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Abstract. The E-theory defined by Connes and Higson provides a realization
of K-homology, the generalized homology theory dual to K-theory, based on the
notion of asymptotic homomorphisms. With this realization it becomes possible
to associate a K-homology element to a quantization scheme. In this article we
associate an asymptotic homomorphism and K-homology element to the Berezin
quantization of a bounded symmetric domain. Further, we identify this element
with the element of K-homology defined by the Dolbeault operator of the domain.

1. Introduction

The E-theory defined by Connes and Higson [CH90] provides a realization of

K-homology, the generalized homology theory dual to K-theory, based on the no-

tion of asymptotic homomorphisms between C∗-algebras. The theory has found

a number of applications to index theory through the work of Higson [Hig93] and

Higson-Kasparov-Trout [HKT98]. Further, it plays an important role in the recent

proof given by Higson-Kasparov of the Baum-Connes Conjecture for amenable groups

[HK97, HK01].

The E-theory groups are defined to be certain groups of homotopy classes of as-

ymptotic homomorphisms. In this paper we study the possibility of associating as-

ymptotic homomorphisms, and hence elements of E-theory groups to quantization

schemes. In this way E-theory groups become the receptacle of topological invariants

of quantization schemes.
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In an earlier paper we initiated the study of the relationship between E-theory

and quantization by analyzing the Berezin-Wick quantization of the complex plane

from this perspective [Gue00]. The results of that work are rather satisfying. To

the quantization scheme we associate an asymptotic homomorphism and thereby an

element of an E-theory group. We further identify this element with the E-theory

element defined by the ∂-operator on the complex plane.

In this paper we continue this investigation by studying the Berezin quantization

of bounded symmetric domains. We obtain results analogous to those described

above for the Berezin-Wick quantization; the quantization defines an element of an

appropriate E-theory group, and this element is identified with the element defined

by the Dolbeault operator of the domain. Our main theorems are:

Theorem A. Let Ω be a bounded symmetric domain. The Berezin–Toeplitz quanti-

zation defines an element of the E-homology of Ω:

[Berezin ] ∈ E(C0(Ω),C). �

Theorem B. Let Ω be a bounded symmetric domain. The E-homology class of the

Berezin quantization equals the E-homology class of the Dolbeault operator:

[Berezin ] = [Dolbeault ] ∈ E(C0(Ω),C). �

We remark that these classes are nonzero; indeed the E-theory group E(C0(Ω),C) is

isomorphic to the integers, and is generated by the class of the Dolbeault operator.

The main property of the Berezin quantization that is used in defining the E-

homology element is that the Toeplitz operators used in its definition commute asymp-

totically as the value of Planck’s constant tends to zero. This property was proven

for a slightly restricted class of symbols in a paper of Borthwick-Lesniewski-Upmeier

[BLU93, Thm. 2.2] through purely analytic means, and relying on the description of

bounded symmetric domains in terms of Jordan algebras. The case of the Poincaré

disk had been considered earlier by Klimek-Lesniewski [KL92, Theorem VI.2]. In the

course of defining the E-homology element of the Berezin quantization we prove the
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following variant of these results using differential geometric techniques (we refer to

Section 5 for definitions):

Theorem C. Let Ω be a bounded symmetric domain. Let ϕ and ψ be continuous

bounded functions on Ω and assume that ϕ admits a continuous extensions to Ω.

Then

T~(ϕψ)− T~(ϕ)T~(ψ) → 0, as ~ → 0. �

I would like to thank Nigel Higson and Mohan Ramachandran for interesting dis-

cussions on the subject of this paper.

2. Bounded Symmetric Domains

We do not assume much familiarity with bounded symmetric domains, and include

a brief summary of the relevant aspects of the theory. A more thorough introduction

can be found in the books of Helgason and Krantz [Hel78, Kra92]; for more detailed

information we refer to the books of Pijatetski-Shapiro, Hua, Loos and Mok [PS69,

Hua63, Loo77, Mok89].

A domain Ω is an open connected subset of Cn. Let Ω be a bounded domain in

Cn. Let L2(Ω) be the space of measurable functions, square integrable with respect

to Lebesgue measure. The Bergman space is denoted H2(Ω) and is the subspace of

L2(Ω) consisting of the holomorphic functions. Since the domain is bounded H2(Ω)

contains the polynomials in the variables z1, . . . , zn (holomorphic polynomials). Thus,

H2(Ω) is an infinite dimensional subspace of L2(Ω). Further, it is closed.

The Bergman kernel function of Ω is defined by the formula

K(z, w) =
∞∑
n=0

ϕn(z)ϕn(w), {ϕn} an orthonormal basis of H2(Ω)

The Bergman kernel function is independent of the choice of orthonormal basis used

to define it, and is holomorphic in z and w. Note that

(1) K(z, z) =
∑
i

|ϕn(z)|2, {ϕn} an orthonormal basis of H2(Ω)
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is a real-valued function. Since we may take ϕ1(z) = 1/
√
|Ω| we conclude thatK(z, z)

is bounded below by |Ω|−1.

