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ABSTRACT. In his work on the Novikov conjecture, Yu introduced Property A as a readily verified
criterion implying coarse embeddability. Studied subsequently as a property in its own right, Prop-
erty A for a discrete group is known to be equivalent to exactness of the reduced group C∗-algebra
and to the amenability of the action of the group on its Stone-Cech compactification. In this paper
we study exactness for groups acting on a finite dimensional CAT(0) cube complex. We apply our
methods to show that Artin groups of type FC are exact. While many discrete groups are known to
be exact the question of whether every Artin group is exact remains open.

1. INTRODUCTION

A discrete metric space X has Property A if there exists a sequence of families of finitely sup-
ported probability measures fn,x ∈ `1(X), indexed by x ∈ X, and a sequence of constants Sn > 0,
such that:

(1) For every n and x the function fn,x is supported in BSn(x).
(2) For every R > 0, we have

‖fn,x − fn,x ′‖→ 0

uniformly on the set {(x, x ′) : d(x, x ′) ≤ R} as n→∞.
A discrete group has Property A if its underlying proper metric space does (this is independent of
the choice of proper metric). In this case the definition is recognized as a non-equivariant form of
the Reiter condition for amenability.

For groups it transpires that PropertyA is equivalent to a wide variety of other conditions includ-
ing exactness of the reduced group C∗-algebra, C∗-exactness of the group itself (defined in terms
of crossed products) and amenability of the action of the group on its Stone-Cech compactification
[11, 14]. The class of groups possessing Property A is large and diverse – for example, it contains
every amenable group, every linear group and every hyperbolic group, and is closed under many
natural operations [10, 12, 8]. In this article we shall for groups use the terms Property A and
exactness interchangeably.

In previous work, in collaboration with J. Brodzki, S. Campbell and N. Wright, we showed that
a finite dimensional CAT(0) cube complex has Property A [3]. For the proof we constructed an
explicit family of weight functions which, when suitably normalised, become the functions fn,x in
the definition above. As a consequence a group acting (metrically) properly on a finite dimensional
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CAT(0) cube complex is exact. In particular all finitely generated right-angled Artin groups are
exact. Since an infinitely generated Artin group is the ascending union of its finitely generated
parabolic subgroups any countable right angled Artin group is exact.

In this paper we carry out an extended study of the weight functions, as defined on a suitable
compact space combinatorially defined in terms of the hyperplanes and half spaces of the com-
plex. Our analysis of their topological and measure theoretic properties leads to a new inheritance
property for exact groups. Indeed, while true that a group acting on a locally finite Property A
space with exact stabilisers is exact, the analogous statement for general non-locally finite spaces
is false. In order to guarantee inheritence in the more general context one needs to assert control
over coarse stabilisers – point stabilisers are not sufficient. In our setting, following an idea of
Ozawa [14], extension of the weight functions to a compact space affords the required additional
control. We obtain the following result:

Theorem A. A countable discrete group acting on a finite dimensional CAT(0) cube complex is
exact if and only if each vertex stabilizer of the action is exact.

As an application, we offer the following result in which we do not assume the Artin group is
finitely generated.

Theorem B. An Artin group of type FC is exact.

We note that Altobelli characterised the Artin groups of type FC as the smallest class of Artin
groups containing the Artin groups of finite type which is closed under amalgamations along para-
bolic subgroups [1]. Thus, this theorem could alternately be obtained by appealing to the stability
theorem for graph products of exact groups first established in [9]. (See also [8] for a more modern
discussion.) However the class of groups acting on CAT(0) cube complexes is considerably richer
than the class of groups acting on trees and we expect Theorem A to have many other applications.

The paper is organised as follows. In Section 2 we recall the definition and basic properties of
a CAT(0) cube complex, with an emphasis on the combinatorics of vertices, hyperplanes and half
spaces. We describe a compact space in which the vertex set of the complex embeds, and give an
explicit description of the points of this space. In Section 3 we recall the definition of the weight
functions from [3] and analyse their topological and measure theoretic properties. In Section 4,
adapting slightly the method of Ozawa [14], we establish Theorem A. Section 5 contains relevant
background on Artin groups, and a discussion of Theorem B.

2. CUBICAL COMPLEXES

A CAT(0) cube complex is a cell complex in which each cell is a Euclidean cube of side length
1 and the attaching maps are isometries; the complex is equipped in the usual way with a geodesic
metric which is required to satisfy the CAT(0) condition of non-positive curvature. It follows that
a CAT(0) cube complex is simply connected, even contractible, as a topological space.

The midpoint of each edge of a CAT(0) cube complex defines a hyperplane – the union of
all geodesics passing through the midpoint at right angles to the underlying edge, the angle be-
ing measured in the local Euclidean metric on each cube. Each hyperplane is a totally geodesic
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codimension one subspace which is locally separating, and therefore globally separating since the
complex is simply connected.

In this paper we shall be concerned exclusively with the combinatorics of the vertices, hyper-
planes and half spaces of a CAT(0) cube complex. We shall now outline the facts we require – we
refer to [6], and the standard references [2, 15] for additional details.

Let X be a CAT(0) cube complex. Slightly abusing notation, we shall denote the set of vertices
of the complex by X as well. Each hyperplane decomposes the vertex set into two subsets, the two
half spaces determined by the hyperplane. There is a priori no reason to prefer one of these half
spaces over the other and we shall adopt the following convention: fix a base vertex, and for each
hyperplane H denote by H+ the half space containing the base vertex; the complementary half
space is denoted H−. A hyperplane H separates two vertices if one belongs to H+ and the other to
H−.

Let x and y be vertices in X. The interval between x and y is the intersection of the half spaces
containing both x and y; it is a finite set which we shall denote [x, y]. It follows directly from the
definition that a vertex belongs to [x, y] exactly when there are no hyperplanes which separate it
from both x and y. A useful alternate description of the interval is the following: [x, y] consists
of those vertices in X which lie on an edge geodesic joining x and y. Observe that [x, x] = { x }.
Given three vertices x, y, z the intersection [x, y] ∩ [y, z] ∩ [z, x] is comprised of a single vertex;
we denote this vertex bym(x, y, z) and refer to it as the median of x, y, z.

