Volumes using disks and shells continued

Use the disc method to find the volume of a doughnut of outer radius \(R \) and inner radius \(r \).

The red circle with equation \(x^2 + y^2 = r^2 \) is rotated around the line \(y = R \) forming a doughnut. Solving for \(y \) gives \(y = \pm \sqrt{r^2 - x^2} \). For each \(x \in [-r, r] \), the vertical black cross section at \(x \) of length \(2y \) traces out a washer when rotated around the line \(y = R \).

Inner radius: \(r_1 = \) the distance between \(y \) and \(R \),

Inner disk area: \(\pi r_1^2 = \pi (R - \sqrt{r^2 - x^2})^2 \)

Outer radius: \(r_2 = R + y = R + \sqrt{r^2 - x^2} \)

\[r_1 = R - y \]

\[r_2 = R + y \]

Outer disk area: \(\pi r_2^2 = \pi (R + \sqrt{r^2 - x^2})^2 \)

Volume: \(\int_{-r}^{r} \pi r_2^2 - \pi r_1^2 \, dx = \pi \int_{-r}^{r} r_2^2 - r_1^2 \, dx \)

\[= \pi \int_{-r}^{r} (R + \sqrt{r^2 - x^2})^2 - (R - \sqrt{r^2 - x^2})^2 \, dx \]

\[= \pi \left[R^2 + 2R \sqrt{r^2 - x^2} + (r^2 - x^2) \right] - \left[R^2 - 2R \sqrt{r^2 - x^2} + (r^2 - x^2) \right] \, dx \]

\[= 4 \pi \int_{-r}^{r} 2R \sqrt{r^2 - x^2} \, dx \]

\[= 4 \pi R \int_{-r}^{r} \sqrt{r^2 - x^2} \, dx \]

\[= 4 \pi R \left(\frac{\pi r^2}{2} \right) \]

\(= 2 \pi R \int_{-r}^{r} \sqrt{r^2 - x^2} \, dx \)

\[= 2 \pi R^2 r^2 = (2 \pi R)(\pi r^2) \]

Use the shell method to find the volume of a doughnut of outer radius \(R \) and inner radius \(r \).

The red circle with equation \(x^2 + y^2 = r^2 \) is rotated around the line \(y = R \) forming a doughnut.

For each \(y \in [-r, r] \), the horizontal brown cross section of height \(y \) and length \(2x \) traces out a cylindrical shell when rotated around the line \(y = R \).

Radius: \(= \) the distance between \(y \) and \(R \), \(= R - y \).

Height (length): \(2x = 2\sqrt{r^2 - y^2} \)

Shell area: \(2\pi(\text{shell radius})(h) = 2\pi(R-y)(2\sqrt{r^2 - y^2}) \)

Volume: \(\int_{r}^{R} 2\pi rh \, dy = \int_{-r}^{r} 2\pi(R-y)(2\sqrt{r^2 - y^2}) \, dy \)

\[= 4\pi \int_{-r}^{r} R\sqrt{r^2 - y^2} \, dy - 4\pi \int_{-r}^{r} \sqrt{r^2 - y^2} y \, dy \]

\[u = r^2 - y^2, \quad du = -2ydy, \quad -du/2 = ydy \]

\[= 4\pi R \int_{-r}^{r} \sqrt{1 - u^2} \, du - 4\pi \int_{r(-r)}^{r(-r)} \sqrt{u} \, du/2 \]

\[= 4\pi R(\frac{\pi r^2}{2}) - 4\pi \int_{0}^{\sqrt{r^2}} \sqrt{u} \, du/2 = 2\pi R\pi r^2 - 0 = 2\pi^2 R^2 \]

\(2\pi^2 R^2 = (2\pi R)(\pi r^2) \)

The volume of a can of height \(2R \) and radius \(r \) is the can you get by cutting the doughnut loop and straightening out the doughnut into a long cylinder.