The Bergman kernel function is used to define the infinitesimal Bergman metric,

the Hermitian structure on Ω defined by the bilinear form

(2) h(z) =
∑
ij

hij dzi ⊗ dzj, hij(z) =
∂2 logK(z, z)

∂zi∂zj
,

(It follows from (1) that the form is Hermitian and positive semi-definite; the proof

that it is positive definite is more complicated [Kra92], [Hel78, Ch. VIII, Prop. 3.4].)

The associated (1, 1)-form of the infinitesimal Bergman metric is

(3) ω =

√
−1

2
∂∂ logK(z, z) =

√
−1

2

∑
ij

hij dzi ∧ dzj.

A Hermitian structure is Kähler if its associated (1, 1)-form is closed. Thus, with its

Hermitian structure Ω is a Kähler manifold. When applied to a bounded domain Ω

differential geometric terms (isometry, completeness, etc) will always be interpreted

with respect to the Riemannian structure underlying this Kähler structure.

Proposition 2.1. ([Hel78, Ch. VIII, Prop. 3.5]) Let Ω be a bounded domain in Cn.

Holomorphic automorphisms of Ω are isometries.

A bounded domain Ω in Cn is symmetric if each point of the domain is the iso-

lated fixed point of an involutive holomorphic automorphism of the domain; it is

homogeneous if the group of its holomorphic automorphisms acts transitively. Every

bounded symmetric domain is homogeneous [Loo77, Mok89].

Finally, observe that when equipped with the infinitesimal Bergman metric a

bounded symmetric domain is a Hermitian symmetric space and, in particular, a

complete manifold. Indeed, by the previous proposition, holomorphic automorphisms

are isometries.

We require two further facts concerning the geometry of bounded symmetric do-

mains. The first is that the volume form of a bounded symmetric domain is, up to

a constant, the product of the Bergman kernel function and Lebesgue meausure. We
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can safely ignore the constant when considering only one domain at a time. Note that

the following lemma remains valid in the broader setting of homogeneous domains.

Lemma 2.2. ([Hel78, Ch. VIII, Prop. 2.5 & 3.6], [Ber74, Thm. 5.1]) Let Ω be a

bounded symmetric domain and let dvol denote its volume form computed with re-

spect to the induced Riemannian structure. Then

dvol = kΩ K(z, z) dx1 ∧ dy1 ∧ . . . dxn ∧ dyn,

where kΩ is a constant depending only on the domain Ω. �

The second and final fact we require is the following result of Donnelly (compare

[Don97, Prop. 3.2] which is actually more general than the result stated here). By

combining it with an elegant method of Gromov [Gro91], Donnelly proved a vanishing

theorem for the Dolbeault operator. We will use the result to provide estimates on

spectral functions of twisted Dolbeault operators. We thank M. Ramachandran for

bringing this result to our attention; since it is not completely explicit in Donnelly’s

paper we include a sketch of the proof.

Theorem 2.3. Let Ω be a bounded symmetric domain. The 1-form ∂ logK(z, z) is

bounded (pointwise uniformly with respect to the metric on the cotangent space induced

by the Kähler metric on Ω).

Sketch of Proof. Let α(z) = ∂ logK(z, z). The idea of the proof is to use the tran-

sitive group of holomorphic automorphisms of Ω and the transformation law for the

Bergman kernel with respect to such automorphisms [Hel78, Ch. VIII.3] to equate

the norm of α(z) to the norm of α(0) plus a correction term. Precisely, if ϕz is a

holomorphic automorphism of Ω mapping the origin to z then

K(u,w) = K(ϕz(u), ϕz(w))Jϕz(u)Jϕz(w), for all u,w ∈ Ω,

where Jϕz is the complex Jacobian of ϕz. In particular,

‖α(z)‖ = ‖(ϕ∗zα)(0)‖ = ‖∂ logK(ϕz(w), ϕz(w))(0)‖

≤ 2‖∂ log Jϕz(0)‖+ ‖α(0)‖.
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Up to this point we have used only that the domain is homogeneous; it remains to

show that for a bounded symmetric domain ‖∂ log Jϕz(0)‖ is bounded independently

of z ∈ Ω. This follows from more general facts as described by Donnelly [Don97].

Alternatively, when dealing with a specific domain, direct and elementary verification

of this fact is often possible using precise knowledge of ϕz. �

3. Berezin Quantization

In this section we review the construction of the Berezin quantization of bounded

symmetric domains. The primary sources for this material are the original papers of

Berezin [Ber74, Ber75a, Ber75b].

Let Ω be a bounded symmetric domain and let K(z, z) be the Bergman kernel of

Ω defined in the previous section. Define a family of measures on Ω by

dµ~ = c(~)K(z, z)1−1/~ dλ,

where dλ is the ordinary Lebesgue measure and c(~) is a normalization constant that

insures that the µ~-measure of Ω is one. It is worth noting that for ~ = 1 we obtain

the normalized Lebesgue measure on Ω; as ~ → 0 the measure concentrates at the

origin.