Let now H denote the set of hyperplanes in X. Each vertex x determines a function H→ {±1 }

according to the rule

x(H) =

{
+1, x ∈ H+

−1, x ∈ H−.

Observe that x(H) = −1 precisely when H separates x and the fixed base vertex. While the
notation appears clumsy, it is chosen for convenience in the following statement: for every vertex
x and hyperplane H we see that x belongs to the half space Hx(H). (Here, we are implicitly writing
H+1 for H+, and similarly for H−.) We denote by {±1 }H the Hamming cube on H, that is, the set
of functions H → {±1 } equipped with the infinite product topology. We obtain by the above a
map

X→ {±1 }H .

Any two (distinct) vertices are separated by at least one hyperplane and ifH separates x and y then
x(H) 6= y(H). Thus, this map is injective. We identify X with its image, the subset of original
vertices.

An element z of the Hamming cube is an admissible vertex if for every two hyperplanes H and
K there exists an original vertex x for which both x(H) = z(H) and x(K) = z(K). Equivalently,
z is admissible if for every H and K the half spaces Hz(H) and Kz(K) have non-empty intersection.
Clearly, an original vertex is admissible. Admissible vertices that are not original vertices are ideal
vertices.

We pause briefly to consider an example.



4 ERIK GUENTNER AND GRAHAM A. NIBLO

Example. The Euclidean plane equipped with its usual integer lattice squaring is a CAT(0) cube
complex of dimension two. The vertices are the integer lattice points. The hyperplanes are the
horizontal and vertical lines intersecting the axes at half-integer points:

Hn : y = n+ 1
2

Kn : x = n+ 1
2
,

for an integer n. Fix (0, 0) as the base vertex. The lattice point (p, q) in the first quadrant defines
an original vertex by

(p, q)(Hn) =

{
−1, when 0 ≤ n < q
+1, else,

(p, q)(Kn) =

{
−1, when 0 ≤ n < p
+1, else.

There are also ideal vertices. For example, we may orient all horizontal lines to point upwards and
all vertical lines to point to the right defining an admissable vertex (+∞,+∞) by

(+∞,+∞)(Hn) =

{
+1, when n < 0
−1, else,

(+∞,+∞)(Kn) =

{
+1, when n < 0
−1, else.

We shall think of this vertex as “the top right corner” of the plane. The full set of ideal vertices
comprises four corner points, and four lines – one each at the East, West, North and South of the
plane – as illustrated in Figure 1 below.

2.1. Lemma. An element z of the Hamming cube is an admissible vertex if and only if for every
n ≥ 2 and every collection ofn hyperplanesH1, . . . , Hn there exists an original vertex x satisfying
x(Hi) = z(Hi), for each i = 1, . . . , n.

Proof. We are concerned with the forward implication, which we prove by induction on n. The
case n = 2 is covered by the definition of an admissible vertex. Let n > 2 and let H1, . . . , Hn
be n hyperplanes. By the induction hypothesis we have an original vertex x1 agreeing with z
on H1, . . . , Hn−1, another original vertex x2 agreeing with z on H2, . . . , Hn, and a third original
vertex x3 agreeing with z on H1 and Hn. The medianm(x1, x2, x3) has the desired property. �

2.2. Proposition. The closure X of the set of original vertices is the set of admissible vertices.

Proof. Lemma 2.1 shows that every basic open neighborhood of an admissible vertex contains an
original vertex. Thus, every admissible vertex is in the closure of the original vertices.

Conversely, suppose z belongs to the closure of the original vertices, and let H and K be hyper-
planes. The requirements x(H) = z(H) and x(K) = z(K) define an open neighborhood of z in the
infinite product, so must contain an original vertex. Hence z is admissable. �

We extend the above terminology regarding hyperplanes and half spaces to X in the obvious
way. For example, an admissible vertex z belongs to the half space H+ if z(H) = +1; it belongs
to H− if z(H) = −1. Thus, we extend the half spaces to include ideal vertices. Having extended
the notion of half space to the set of admissable vertices we define intervals exactly as before, as
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FIGURE 1. The Euclidean plane with admissable vertices attached

intersections of half spaces. In later sections we shall work onlywith intervals [x, z] in which x is
an original vertex, whereas z may be either an original or an ideal vertex.

A pair of admissible vertices z and w are separated by the hyperplane H when z(H) 6= w(H).
While only finitely many hyperplanes may separate a pair of original vertices, a pair of vertices
at least one of which is ideal may be separated by infinitely many hyperplanes. For example, in
Figure 1 the ideal vertices (∞, 0) and (∞, 1) are separated by a single hyperplane, whereas the
ideal vertices (∞, 0) and (∞,∞) are separated by infinitely many horizontal hyperplanes.

A pair of admissable vertices z and w are adjacent across the hyperplane H if they differ only
on H. An admissable vertex z is adjacent to the hyperplane H if there is an admissable vertex w
such that z is adjacent to w across H.

2.3. Proposition. Let x, y and z be admissible vertices. The element of the Hamming cube defined
by

m(H) =

{
+1, at least two of x(H), y(H), z(H) = 1

−1, at least two of x(H), y(H), z(H) = −1
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is an admissible vertex. It is the unique admissible vertex belonging to all three of the intervals
[x, y], [y, z] and [x, z].

Proof. We first check that m is admissible. Suppose hyperplanes H and K are given. At least two
of the vertices x, y, z must agree with m on H and at least two must agree with m on K, so at
least one agrees withm on both H and K. Since that vertex is itself admissable there is an original
vertex which agrees withm on both H and K.

We next check that m belongs to the interval [x, y]. Indeed, if H separates m from both x and
y then x(H) = y(H) 6= m(H), contradicting the definition of m. The other intervals are treated
similarly.

