Hw 25

1(1/12) \(a(t) = -2t \), \(v(0) = 1 \), \(s(0) = 3 \).

Ans. \(v'(t) = a(t) = -2t \)
\[v(t) = -t^2 + C \]
\[v(0) = 1 \]
\[-0^2 + C = 1 \]
\[C = 1 \]
\[v(t) = -t^2 + 1 \]
\[s'(t) = v(t) = -t^2 + 1 \]
\[s(t) = -\frac{1}{3}t^3 + t + D \]
\[s(0) = 3 \]
\[-2(0)^3 + 0 + D = 3 \]
\[D = 3 \]
\[s(t) = -\frac{1}{3}t^3 + t + 3 \]
Graph. On the graph, give the coordinates of critical points (classify) and inflection points.

\[y = f(x) = \frac{1}{x^2 + 3} \]

Ans.

\(y \)-int: \(y = 1/3 \), \(x \)-int. none, lead term \(1/x^2 \) hor. asymp. \(y = 0 \)

\(y' = \frac{-2x}{(x^2 + 3)^2} \) lead term \(-1/x^3\)

Crit. pts: \(x = 0, f(0) = 1/3 \) loc. abs. max.

Intervals of incr/decr: \(\uparrow (-\infty, 0], \downarrow [0, \infty) \)

\(y'' = \frac{-2(x^2 + 3)^2 + 2x[2(x^2 + 3)(2x)]}{(x^2 + 3)^4} = \frac{2(x^2 + 3)[-(x^2 + 3) + 4x]}{(x^2 + 3)^4} \)

\[= \frac{2(x^2 + 3)(3x^2 - 3)}{(x^2 + 3)^4} = \frac{6(x^2 - 1)}{(x^2 + 3)^3} = \frac{6(x + 1)(x - 1)}{(x^2 + 3)^3} \] lead \(6/x^4 \)

Infl. pts: \(f(-1) = 1/4, f(1) = 1/4 \).

Intervals: \(\cup (-\infty, -1) \) conv. up., \(\curvearrowleft (-1, 1) \) conv. down, \(\cup (1, \infty) \) conv. up.
$f(-1) = \frac{1}{4}$ infl. pt.

$f(0) = \frac{1}{3}$ loc. abs. max.

$f(1) = \frac{1}{4}$ infl. pt.
Hw 26-28 4(___/20) \[y' = f'(x) = x^{-2/3}(x - 1) = \frac{x-1}{x^{2/3}}, \quad y(0) = 0 \]

Ans.
\[y' = x^{1/3} - x^{-2/3} \quad \text{lead term } x^{1/3} \]

Crit. pts: \(x = 1 \) loc. abs. min., \(x = 0 \) crit. pt. \(f'(0) \) d.n.e.

Intervals of incr/decr: \(\downarrow (-\infty, 1], \quad \uparrow [1, \infty) \)

\[y'' = \frac{1}{3}x^{-2/3} + \frac{2}{3}x^{-5/3} = \frac{1}{3x^{5/3}}(x + 2) \quad \text{lead term } \frac{1}{3x^{2/3}} \]

Infl. pts.: \(x = 0, 2 \)

Intervals of concavity: \(\cup (-\infty, -2), \quad \cap (-2, 0), \quad \cup (0, \infty) \)

Graph
Consider the semicircle $y = \sqrt{1 - x^2}$ above the x-axis of radius one foot around the origin. Find the width of the largest rectangle which lies inside this semicircle.

Ans.

Picture:

![Diagram of semicircle and rectangle](image)

Given: List the given facts.

- $y = \sqrt{1 - x^2}$
- $A = 2xy$

One variable:

- $A = 2x\sqrt{1 - x^2}$

Domain: $x \in [0, 1]$
Diff.:

\[A' = 2\left[\sqrt{1-x^2} + x \frac{(-2x)}{\sqrt{1-x^2}} \right] = 2 \frac{1-2x^2}{\sqrt{1-x^2}} \]

Critical points:

endpoints, \(x = 0, 1\).

\(A'\) d.n.e. \(x = 0\)

\(A' = 0\) iff \(1-2x^2 = 0\) iff \(x = \frac{1}{\sqrt{2}}\)

Width = \(2x = \frac{2}{\sqrt{2}} = \sqrt{2}\)

Answer: The width is \(\sqrt{2}\) feet

Proof: \(A(0) = A(1) = 0, A(1/\sqrt{2}) > 0\)
Second and harder word problem.

A wall is 8 feet high and 27 feet from a building. We want the shortest ramp from the ground to the building across the top of the wall. How far from the wall will this beam contact the ground? Omit proof.

Picture:

Given:

\[z = \sqrt{(x + 27)^2 + y^2} \]

\[\frac{y}{x + 27} = \frac{8}{x} \]

One variable: domain: \(x \in (0, 8) \)

\[y = 8 \frac{x + 27}{x} \]
\[z = \sqrt{(x + 27)^2 + 64\left(\frac{x + 27)^2}{x^2}\right)} \]

\[= (x + 27)\sqrt{1 + \frac{64}{x^2}} \]

\[= \frac{x + 27}{x}\sqrt{x^2 + 64} \]

\[= (1 + \frac{27}{x})\sqrt{x^2 + 64} \]

Diff.:

\[\frac{dz}{dx} = \frac{-27}{x^2}\sqrt{x^2 + 64} + (1 + \frac{27}{x})\frac{2x}{2\sqrt{x^2 + 64}} \]

\[= \frac{-27(x^2 + 64) + x^2(1 + \frac{27}{x})x}{x^2 \sqrt{x^2 + 64}} \]

\[= \frac{-27x^2 - (27)(64) + x^3 + 27x^2}{x^2 \sqrt{x^2 + 64}} \]

\[= \frac{x^3 - (27)(64)}{x^2 \sqrt{x^2 + 64}} \]
Crit. pts.: endpts, none. d.n.e. never on domain.

\[\frac{dz}{dx} = 0 \text{ iff } x^3 = (27)(64) = (3^3)(4^3) \]

iff \(x = 12 \)

Answer: The distance between the ramp on the ground and the wall is 12 feet.

Hw 33-34
Solve the differential equation and its initial value.

\[2\left(\frac{\text{___}}{12}\right) \frac{ds}{dt} = \sin t, \ s(0) = 1 \]

Ans. \(s = -\cos t + C \)

\[-\cos 0 + C = 1 \]

\((-1) + C = 1 \)

\(C = 2 \)

\(s = -\cos t + 2 \)