For each of the measures dµ~ we consider the space of measurable square integrable

functions, as well as the subspace of holomorphic (square-integrable) functions:

L2
~(Ω) = { functions square-integrable with respect to dµ~ }

H2
~(Ω) = { holomorphic functions in L2

~(Ω) }.

Let C0(Ω) denote the C∗-algebra of continuous functions on Ω vanishing at infinity.

For ϕ ∈ C0(Ω) we define the Toeplitz operator on H2
~(Ω) with symbol ϕ to be the

composition

(4) H2
~(Ω)

multiply by ϕ−−−−−−−−−−→ L2
~(Ω)

project−−−−−→ H2
~(Ω).

Denoting the Hilbert space projection from L2
~(Ω) toH2

~(Ω) byQ~ we have T~(ϕ)(u) =

Q~(ϕu), for all u ∈ H2
~(Ω). The Berezin quantization is defined by associating to the
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function ϕ ∈ C0(Ω) the family of Toeplitz operators on H2
~(Ω):

B(ϕ) = {T~(ϕ) }.(5)

(This definition is not quite the same as the one given by Berezin [Ber74, Ber75a];

instead of considering Toeplitz operators themselves he associates to them their con-

travariant symbols, functions on Ω. In this way he constructs a family of products on

C∞c (Ω) which form his quantization.)

Our first goal is to define the E-homology class of the Berezin quantization by

associating to it a generalized asymptotic morphism. The content of this statement

is:

(i) T~ : C0(Ω) → K(H2
~(Ω)) is a ∗-linear contraction,

(ii) T~(ϕ)T~(ψ)− T~(ϕψ) → 0 as h→ 0 (in norm in the respective B(H2
~(Ω))),

and further that we can endow the collection of Hilbert spaces H2
~(Ω) with the struc-

ture of a continuous field of Hilbert spaces {H2
~(Ω) } in such a way that

(iii) the family of Toeplitz operators {T~(ϕ) } is a continuous section of the field

of elementary C∗-algebras associated to the field {H2
~(Ω) }.

Note that Property (i) is a standard consequence of the Toeplitz construction. Each

of properties (ii) and (iii) will be established in Section 5 (see Thms. 5.7 and 5.8);

the discussion will be based on spectral properties of a family of twisted Dolbeault

operators on Ω.

We pause to remark that, although we will not do so, it is possible to give ana-

lytic proofs of properties (ii) and (iii) as well. Indeed, property (ii) is a weak form

of the correspondence principle proved by Borthwick-Lesniewski-Upmeier [BLU93,

Thm. 2.2].

4. Vanishing Theorems

Let Ω be a bounded symmetric domain in Cn. As usual, consider Ω equipped with

the infinitesimal Bergman metric (2) with respect to which it is a complete Kähler

manifold.
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Define a family of Hermitian holomorphic line bundles E~ on Ω. As holomorphic

line bundles these are all the trivial bundle. A Hermitian structure on a such a line

bundle is defined by a real-valued function giving the square of the length of 1 ∈ C
at the point z ∈ Ω. The bundles E~ differ in their Hermitian structures, which are

defined by

|1|2~(z) = k−1
Ω c(~) ·K(z, z)−1/h.

Equip the E~ with the unique connexions compatible with their complex and Her-

mitian structures. Denote the curvature form of E~ with this connexion by Θ~.

Lemma 4.1. The curvature forms Θ~ of the bundles E~ satisfy

(6)

√
−1

2
Θ~ =

1

~
ω.

Proof. This follows straightforwardly from the definitions. If s is the section of E~

whose value at z ∈ Ω is 1 ∈ C then both

(i) |s(z)|2 = constant ·K(z, z)−1/~, and

(ii) Θ~ = ∂∂ log |s(z)|2.
Comparing with (3) we obtain the result. �

We are interested in the Dolbeault operator of Ω twisted by the line bundles E~

and recall the definition of these operators. Denote by

Apqc = { compactly supported (p, q)-forms }

Apqc (E~) = { compactly supported E~-valued (p, q)-forms }

(these spaces differ only in their pre-Hilbert inner products). The ∂-operator has

a canonical extension to forms with values in any holomorphic vector bundle. In

particular, we have for all p = 0, . . . , n

∂ :
⊕
q

Apqc (E~) →
⊕
q

Apqc (E~)

and ∂ maps Apqc (E~) to Ap,q+1
c (E~). Each of the spaces Apqc (E~) has an Hermitian

inner product induced by the Hermitian structures of Ω and E~. The operator ∂ has
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a formal adjoint which we shall denote by ∂
∗
~. Notice that although ∂ does not depend

on the Hermitian structure ∂
∗
~ does.

Finally, the Hilbert space completions of the spaces of compactly supported forms

will be denoted

Apq = Hilbert space of (p, q)-forms

Apq(E~) = Hilbert space of E~-valued (p, q)-forms.