Finally, we verify uniqueness. Suppose m ′ is an admissible vertex belonging to each of the
intervals [x, y], [y, z] and [x, z]. Given a hyperplaneH at least two of the vertices x, y and z belong
to a common half space of H. Thus, m ′ agrees with at least two of the vertices x, y and z on
H so that m ′ agrees with m on H as well. As the hyperplane H was arbitrary, we conclude that
m ′ = m. �

The proposition extends the notion of median to admissible vertices: the admissible vertex m
described in the statement is the median of the three admissable vertices x, y and z; as with medians
of original vertices we writem = m(x, y, z).

We close this section with some elementary remarks concerning the topological space X. Each
half space is a clopen set. The collection of finite intersections of half spaces comprises a basis for
the topology on X. For an admissible vertex z, the singleton { z } is closed; if z is an ideal vertex
{ z } is not open. For original vertices the situation is more complicated.

2.4. Proposition. Let x be an original vertex. The following are equivalent:
(1) { x } is open in X;
(2) { x } is open in X with respect to the subspace topology;
(3) x is a finite vertex.

Here, an original vertex is said to be finite if there are only finitely many hyperplanes adjacent to
it. It follows that, in the case of a non-locally finite complex, X itself has non-trivial topology as a
subspace of X – that is, the subspace topology on X is not discrete.

Proof. Elementary topology shows that (1) implies (2), and (2) implies (3). If x is a finite vertex,
and H1, . . . , Hn are the (finitely many) hyperplanes adjacent to x then we claim that

(2.1) { x } = H
x(H1)
1 ∩ · · · ∩Hx(Hn)

n ,

which is a basic open set for the topology on X. To verify (2.1) we must, according to our con-
ventions, show that no admissible vertex other than x can belong to the displayed intersection of
half spaces. It is an elementary fact that the intersection can contain no original vertex other than
x. Thus, we must show that the intersection can contain no ideal vertex. Suppose that z is an ideal
vertex which agrees with x on the given hyperplanes. Necessarily, z differs from x on some other
hyperplane K. By Lemma 2.1 there is an original vertex y which agrees with z on the hyperplanes
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H1, . . . , Hn, and also on K. Thus, y is an original vertex that agrees with x on H1, . . . , Hn but
differs from it on K, a contradiction. �

While X is a compact space containing X as a dense subspace, it is not in general a compactifi-
cation of X in the classical sense – when X is not locally finite it need not be an open subset of X.
We shall not require this fact below, and its verification is left to the reader. (But, compare to the
discussion surrounding Propositions 3.4 and 3.6.)

2.5. Proposition. The compact space X contains X as a dense subspace. An action of a discrete
group on X by cellular automorphisms extends to an action on X by homeomorphisms.

Proof. Open sets in X are unions of finite intersections of half spaces all of which contain original
vertices by Lemma 2.1, so X is dense in X as required. An automorphism of X preserves the half
space structure and therefore extends to a homeomorphism of X. �

3. WEIGHT FUNCTIONS

Let X be the vertex set of a finite dimensional CAT(0) cube complex. In previous work we
constructed weight functions on X – we used these to show that X has Property A, when viewed as
a metric space with either of its natural metrics [3]. We shall use the previously constructed weight
functions in the present context as well, and now recall their definition.

Fix an ambient dimension N greater than or equal to the dimension of the complex. For every
z ∈ X and every vertex a ∈ [x, z] ∩ X the deficiency of a (relative to the interval [x, z]) is

(3.1) δ[x,z](a) = N− k,

where k is the number of hyperplanes cutting edges adjacent to a and which separate a (and hence
also x) from z. By hypothesis 0 ≤ δ[x,z](a) ≤ N. Now for every vertex x ∈ X and every z ∈ X we
define the weight function φnx,z according to the formula

(3.2) φnx,z(a) =

{(n−d(x,a)+δ[x,z](a)

δ[x,z](a)

)
, a ∈ [x, z]

0, a /∈ [x, z].

Intuitively φnx,z measures the flow of a mass placed at the vertex x as it flows towards z with n
playing the role of the time parameter. The basic properties of the weight functions are summarized
in the following theorem [3]. In the statement, Bn(x) denotes the ball of radius n and center x,
comprised of those (original) vertices separated from x by at most n hyperplanes; the norms are
`1-norms.

3.1. Theorem. Let X be the vertex set of a finite dimensional CAT(0) cube complex, and let X be
the compact space of admissible vertices, defined previously. Fix an ambient dimensionN not less
than the dimension of X. The weight functions

φn : X× X→ `1(X), (x, z) 7→ φnx,z

defined by formula (3.2) satisfy the following:
(1) φnx,z is N ∪ {0}-valued;
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(2) φnx,z is supported in Bn(x) ∩ [x, z];
(3) ‖φnx,z‖ =

(
n+N
N

)
;

(4) if x and x ′ ∈ X are adjacent then ‖φnx,z − φnx ′z‖ = 2
(
n+N−1
N−1

)
.

Further, if a discrete group Γ acts cellularly on X, hence also by homeomorphisms on X, we have
(5) s · φnx,z = φnsx,sz ,

for every s ∈ Γ .

Proof. Properties, (1) and (2) are immediate from the defining formula (3.2). Property (5) is also
apparent from the defining formula – indeed, it is equivalent to the assertion that

φnx,z(a) = φnsx,sz(sa),

for all x, a ∈ X, z ∈ X and s ∈ Γ , which holds since Γ acts cellularly and the weight functions are
determined by the combinatorics of hyperplanes. Finally, properties (3) and (4) are established in
Propositions 2.3 and 2.4 of [3]. �

The remainder of the section is devoted to an analysis of the continuity properties of the weight
functions defined in (3.2). In particular, we shall view φnx,z(a), as a function of z ∈ X, for a fixed
natural number n, and for fixed x and a ∈ X. Our first result in this direction is the following
proposition.

3.2. Proposition. Fix a natural number n, and original vertices x and a ∈ X. The function

Φ : X→ N, Φ(z) = φnx,z(a).

satisfies the following:
(1) if n ≤ d(x, a) thenΦ is continuous;
(2) if n > d(x, a) and

(a) a is finite thenΦ is continuous;
(b) a is not finite thenΦ is Borel.

Before turning to the proof of the proposition, we require a lemma.

