9}{2} \)

- Find the enclosed area (finite area) between the following three curves.
 \(y = \sqrt{x+1} \), \(y = -\sqrt{x+1} \), \(y = 5 - x \)

 Intersects:
 \(\pm \sqrt{x+1} = 5 - x \) iff \(x + 1 = (5 - x)^2 \)
 \(\text{iff} \ x + 1 = 25 - 10x + x^2 \iff x^2 - 11x + 24 = 0 \)
 \(\text{iff} \ (x - 3)(x - 8) = 0 \) iff \(x = 3, 8 \)

 \(\sqrt{x+1} = -\sqrt{x+1} \) iff \(x = ? \)
 (A) -1 (B) 0 (C) 1 (D) 3 (E) #

Divide the enclosed area into two parts with \(A \) the part which is left of the vertical line through (3,2) and \(B \) the part which is right of that vertical line.

The area of part \(B \) is \(\int_3^8 (5 - x) - (-\sqrt{x+1}) \, dx \).

- Find the integral for \(A \).
 (A) \(\int_3^8 \sqrt{x+1} - (-\sqrt{x+1}) \, dx \)
 (B) \(\int_2^3 \sqrt{x+1} - (-\sqrt{x+1}) \, dx \)
 (C) \(\int_3^5 \sqrt{x+1} - (-\sqrt{x+1}) \, dx \)
 (D) \(\int_2^3 \sqrt{x+1} - (-\sqrt{x+1}) \, dx \)
 (E) #

Alternately, we can regard these curves as functions of \(y \).

- Find the integral ranging over \(y \).
 (A) \(\int_{y=\sqrt{x+1}}^{y=5-x} \sqrt{x+1} \, dy \)
 (B) \(\int_{y=-\sqrt{x+1}}^{y=5-x} \sqrt{x+1} \, dy \)
 (C) \(\int_{y=\sqrt{x+1}}^{y=5-x} (y^2 - 1) \, dy \)
 (D) \(\int_{y=-\sqrt{x+1}}^{y=5-x} (y^2 - 1) \, dy \)
 (E) #
GRAPHS WITH x-DEPENDENT, y-INDEPENDENT

When thinking of x as a function $x(y)$ of y, y is the independent variable ranging freely over the y-axis. $x(y)$ is the x-coordinate of the graph point $(x(y), y)$. When x is a function of y, the areas can be calculated as integrals of x with respect to $y \int_a^b x(y) \, dy$.

It is often easier to visualize by swapping the axes: putting y on the horizontal axis and x on the vertical.

Write the area as an integral ranging over y.

(A) $\int_{-8}^3 (5 - y) - \sqrt{y + 1} \, dy$
(B) $\int_{-1}^8 (5 - y) - \sqrt{y + 1} \, dy$
(C) $\int_{-3}^2 (5 - y) - (y^2 - 1) \, dy$
(D) $\int_{2}^3 (5 - y) - (y^2 - 1) \, dy$
(E) #