The following two special instances of these notations are worth mentioning explicitly;

it follows from Lemma 2.2 that

L2
~(Ω) = A00(E~)(7)

H2
~(Ω) = { holomorphic sections of E~ } = ker

(
∂ : A00(E~) → A01(E~)

)
.(8)

Since Ω is a complete manifold the formally self-adjoint operator ∂+∂
∗
~ is essentially

self-adjoint. The twisted Dolbealt operators D~ are the closures of the operators ∂+∂
∗
~.

They are self-adjoint unbounded operators (one for each p = 0, . . . , n):

D~ :
⊕
q

Apq(E~) →
⊕
q

Apq(E~).

The Dolbeault Laplacian is �~ = D2
~. It preserves the bidegree of forms and when

restricted to (p, q)-forms is denoted �pq
~ .

We are interested in vanishing theorems for the twisted Dolbeault operators D~.

They have the consequence that the kernel of this operator is concentrated in degree

zero, so that by (8) the quantization space H2
~(Ω) is in fact the kernel of D~ (p = 0).

The vanishing theorem is obtained using the standard Bochner method; following Roe

[Roe88] we employ an adaptation of the Bochner method to the current setting of

complete manifolds. We give a short review for the purposes of which we suppress the

subscript in all notations, writing simply E for a Hermitian holomorphic line bundle,

Θ for the curvature of its canonical connexion, etc. As is standard, denote by L the

operator of exterior product with ω, the (1, 1)-form associated to the Kähler structure

of Ω. Further, denote the unique connexion on E compatible with its Hermitian and
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complex structure by ∇+∂. Using square brackets to denote commutators the Kähler

identities [GH78] (compare [GH78, Ch. 0.7, p. 111]) are

[L∗, ∂] = −
√
−1

2
∇∗ and [L∗,∇] =

√
−1

2
∂
∗
.

From these and the fact that Θ =
(
∇+ ∂

)2
= ∇∂ + ∂∇ it is a calculation to obtain

the basic Bochner identity

(9) �pq = ∇∗∇+∇∇∗ − 2
√
−1[L∗,Θ].

As a final bit of notation denote the space of ∂-harmonic (p, q)-forms with values in

E by Hpq(E);

Hpq(E) = kernel of �pq
E .

Theorem 4.2 (First Vanishing Theorem). Let E be a Hermitian holomorphic line

bundle on Ω. If the curvature Θ of the canonical connection of E satisfies
√
−1

2
Θ = λω

for some λ > 0 then the spectrum of the Dolbeault Laplacian on (p, q)-forms �pq is

bounded below by 4λ(p+ q − n). In particular,

Hpq(E) = 0 if p+ q > n.

Proof. Combining our assumption with the identity [GH78, Ch. 0.7, p. 121]

[L∗, L] = (n− p− q), on (p, q)-forms

and the basic Bochner identity (9) we obtain

�pq = ∇∗∇+∇∇∗ − 4λ[L∗, L]

= ∇∗∇+∇∇∗ + 4λ(p+ q − n), on (p, q)-forms. �

Theorem 4.3 (Second Vanishing Theorem). Let D~ denote the Dolbeault operator

(p = 0) of Ω with values in the Hermitian holomorphic line bundle E~, ~ ∈ (0, 1).

Then

H0q(E~) = 0, for q > 0
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and on the orthogonal complement of its kernel D~ is bounded below by 2
√

1/~− 1.

Proof. Use the canonical line bundle and its dual;

KΩ =
∧n0

Ω = C{ dz1 ∧ · · · ∧ dzn }, and K∗
Ω = C

{
∂

∂z1

∧ · · · ∧ ∂

∂zn

}
.

The metric on K∗
Ω induced from the Kähler metric on Ω is given by∣∣∣∣ ∂∂z1

∧ · · · ∧ ∂

∂zn

∣∣∣∣2
~
(z) = (constant) ·K(z, z),

and its curvature form therefore satisfies
√
−1
2

ΘK∗ = −ω. Hence the curvature form

of E~ ⊗K∗ satisfies
√
−1

2
ΘE~⊗K∗ =

√
−1

2
(Θ~ + ΘK∗) =

(
1

~
− 1

)
ω.

Apply the previous theorem to conclude (the second equality is just a definition)

H0q(E~) = H0q(E~ ⊗K∗ ⊗K)

= Hnq(E~ ⊗K∗)

= 0, if q > 0.

The remainder of the proposition follows from Convergence Transfer ([Roe88] or Sec-

tion 3 of [Gue98]); if �~ = D2
~ is bounded below by 4(1/~ − 1) on

⊕
q=1,3,...Apq(E~)

then D~ is bounded below by 2
√

1/~− 1 on the orthogonal complement of its ker-

nel. �

Corollary 4.4. The quantization spaces H2
~(Ω) for the Berezin quantization are the

kernels of the twisted Dolbeault operators D~;

H2
~(Ω) = kerD~ = H00(E~)

Proof. This follows immediately from the previous theorem and (8). �
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5. E-Theory Elements

This section is devoted to the construction of an E-theory element corresponding

to the Berezin quantization. We will realize this E-theory element as the homotopy

class of a generalized asymptotic morphism as defined in the appendix.