3.3. Lemma. For any choice of original vertices x and a the set { z : a ∈ [x, z] } is clopen in X.

Proof. The complement of the set in question is

{ z : ∃ H ∈ H such that H separates a from both x and z } = ∪Hx(H),

where the union is over the finite set of hyperplanes separating a from x. (When a = x this set is
empty.) This set is clopen, hence so is its complement. �

Proof of Proposition 3.2. We divide (1) into two cases. First, if n < d(x, a) then Φ is identically
zero. Second, if n = d(x, a) then Φ is given by the formula

Φ(z) =

{
1, a ∈ [x, z]

0, else.
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In other words, Φ is the characteristic function of the clopen set appearing in the previous lemma,
and so it is continuous.

We consider (2a) and (2b) simultaneously, and proceed by analysing the level sets of Φ. Write
A = n− d(x, a) > 0. Inspecting (3.2) we see thatΦ is given by the formula

Φ(z) =

{(
A+(N−k)

(N−k)

)
, a ∈ [x, z]

0, a /∈ [x, z],

where k = k(z) appears in the formula (3.1) for the deficiency. Thus, the values of Φ are among
the (distinct) natural numbers

0 and
(
A+ (N− k)

(N− k)

)
, 0 ≤ k ≤ dim(X) ≤ N.

Further, the level sets corresponding to these values areΦ−1(0) = { z : a /∈ [x, z] } and

(3.3) Φ−1

((
A+ (N− k)

(N− k)

))
= { z : a ∈ [x, z] and δ[x,z](a) = N− k },

respectively. The first of these is clopen, by the lemma. We analyze the second (3.3).
Let K1, . . . , Kn be the (finitely many) hyperplanes separating x and a. Let H1, H2, . . . be the

hyperplanes adjacent to a and not separating x and a. Observe the the collection of H’s is finite
exactly when a is a finite vertex. The conditions defining the level set (3.3) are that x and z are
separated by every Ki and exactly k of the Hj. Similarly,

(3.4) Φ(z) >

(
A+ (N− k)

(N− k)

)
precisely when x and z are separated by every Ki and fewer than k of the Hj. Thus, the set of
admissible z satisfying (3.4) is precisely

(3.5) K
a(K1)
1 ∩ · · · ∩ Ka(Kn)

n ∩
⋂(

H
x(Hj1

)

j1
∪ · · · ∪Hx(Hjk

)

jk

)
,

with the large intersection being over the k element subsets j1, . . . , jk of j’s. The set appearing in
(3.5) is closed so that, as the difference of two closed sets, the level set (3.3) is Borel, as is Φ.
Further, if a is finite, the set appearing in (3.5) is clopen – the intersection is finite because there
are only finitely many k element subsets of j’s. In this case, as the difference of clopen sets, the
level set (3.3) is clopen andΦ is continuous. �

Remark. In the course of the proof we have established the following fact: for all choices of the
parameters n, x and a, if Φ(z) = 0 then Φ is continuous at z.

Remark. The proposition leaves open the question of whetherΦ is continuous when a is an infinite
point. Indeed, it is not difficult to see that if a is infinite thenΦ is not continuous.

In the notation of the proposition, suppose that a is an infinite point (and also that n > d(x, a)).
We show that Φ is not continuous at a. Indeed, let H1, H2, . . . be an infinite sequence of hyper-
planes adjacent to a, none of which separate a from x. Let zj be the vertex immediately across Hj
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from a, and note that a ∈ [x, zj]. Inspecting the definition (3.2) we see that

Φ(a) =

(
n− d(x, a) + (N− 0)

(N− 0)

)
6=
(
n− d(x, a) + (N− 1)

N− 1

)
= Φ(zj).

The value Φ(zj) is independent of j, different fromΦ(a) and zj → a.

While this remark is quite simple, it leads to a complete analysis of the continuity of the Φ,
which we develop in the two subsequent propositions. Note that when z = a the first of these is
essentially the previous remark.

3.4. Proposition. Continue in the notation of Proposition 3.2, and assume n > d(x, a). Let z be
an original vertex for whichΦ(z) 6= 0. The functionΦ is continuous at z exactly when only finitely
many hyperplanes are adjacent to both a and z.

Proof. The forward implication proceeds exactly as the remark. Indeed, with z as in the statement,
let H1, H2, . . . be an infinite sequence of hyperplanes adjacent to both a and z, none of which
separate a from z, and none of which separate a from x. The vertices zj immediately across Hj
from z witness the non-continuity ofΦ at z.

For the reverse implication, let H1, . . . , Hn be the hyperplanes adjacent to both a and z, and let
K1, . . . , Km be the hyperplanes that separate x and z. The intersection

H
z(H1)
1 ∩ · · · ∩Hz(Hn)

n ∩ Kz(K1)
1 ∩ · · · ∩ Kz(Km)

m

is a clopen neighborhood of z. Let w belong to this neighborhood. We claim that Φ(w) = Φ(z).
Now, since w ∈ Kz(Ki)

i for all i we have a ∈ [x,w]. Thus, the valuesΦ(w) andΦ(z) are given by
the first case in (3.2) and we must show

δ[x,z](a) = δ[x,w](a).

We introduce the notation Nz(a) for the deficiency set of a with respect to z, that is, the set of
hyperplanes that are adjacent to a and that separate a from z. The deficiency δ[x,z](a) is the
difference of N and the cardinality of Nz(a). Thus, it suffices to show that Nz(a) = Nw(a).