To obtain a generalized asymptotic morphism we provide the collection of Hilbert

spaces H2
h(Ω), for ~ ∈ (0, 1], with the structure of a continuous field of Hilbert spaces.

We do this in a very explicit and concrete manner. Although the results are actually

stronger than required for our immediate goal of defining and analyzing the E-theory

element associated to the quantization they do allow an elementary analysis based

on estimates of functions of the twisted Dolbeault operators; we believe them to be

of independent interest.

We introduce several convenient pieces of notation. Denote by E the trivial Her-

mitian holomorphic line bundle for which |1|(z) = 1 and by

A =
⊕
q

A0q, and A~ =
⊕
q

A0q(E~).

the Hilbert spaces of E and E~-valued differential forms. The maps E~ → E of

multiplication by the functions

u~ = k
−1/2
Ω c(~)1/2 ·K(z, z)−1/2~

are unitary bundle isomorphisms and induce unitary isomorphisms U~ : A~ → A
of the Hilbert spaces of forms which preserve the spaces of compactly supported

forms. The U~ will be used to define and trivialize the field {H2
~(Ω) }. We must,

however, address the fact that the functions u~ are not holomorphic and the U~ do

not preserve the subspaces of holomorphic sections, and in particular do not preserve

the quantization spaces H2
~(Ω).

Recall that the interior product with a smooth differential form τ is the negative

of the adjoint of the exterior product with τ . We introduce the notation τy (·) for the

interior product with τ .
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Proposition 5.1. Define V : A → A on the domain of smooth compactly supported

forms by

V σ =
(
∂ logK(z, z)

)
∧ σ −

(
∂ logK(z, z)

)
yσ, σ ∈ Apqc .

The following diagram, in which all unbounded operators are defined on the domain

of smooth compactly supported forms,

A~
U~−−−→ A

D~=∂+∂
∗
~

y yD+V/2~

A~ −−−→
U~

A.

commutes (the domains are preserved by U~).

Proof. Calculate for a smooth compactly supported form σ;

U~∂U
∗
~ (σ) = U~∂(u−1

~ σ)

= U~(∂u
−1
~ ∧ σ + u−1

~ ∂σ)

= u~∂u
−1
~ ∧ σ + ∂σ

= −u−1
~ ∂u~ ∧ σ + ∂σ

= −(∂ log u~) ∧ σ + ∂σ,

from which follows

U~∂U
∗
~ = −(∂ log u~) ∧ (·) + ∂.(10)

Taking the adjoint in (10) we obtain

U~∂
∗
~U

∗
~ = (∂ log u~) y (·) + ∂

∗
,(11)

where, of course, ∂
∗

is the adjoint of ∂ on the space A.

Notice that

∂ log u~ = ∂ log k
−1/2
Ω c(~)1/2K(z, z)−1/2h =

−1

2~
∂ logK(z, z)
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so that for smooth compactly supported forms σ we have

(12)
1

2~
V σ = −∂ log u~ ∧ σ + ∂ log u~ yσ, σ ∈ Apqc (E).

Adding (10) and (11) and employing (12) we obtain

U~D~U
∗
~ = U~(∂ + ∂

∗
~)U

∗
~

= −(∂ log u~) ∧ (·) + (∂ log u~)y(·) +D

= D +
1

2~
V,

where, of course, D is the ordinary Dolbeault operator of Ω computed with respect

to its Kähler metric. �

The domain
⊕

q A
0q
c is a common core for the operators

U~D~U
∗
~ = D +

1

2~
V.

They extend to self-adjoint unbounded operators on (a common domain in) A.

Proposition 5.2. For ~ ∈ (0, 1) the projections P~ onto the kernels of D+ 1
2~V form

a norm continuous family of projections on the Hilbert space A.

Proof. The operators D + 1
2~ V have the same spectral properties as the D~ (see

Theorem 4.3). Consequently, the projections P~ can be realized as continuous spectral

functions of these operators, and in fact, they can be realized simultaneously (ie, using

a single continuous function); given ~0 < 1, since the operators D+ 1
2~V are bounded

below on the orthogonal complements of their kernels independently of ~ ∈ (0, ~0],

there exists f ∈ C0(R) such that

(13) P~ = f(D +
1

2~
V ), for all ~ ∈ (0, ~0].

The proposition follows from this equality together with the following two lemmas

(Lemma 5.4 allows us to apply Lemma 5.3). �
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Lemma 5.3. Let T be a self-adjoint, unbounded operator and A be a self-adjoint

bounded operator on a Hilbert space. For all f ∈ C0(R) the operator-valued function

t 7→ f(T + tA) : (0,∞) → B(H)

is continuous in norm.

Proof. The set

{ f ∈ C0(R) : f(T + tA) is continuous in t }

is a C∗-subalgebra of C0(R). The proof is concluded by showing that it is all of

C0(R) which follows from showing that it contains the resolvent functions r±(x) =(
x±

√
−1

)−1
. This is a simple calculation; the norm of

r±(T + tA)− r±(T + t′A) = r±(T + tA) (t′ − t)Ar±(T + t′A)

is bounded by |t− t′|‖A‖. �

Lemma 5.4. The potential V is pointwise uniformly bounded on Ω.

We will reduce the lemma to Theorem 2.3 but must prepare for the proof by

introducing some notation. For ξ ∈ T ∗RΩ ⊗ C denote c(ξ) and c̃(ξ) the sum and

difference of exterior and interior multiplication with ξ, respectively;

c(ξ) = ξ ∧ (·) + ξy(·)

c̃(ξ) = ξ ∧ (·)− ξy(·).

Each of c(ξ) and c̃(ξ) are complex linear endomorphisms of
∧∗ T ∗RΩ ⊗ C. Note that

ξ∧(·) is complex-linear in ξ whereas ξy(·) is complex-antilinear in ξ. From this simple

observation it follows that

c̃(
√
−1ξ)σ = (

√
−1ξ) ∧ σ − (

√
−1ξ)yσ

=
√
−1ξ ∧ σ +

√
−1ξyσ

=
√
−1c(ξ)σ
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so that c̃(
√
−1ξ) =

√
−1c(ξ) and c(

√
−1ξ) =

√
−1c̃(ξ). For ξ and η ∈ T ∗RΩ we have

c(ξ)2 = −‖ξ‖2(14)

c̃(ξ)2 = ‖ξ‖2(15)

c(ξ)c̃(η) + c̃(η)c(ξ) = 0.(16)

Now T ∗RΩ⊗C = T ∗RΩ⊕
√
−1T ∗RΩ is an orthogonal sum (in the complexified metric

coming from the Riemannian metric on T ∗RΩ underlying its Kähler metric) and the

inclusions of T ∗RΩ into the first and second factors are isometric and real-linear.

Combining all the above facts we conclude that (14) holds also for complex cotan-

gent vectors;

c(α+
√
−1β)2 =

(
c(α) + c(

√
−1β)

)2

=
(
c(α) +

√
−1c̃(β)

)2

= c(α)2 − c̃(β)2 +
√
−1 (c(α)c̃(β) + c̃(β)c(α))

= −‖α‖2 − ‖β‖2

= −‖α+
√
−1β‖2.

Similarly one shows that c̃(α+
√
−1β)2 = ‖α+

√
−1β‖2.

The consequence of this discussion that we require is that if f is a real-valued

smooth function on Ω then the endomorphism c̃(∂f) of ⊕nA
n
c satisfies

(17) c̃(∂f)2 = ‖∂f‖2 =
1

2
‖df‖2.

Proof of Lemma 5.4. We reduce the statement to Theorem 2.3. In the notation of

the previous discussion V = c̃(∂ logK(z, z)). It follows from (17) that

V 2 = ‖∂ logK(z, z)‖2,

meaning that the square of the bundle endomorphism V is multiplication by the

function. Thus, the norm of V is bounded by the supremum norm of ∂ logK(z, z)

which by Theorem 2.3 is finite. �
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We begin the procedure of associating a generalized asymptotic morphism to the

Berezin quantization by endowing the collection of Hilbert spaces H2
~(Ω) with the

structure of a trivial continuous field. We have defined a family a unitary isomor-

phisms U~ : A~ → A which we restrict to isometries H2
~(Ω) → A. We have observed

in Corollary 4.4 that

ker(D~) = H2
~(Ω) ⊂ A~

are a family of closed linear subspaces, and further in Proposition 5.2 that there exists

a norm continuous family of projections {P~ } on A such that

U~(H
2
~(Ω)) = P~A.

In other words, the range projections of the U~ are the P~ and these form a norm

continuous family of projections on A. Thus the hypothesis of the Lemma 7.1 are

satisfied and we have proven the following

Proposition 5.5. Let Γ be the collection of functions x of ~ ∈ (0, 1) such that

x(~) ∈ H2
~(Ω) and U~x(~) is a continuous function of ~, where we view U~ as the

isometry H2
~(Ω) → P~A ↪→ A. Then Γ defines the structure of a trivial field of

Hilbert spaces {H2
~(Ω) }. �

Remark. The continuous field defined in the proposition is generated (in the sense of

[Dix70, 10.2.3]) by the collection of constant functions of ~ valued in the holomorphic

polynomials. The triviality of the field follows from the general theory of continuous

fields once we note that each of the spaces H2
~(Ω) is infinite dimensional [Dix70,

10.8.7].

For the remainder of this section denote by K~ and K the C∗-algebras of compact

operators on A~ and A, respectively. As an immediate consequence of Lemma 7.2

we obtain the following characterization of the continuous sections of the field of

elementary C∗-algebras associated to the field {H2
~(Ω) }.