Because a ∈ [x, z] (by hypothesis), a hyperplane separating a and z is one of the Ki, which
therefore also separates a from w. It follows that Nz(a) ⊂ Nw(a). For the reverse inclusion,
suppose H ∈ Nw(a). We must show that H separates a from z. If not, then the subsequent lemma
shows that H is adjacent to z – indeed, z ∈ [a,w] since any hyperplane separating a from z also
separates x from z, thus is among the Ki. Thus, H is one of theHj, so that z andw are on the same
side of H, the side opposite a. This is a contradiction. �

3.5. Lemma. Suppose that H is adjacent to a, that H separates z and w, and that z ∈ [a,w].
Then z is adjacent to H.

Proof. Observe that H separates a from w, and hence not from z; indeed, otherwise H separates
both a and w from z contradicing z ∈ [a,w]. Let b be the vertex immediately across H from a.
Let m be the median of b, z and w. We claim that H is the unique hyperplane separating z from
m so that, in particular, z is adjacent to H. Indeed,

w(H) = b(H) 6= a(H) = z(H)
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shows that m(H) 6= z(H), that is, H separates m and z. Further, if K is such that z(K) 6= m(K)
then

b(K) = w(K) = m(K) 6= z(K) = a(K),

where the last equality holds since a ∈ [a,w]. Thus, K separates a from b, and K = H. �

Continuity of Φ at ideal vertices is slightly more subtle, and is treated in the next proposition.
Observe that when z is an original vertex, the stated condition reduces to the one in the previous
proposition – indeed, when z is an original vertex elements of the interval [a, z] can only be sep-
arated from z by those (finitely many) hyperplanes that separate a from z; thus, any sequence of
such points converging to z is eventually constant.

3.6. Proposition. Continue in the notation of Proposition 3.2, and assume n > d(x, a). Let z be
an admissible vertex for which Φ(z) 6= 0. The function Φ is not continuous at z precisely when
there is a sequence m1,m2, . . . of admissable vertices in the interval [a, z] converging to z and a
sequence H1, H2, . . . of distinct hyperplanes adjacent to a for which Hj is adjacent tomj.

Proof. We provide Figure 2 to aid the reader in following the proof.
Suppose first that Φ is not continuous at z, and that Φ(z) 6= 0. We claim that there exists a

sequence of admissible vertices zj → z such that every zj satisfies the following:
(1) a ∈ [x, zj]
(2) δ[x,zj](a) 6= δ[x,z](a).

Indeed, begin with a sequence zj → z for which Φ(zj) does not converge to Φ(z). Now, every
sequence of admissible vertices converging to z must satisfy (1) on a tail – Φ(z) 6= 0 implies that
z belongs to the clopen set described in Lemma 3.3. Thus, we may assume our sequence satisfies
(1), so that the values Φ(zj) are given by the first case in (3.2). Thus, δ[x,zj](a) does not converge
to δ[x,z](a) and, we arrange for (2) by passing to a subsequence.1

Consider now the median

(3.6) mj = m(a, zj, z),

which by construction lies in the interval [a, z]. As shown in [3] the sequence mj converges to z.
The mj (rather, a subsequence) will be the sequence we seek – it remains to locate the required
adjacent hyperplanes. To do this, we claim that for sufficiently large j, we have Nmj

(a) 6= Nzj(a)
– here, we employ the notation regarding deficiency sets introduced in the proof of Proposition 3.4.
Again as shown in [3], since themj converge to z and lie in the interval [a, z], the subsets Nmj

(a)
eventually stabilise at Nz(a). Thus, combined with (2) we see that for sufficiently large j

δ[x,mj](a) = δ[x,z](a) 6= δ[x,zj](a),

from which the claim follows. Thus, for each sufficiently large j there is a hyperplane Hj adjacent
to a that separates mj and zj. It follows from Lemma 3.5 that Hj is adjacent to mj – by (3.6) we
havemj ∈ [a, zj] so that the lemma applies.

1As the deficiency can assume only finitely many values, we could also arrange that the δ[x,zj](a) is constant
(independent of j) and different from δ[x,z](a).
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It remains only to see that the sequenceHj contains infinitely many distinct hyperplanes. Indeed,
we shall show slightly more – that every hyperplane H can appear as an Hj only finitely many
times. Assume to the contrary, that the hyperplane H appears infinitely many times. Then, since
both zj and mj converge to z, they are eventually on a common side of H, which contradicts the
fact that H separatesmj and zj.

Suppose now that Φ(z) 6= 0 and that the conditions in the statement are satisfied. We are to
show that Φ is not continuous at z. As remarked above, since the mj converge to z and all belong
to the interval [a, z], the deficiency sets Nmj

(a) eventually stabilise at Nz(a) [3]; without loss of
generality we may assume that they all coincide. Let m ′j denote the vertex immediately across Hj
frommj. We claim thatm ′j converges to z. To see this, let K be an arbitrary hyperplane. If K is not
one of the Hj then m ′j and mj agree on K for every j; if K is one of the Hj then m ′j and mj agree
on K for sufficiently large j. Either way, m ′j and z will agree on K for sufficiently large j as this is
the case formj.

It remains to show that Φ(m ′j) does not converge to Φ(z). Comparing to the beginning of the
proof, the value Φ(m ′j) is given by the first case in (3.2). Thus, we must show that deficiencies
δ[x,m ′

j]
(a) do not converge to δ[x,z](a). To see this we note that for each j, the deficiency sets

Nmj
(a) and Nm ′

j
(a) differ in at exactly one place, either including or deleting Hj from the set. It

follows that δ[x,m ′
j]
(a) = δ[x,mj](a)± 1 = δ[x,z](a)± 1 6= δ[x,z](a) and the proof is complete. �

FIGURE 2. A point z at which the weight functionΦ is not continuous.

Remark. Let X be a (simplicial) tree. Taken together, the previous propositions show that for fixed
vertices x and a ∈ X, the function Φ(z) is continuous on all of X, except possibly at a itself.
Further, it is continuous at a exactly when a is finite.

In summary, when the cube complex is locally finite (that is, every original vertex is finite) the
weight functions are continuous; in general, however, they are merely Borel. In either case we
shall need to renormalise to produce probability measures indexed by X while in the latter case
we shall also need to replace the Borel weight functions by a continuous family of probability
measures. Renormalisation is easy since the weight functions are all non-negative and have `1
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norm equal to
(
n+N
N

)
by Theorem 3.1. Further, the normalised weight functions

(
n+N
N

)−1
φnx,z share

the same continuity and Borel properties as the original φnx,z. Obtaining a continuous family of
weight functions is more difficult, but understood. The following result is based on the methods of
[4, 14].