Proposition 5.6. Employ the notation of Proposition 5.5. A function K(~) such

that K(~) ∈ K~ is a continuous section of the field of elementary C∗-algebras {K~ }
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associated to the field {H2
~(Ω) } if and only if U~K(~)U∗~ is a continuous function of

~ with values in K. �

We come to the main theorem of this section; we associate to the Berezin quanti-

zation a generalized asymptotic morphism. Recall that the Berezin quantization is

defined by associating to ϕ ∈ C0(Ω) the family of Toeplitz operators {T~(ϕ) } on the

family of Hilbert spaces {H2
~(Ω) }. We denote this family by B(ϕ) = {T~(ϕ) }.

Theorem 5.7. The Berezin quantization defines a generalized asymptotic morphism

ϕ 7→ B(ϕ) = {T~(ϕ) } : C0(Ω) → Cb{K(H2
~(Ω)) }.

As described in the appendix, this generalized asymptotic morphism determines an

element of the E-homology of Ω;

[B] = homotopy class of ϕ̃t ∈ E0(Ω).

Proof. Via the inclusion H2
~(Ω) = ker(D~) ↪→ A~ the Toeplitz operator T~(ϕ) is

viewed as the compression of the multiplication operator Mϕ to the subspace H2
~(Ω):

T~(ϕ) = Q~MϕQ~,

where Q~ is the projection onto the kernel of D~.

As the compression of the ∗-homomorphism C0(Ω) → B(A~) associating to ϕ ∈
C0(Ω) the operator Mϕ, each T~ is contractive and ∗-linear. Since, by Theorem 4.3,

the operator Q~ for ~ ∈ (0, 1) may be realized as f(D~) for some f ∈ C0(R), standard

arguments ([Gue98, Lem. 3.5], for example) show that T~(ϕ) is a compact operator.

We have shown that for ϕ ∈ C0(Ω) the family B(ϕ) defines a bounded section of

the continuous field {K~ } depending ∗-linearly on ϕ ∈ C0(Ω). It remains to prove

that

(i) for ϕ ∈ C0(Ω), B(ϕ) is a continuous section, and

(ii) B satisfies the asymptotic multiplicativity axiom.

For (i) we use the characterization of continuous sections of the field {K~ } given

in Proposition 5.6. Since the unitary operators U~ : A~ → A are themselves mul-

tiplication operators they conjugate a multiplication operator on A to one on A~.
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Therefore, viewing the operators U~ as isometries, we have a commutative diagram

H2
~(Ω)

U~−−−→ A

T~(ϕ)

y yP~MϕP~

H2
~(Ω)

U~−−−→ A.

Since the family of projections P~ on A is norm continuous, the family of conjugates

U~T~(ϕ)U∗~ = P~MϕP~

is a norm continuous family of compact operators on A.

We turn finally to (ii), the asymptotic multiplicativity. We use not only the fact

that the operators D~ have gaps in their spectra (to write projections as continuous

spectral functions of these operators as in (13)) but also the fact that these gaps

become wider as ~ → 0. We must show that

(18) ‖T~(ϕψ)− T~(ϕ)T~(ψ)‖ → 0, as ~ → 0,

the norms being taken in B(H2
~(Ω)). We work with the conjugated operators P~MϕP~

on A. From the simple calculation

‖P~MϕMψP~ − P~MϕP~MψP~‖ ≤ ‖P~Mϕ −MϕP~‖‖Mψ‖

it follows that it suffices to show that

(19) ‖[P~,Mϕ]‖ → 0, as ~ → 0,

where P~ is the projection onto the kernel of D~. Let f ∈ C0(R) be supported in

[−1, 1] and satisfy f(0) = 1. Let s(~) be a continuous function increasing to infinity

as ~ → 0 and such that s(~) ≤ 2
√

1/~− 1 for all 0 < ~ ≤ 1/2 (for example,

s(~) = 1/
√

~). The functions

f~(x) = f(s−1x),

are supported in [−s, s] and satisfy f~(0) = 1. Hence, by the properties of the spectra

of D~ outlined in Theorem 4.3, we have P~ = f~(D~). The proof concludes with the
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observation that for all g ∈ C0(R) we have

‖[g~(D~),Mϕ]‖ → 0, as ~ → 0.

This is proved by observing that the set of such g ∈ C0(R) is a ∗-subalgebra which,

by virtue of the fact that s→∞ as ~ → 0 and the calculation

‖[r±(s−1D~),Mϕ]‖ ≤ s−1‖[Mϕ, D~]‖ ≤ s−1‖ gradϕ‖,

contains the resolvent functions r±(x) =
(
x±

√
−1

)−1
. �

We close with a few remarks regarding a result of Borthwick-Lesniewski-Upmeier

[BLU93, Thm. 2.2] which states that (18) holds for continuous and bounded func-

tions ϕ and ψ, one of which is compactly supported. In the course of the proof of

Theorem 5.7 we have proven the following generalization of their result, which for

clarity we restate as

Theorem 5.8. Let ϕ and ψ be continuous bounded functions on Ω. Assume that ϕ

has a continuous extension to Ω. Then

T~(ϕ)T~(ψ)− T~(ϕψ) → 0, as ~ → 0,

the norm being of bounded operators on the respective quantization spaces H2
~(Ω).