3.7. Lemma. Let G be a group acting by cellular isometries on a finite dimensional CAT(0) cube
complex X. Given a finite subset E ⊂ Γ and ε > 0, there is a finite subset F ⊂ X and a function
η : X→ Prob(X) such that

(1) ηz(a) is continuous in z, for each a ∈ X;
(2) suppηz ⊂ F, for every z ∈ X;
(3) ‖s · ηz − ηsz‖ < ε, for every s ∈ E and every z ∈ X.

Sketch of proof. We sketch the argument of Ozawa, refering to [4, Section 5.2] for details.
When X is locally finite there is nothing to prove. Fixing a basepoint x ∈ X define η using the

normalized weight functions: ηz(a) =
(
n+N
N

)−1
φnz,x(a).

When X is not locally finite the normalised weight functions are neither continuous in z, nor do
they satisfy the conclusion (2) on unifom supports. They are, however, Borel and the proof pro-
ceeds by applying Lusin’s theorem to approximate them by appropriate continuous functions ηz,
taking care to ensure that we truncate to a common finite subset F throughout. The approximation
is carried out so that 0 ∈ C(X) is in the weak closure of the s ·ηz−ηsz. Applying the Hahn-Banach
theorem, after taking convex combinations we obtain (3). �

Remark. In fact, we shall not require the full statement of the lemma. We require only the exis-
tence, for every finite subset E and ε > 0, of a finite subset F and functions η : X → Prob(X)
satisfying (2) and (3) where in (3) we consider only those z ∈ X.

4. PERMANENCE

We shall adopt the following characterization of Property A as our definition. A countable
discrete group Γ has Property A if for every finite subset E ⊂ Γ and every ε > 0 there exists a
finite subset F ⊂ Γ and a function ν : Γ → Prob(Γ) such that

(1) suppνx ⊂ F, for every x ∈ Γ ,
(2) ‖s · νx − νsx‖ < ε, for every s ∈ E and every x ∈ Γ .

Here, Prob(Γ) is the space of probability measures on Γ and the norm is the `1-norm. We refer
to [11, Lemma 3.5] for the equivalence with the original formulation of Property A found in
[16]. For the present purposes our definition has two advantages; first it makes no reference to
a particular compact space on which the group acts, and second the probability measure associated
to a particular x ∈ Γ is supported near the identity of Γ and not near x itself.

4.1. Theorem. Let Γ be a countable discrete group acting on a finite dimensional cubical complex
X. Then Γ has Property A if and only if every vertex stabilizer of the action has Property A.

Since every subgroup of a Property A group has Property A we only need to prove that if every
vertex stabliser has Property A then so does Γ . To do so we will have to inflate the Property
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A functions for the stabilisers to functions defined on the whole group. After first establishing
relevant notation, we shall accomplish this in the next lemma.

Let ∆ be a subgroup of a group Γ . Choose a set Z of coset representatives for the right cosets of
∆ in Γ . Thus, every g ∈ Γ has a unique representation

g = zgag, zg ∈ Z, ag ∈ ∆.

These satisfy the following properties:

zgk(agka
−1
k ) = gzk, for g, k ∈ Γ
agh = agh, for g ∈ Γ , h ∈ ∆(4.1)
zgh = zg, for g ∈ Γ , h ∈ ∆;

indeed, the first follows from zgkagk = gk = gzkak and the others from zghagh = gh = zgagh

together with agh ∈ ∆.

4.2. Lemma. Suppose ∆ is a subgroup of a group Γ and that ∆ has Property A. For every finite
subset E ⊂ ∆ and every ε > 0 there exists a finite subset F ⊂ ∆ and a function ν : Γ → Prob(Γ)
such that

(1) supp(νg) ⊂ F, for every g ∈ Γ ,
(2) ‖h · νg − νhg‖ < ε, for every h ∈ E and every g ∈ Γ .

Proof. We shall lift functions obtained from the assumption that ∆ has Property A from ∆ to Γ
using a ∆-equivariant splitting of the inclusion ∆ ⊂ Γ ; we consider ∆ acting on the left of both ∆
and Γ . Precisely, define

σ : Γ → ∆, σ(g) = a−1
g−1

and observe that if h ∈ ∆ we have

σ(hg) = a−1
g−1h−1 = (ag−1h−1)−1 = ha−1

g−1 = hσ(g),

where the second equality follows from (4.1). If now E and ε are given, we obtain a function
∆→ Prob(∆) as in the definition of Property A and define ν to be the composition

Γ → ∆→ Prob(∆) ⊂ Prob(Γ),

in which the first map is our splitting σ and we simply view Prob(∆) as the probability measures on
Γ which are supported on ∆. The required properties are easily verified, with left ∆-equivariance
of σ used to verify the norm inequality. �

Now suppose that Γ acts on a CAT(0) cube complex by cellular isometries. As above we obtain
an induced continuous action on the space X of admissible vertices. Fix a transversal T for the
action of Γ on X; thus, T ⊂ X contains exactly one point from each Γ -orbit. We do not assume that
T is finite. Denote the stabiliser of t ∈ T by Γ t. We apply the previous notational conventions to
Γ t. In particular, fixing a set of coset representatives Zt for Γ t in Γ we have decompositions

g = zgag
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as above, and the previous lemma applies. As these decompositions depend on t ∈ T , we should
more properly include t in the notation and write, for example g = ztga

t
g. Observe

g · t = zgag · t = zg · t.
Thus, the orbit map g 7→ g · t restricts to a map Zt → X, which is a bijection of Zt onto the orbit
Γt of t.

Proof of Theorem 4.1. We are given a finite subset E ⊂ Γ and ε > 0. Without loss of generality
we assume that E is closed under inversion and contains the identity of Γ . We must produce a finite
subset F ⊂ Γ and a function ν : Γ → Prob(Γ) as in the definition of Property A.

Applying Lemma 3.7 (or, more properly, the subsequent remark) there is a finite subset F ⊂ X
and a function η : X→ Prob(X) such that

(1) suppηx ⊂ F, for every x ∈ X;
(2) ‖s · ηx − ηsx‖ < ε, for every s ∈ E and every x ∈ X.

Let TF ⊂ T be the (finite) set of representatives of those orbits passing through F; in other words,
t ∈ TF precisely when Γ · t ∩ F is nonempty. For each t ∈ TF let ZtF ⊂ Zt be the (finite) subset of
representatives of those Γ t cosets mapping t into F; in other words, z ∈ ZtF precisely when z ·t ∈ F.
Recall here that the action on t restricted to coset representatives provides a bijection of Zt with
the orbit Γ · t. Let Et ⊂ Γ t be the (finite) subset

Et = { z−1
sg szg : s ∈ E, g ∈ ZtF }.

For each t ∈ TF, using the hypothesis on Γ t apply Lemma 4.2 with ∆ = Γ t and E = Et to obtain
a finite subset Ft ⊂ Γ t and a function νt : Γ → Prob(Γ) such that

(1) suppνtg ⊂ Ft, for every g ∈ Γ ;
(2) ‖h · νtg − νthg‖ < ε, for every h ∈ Et and g ∈ Γ .

Define the required function µ : Γ → Prob(Γ) by choosing a vertexO as a basepoint and setting,
for each x and g ∈ Γ ,

(4.2) µx(g) =
∑
t∈T

ηx·O(g · t)νt
z−1

g x
(ag).

Observe that the sum is actually finite as only finitely many orbits can cross the (finite) common
support F of the ηx·O; indeed, the sum is over t ∈ TF.

Let us first address the finiteness of support. For µx(g) to be nonzero, there must be t ∈ TF
for which both factors of the corresponding summand in (4.2) are nonzero. Fixing such a t and
decomposing g = zgag accordingly we obtain: zg · t = g · t ∈ F so that zg ∈ ZtF, and also ag ∈ Ft.
It follows that

suppµx ⊂
⋃
t∈TF

ZtFFt,

which is a finite subset of Γ , not depending on x.
Let us next check that each µx is a probability measure. For these and other norm estimates

below, we shall reindex sums using the bijection Γ ∼= ZtΓ t, possible for each fixed t ∈ T . In other
words, having fixed t ∈ T , we shall replace a sum over g ∈ Γ by a double sum over z ∈ Zt and
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g ∈ zΓ t and may identify the latter as a sum over Γ t. We proceed, recalling that ηx·O and the νt(·)
are probability measures, hence [0, 1]-valued,

‖µx‖`1(Γ) =
∑
g∈Γ

µx(g) =
∑
g∈Γ

∑
t∈T

ηx·O(g · t)νt
z−1

g x
(ag)

=
∑
t∈T

∑
z∈Zt

ηx·O(z · t)
∑
g∈zΓt

νtz−1x(ag)

=
∑
t∈T

∑
z∈Zt

ηx·O(z · t) =
∑
t∈T

∑
y∈Γ ·t

ηx·O(y) = 1;

in the second line we use that g · t = z · t for g ∈ zΓ t and that for g ∈ Γ the condition g ∈ zΓ t is
equivalent to zg = z; in the third line, observing that the condition g ∈ zΓ t is equivalent to g = zh

with h = ag ranging over the stabiliser Γ t, the sum becomes
∑
h∈Γt ν

t
z−1x(h) = 1 since νtz−1x is

a probability measure; also as z ranges over the coset representatives Zt the value of z · t ranges
over the orbit Γ · t.

Finally, we check the almost invariance condition. We are to estimate

‖s · µx − µsx‖`1(Γ) =
∑
g∈Γ

|µx(s
−1g) − µsx(g)|

≤
∑
g∈Γ

∑
t∈T

∣∣ηx·O(zs−1g · t) νtz−1

s−1g
x
(as−1g) − ηsx·O(zg · t) νtz−1

g sx
(ag)

∣∣,
independent of x ∈ Γ and s ∈ E. We estimate the summand using the triangle inequality

(4.3) ηx·O(zs−1g · t)
∣∣∣∣νtz−1

s−1g
x
(as−1g) − νt

z−1
g sx

(ag)

∣∣∣∣+ ∣∣ηx·O(zs−1g · t) − ηsx·O(zg · t)
∣∣νt

z−1
g sx

(ag)

and shall proceed to estimate each term in this expression (or, more accurately, their sums over
g ∈ Γ and t ∈ T ). To estimate the term on the right, observe that for g and h ∈ Γ we have that
zgh · t = gh · t = gzh · t (where all decompositions are with respect to Γ t). Hence, fixing t ∈ T
and arguing as above we have∑
g∈Γ

∣∣ηx·O(zs−1g · t) − ηsx·O(zg · t)
∣∣νt

z−1
g sx

(ag) =
∑
g∈Γ

∣∣ηx·O(s−1zg · t) − ηsx·O(zg · t)
∣∣νt

z−1
g sx

(ag)

=
∑
z∈Zt

∣∣ηx·O(s−1z · t) − ηsx·O(z · t)
∣∣∑
g∈zΓt

νtz−1sx(ag)

=
∑
z∈Zt

|s · ηx·O(z · t) − ηsx·O(z · t)| .

Taking now the sum over t ∈ T and using the assumption that s ∈ E we have estimated the right
hand term in (4.3) by

‖s · ηx·O − ηsx·O‖`1(X) < ε.
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It remains only to estimate the left hand term in (4.3). Again, fix t ∈ T and reindex the sum over
g ∈ Γ : ∑

g∈Γ

ηx·O(zs−1g · t)
∣∣∣∣νtz−1

s−1g
x
(as−1g) − νt

z−1
g sx

(ag)

∣∣∣∣ =(4.4)

=
∑
z∈Zt

∑
g∈zΓt

ηx·O(s−1z · t)
∣∣∣νtz−1

s−1z
x
(as−1g) − νtz−1sx(ag)

∣∣∣ ;
here, we use the fact that for g ∈ zΓ t we have g ·t = z ·t, so that also zs−1g ·t = s−1g ·t = s−1z ·t.
It follows, in particular, that for g ∈ zΓ t we have zs−1g = zs−1z. Hence, setting

a = z−1
s−1g

x = z−1
s−1z

x, b = z−1
g sx = z−1sx, c = ba−1 = z−1szs−1z,

we see that a and b depend only on s, z and x, whereas c depends only on s and z. The calculation

c · t = z−1szs−1g · t = z−1ss−1g · t = z−1g · t = t.

shows that c ∈ Γ t. Further, we claim that if the summand in (4.4) corresponding to a particular
g ∈ zΓ t is nonzero then c ∈ Et. Indeed, if the summand is nonzero then necessarily s−1z · t ∈ F
or, in other words, h = zs−1z ∈ ZtF. Now, by evaluating on t we see that zsh = z:

zsh · t = sh · t = szs−1z · t = ss−1z · t = z · t.

Hence,
c = z−1szs−1z = z−1

sh sh ∈ Et.
Putting everything together, using the final small calculation ag = cas−1g, and summing over the
nonzero terms in (4.4) we obtain∑

z∈Zt

ηx·O(s−1z · t)
∑
g∈zΓt

∣∣νta(c−1ag) − νtca(ag)
∣∣ = ∑

z∈Zt

ηx·O(s−1z · t)‖c · νta − νtca‖`1(Γt)

≤ ε
∑
z∈Zt

ηx·O(s−1z · t)

where the estimate comes from the assumptions on νt. Summing further over t ∈ T , and recalling
that ηx·O is a probability measure, we have estimated the left hand term in (4.3). �

Remark. The formula used to define µ in the proof reduces to the formula used in the previous
paper [3] in the case when the stabilizers Γ t are finite, and the functions νt are taken to be constant
at the uniform probability measure on Γ t; in other words,

νtg(h) =

{
|Γ t|−1, h ∈ Γ t

0, h /∈ Γ t.

Such νt satisfies the conclusions of the previous lemma, so is allowed.
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Remark. Ozawa’s original treatment constructs a space on which Γ will act amenably [14]. We
have chosen to avoid the formulation in terms of amenable actions because the method seldom
produces a reasonable space. It is worth noting, however, that if all stabilisers are finite, or even
amenable, Γ will act amenably on X. If, in addition the complex X is locally finite, Γ will act
amenably on the boundary comprised of ideal vertices.

Remark. In the locally finite case the result follows from standard permanence results, found for
example in [12].

5. ARTIN GROUPS

A Coxeter matrix is a symmetric matrixM, with rows and columns indexed by a not necessarily
finite set I, and with matrix elements Mij ∈ N ∪ {∞} satisfying Mii = 1 for all i ∈ I. Let
S = {si | i ∈ I} be a set in bijective correspondence with I. The Coxeter group corresponding to
the Coxeter matrixM is defined by the presentation

〈S | (sisj)
Mij = 1, ∀i, j ∈ I 〉.

The Artin group corresponding to the Coxeter matrixM is defined by the presentation

〈S | (sisj)Mij
= (sjsi)Mij

,∀i, j ∈ I 〉,
where (sisj)Mij

denotes the alternating word sisjsisj . . . si with Mij letters if Mij is odd and the
alternating word sisjsisj . . . sisj with Mij letters if Mij is even. Considering the equivalent pre-
sentation

〈S | s2i = 1, (sisj)Mij
= (sjsi)Mij

,∀i, j ∈ I 〉
for the Coxeter group we see that the obvious identification of the generating sets extends to a sur-
jective homomorphism of the Artin group onto the Coxeter group with kernel the normal subgroup
generated by the squares of the generators.

For each subset J ⊂ I denote SJ = {si, i ∈ J}. The subgroup of the Coxeter group generated by
SJ is a parabolic subgroup. A parabolic subgroup is a Coxeter group in its own right – while not
obvious, its presentation is obtained by deleting from the Coxeter group presentation all generators
not in SJ and all relators involving the deleted generators. A Coxeter group, or one of its parabolic
subgroups, is spherical if it is a finite group.

By van der Leck’s theorem [13] similar statements hold for Artin groups. The subgroup gen-
erated by SJ is a parabolic subgroup, which is itself an Artin group, with presentation obtained
from the Artin group presentation by deleting all generators not in SJ and all relators involving
the deleted generators. An Artin group, or one of its parabolic subgroups, is of finite type if the
corresponding parabolic subgroup of the Coxeter group is spherical.

A finite type parabolic subgroup of an Artin group is not necessarily finite. For example if we
take the Klein 4-group, with presentation

〈 s1, s2 | s21, s
2
2, (s1s2)

2 〉,
as our Coxeter group then the associated Artin group has presentation

〈 s1, s2 | s1s2 = s2s1 〉.
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It is free abelian of rank 2. Since the Klein 4-group is finite the entire Artin group is of finite type
but clearly not finite.

An Artin group is of type FC if the following condition holds: whenever J ⊂ I has the property
that the parabolic subgroups 〈 si, sj 〉 are of finite type for every pair i, j ∈ J then the parabolic
subgroup generated by SJ is itself of finite type. Equivalently, given a Coxeter matrix M, let G be
the graph with vertex set I and an edge joining i to j whenever the generators si and sj generate
a spherical Coxeter group. The Artin group corresponding to M is of type FC if for every clique
(complete subgraph) in G the corresponding parabolic subgroup is of finite type.

Charney and Davis have shown that an Artin group can be exhibited as a complex of groups in
which the underlying complex admits a natural cubical structure [5]. Further, they showed that the
cube complex is developable, and is locally CAT(0) if and only if the Artin group is of type FC. It
follows that when the Artin group is of type FC the developed cover is a CAT(0) cube complex on
which the Artin group acts. The vertex stabilisers of this action are, by construction, the parabolic
subgroups of finite type. Hence an Artin group of type FC will act on a finite dimensional CAT(0)
cubical complex with finite type vertex stabilisers.

Now according to a result of of Cohen and Wales (and, independently, of Digne), Artin groups of
finite type are linear [7] so that, appealing to the theorem of Guentner, Higson and Weinberger, they
are exact [10]. Observing that an Artin group is the direct union of its finitely generated parabolic
subgroups, which are themselves Artin groups, we obtain as a consequence of Theorem 4.1:

5.1. Theorem. An Artin group of type FC is exact. �
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