Proof. The crux of the argument given above is that (19) holds provided ϕ is continu-

ously differentiable on Ω with bounded gradient. This clearly holds for ϕ continuously

differentiable on a neighborhood of Ω. Finally, if ϕ is continuous on Ω it can be ap-

proximated in the uniform norm by continuously differentiable ϕ. �

6. The Equality

The purpose of this section is to prove our second main theorem; the E-theory class

of the Berezin quantization defined in the previous section is equal to the E-theory

class of the Dolbeault operator of Ω. We freely employ the notations of Sections 4

and 5. In particular,

A =
⊕
q

A0q, and A~ =
⊕
q

A0q(E~).
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are the Hilbert spaces of E and E~-valued differential forms on Ω and

D : A → A, and D~ : A~ → A~

are ordinary Dolbeault operator and the Dolbeault operator twisted by E~. Recall

that via the unitary isomorphisms U~ : A~ → A the twisted Dolbeault operator D~ is

unitary equivalent to the operator D+ 1
2~V on A where V is the potential introduced

in Section 4. By abuse of notation we denote this operator by D~ as well.

In order to define the E-homology class associated to the Dolbeault operator we

require one additional piece of structure; the Hilbert spaces A and A~ are graded by

the decomposition into the spaces of even and odd forms. Denote by γ the grading

operator. With these notations established we recall that the E-homology class

[D] ∈ E0(Ω)

of the Dolbeault operator of Ω is defined to be the homotopy class of the asymptotic

morphism

C0(R)⊗ C0(Ω) → C0(R)⊗K(A)

defined on basic tensors by

f ⊗ ϕ 7−→ f(t−1D + xγ)ϕ, for all f ∈ C0(R) and ϕ ∈ C0(Ω).

This construction appeared in the original unpublished manuscript of Connes and

Higson [CH89]; for details of the construction we refer to [Gue98].

Theorem 6.1. The E-homology classes of the Berezin quantization and Dolbeault

operator are equal:

[B] = [D] ∈ E0(Ω).

Remark. The classes [B] and [D], and in particular the E-homology group E0(Ω), are

nonzero. We are unable to find a reference for this elementary fact in the literature

(but compare [BD82]), so provide the following simple argument.

Extension by zero defines a ∗-homomorphism C0(Ω) → C0(Cn) which induces a

homomorphism E0(Cn) → E0(Ω). This is an isomorphism. Indeed, if B ⊂ Ω is a
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small ball we similarly have E0(Ω) → E0(B) and the composite map E0(Cn) → E0(B)

is an isomorphism; since all groups in question are isomorphic to Z the result follows.

To complete the argument recall that the class of the Dolbeault operator on Cn is

nonzero in E0(Cn); indeed it generates E0(Cn) ∼= Z (compare [Ati68]). Further, it

follows from [Gue99a] that its image under the map E0(Cn) → E0(Ω) is [D] ∈ E0(Ω).

We proceed to the proof of Theorem 6.1 which will occupy the remainder of the

section. Along the way we encounter the E-homology classes of a number of other

asymptotic morphisms. We mention two explicitly.

Proposition 6.2. The family of functions αt defined by (we write ~ = t−1),

αt(f ⊗ ϕ) = f(D~ + xγ)ϕ, for all f ∈ C0(R) and ϕ ∈ C0(Ω)

extends to an asymptotic morphism αt from C0(R) ⊗ C0(Ω) to C0(R) ⊗ K(A). Fur-

thermore, αt represents the E-homology class of the Berezin quantization:

[αt] = [B] ∈ E0(Ω).

Proof. We sketch the proof that αt defines an asymptotic morphism, following closely

the proof of Theorem 3.4 of [Gue98]. We must show

(i) f 7−→ f(D~ + xγ) defines a continuous family of ∗-homomorphisms from

C0(R) to C0(R,B(A)), and

(ii) [ϕ, f(D~ + xγ)] → 0 as ~ → 0, for f ∈ C0(R) and ϕ ∈ C0(Ω).

The proof of (i) is slightly easier than in [Gue98] by virtue of the fact that the identity

r±(D~ + xγ)− r±(D~′ + xγ) = r±(D~ + xγ)

(
V

2
(
1

~′
− 1

~
)

)
r±(D~′ + xγ),

is simpler than its counterpart in [Gue98]. The proof of (ii) is somewhat more difficult

and is accomplished by decomposing the operator f(D~ + xγ) with respect to the

decomposition of A into ker(D~) and its orthogonal complement. For f ∈ C0(R) we

have

(20) f(D~ + xγ)− f(x)P~ → 0, as ~ → 0
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by virtue of the spectral properties of D~ outlined in Theorem 4.3. The result follows

easily since we observed in the proof of Theorem 5.7 that

(21) ‖[P~,Mϕ]‖ → 0, as ~ → 0.

We now turn to the equality in the statement of the proposition. The zero element

of E0(Ω) is represented by the zero homomorphism C0(Ω) → K(H). Recall that the

family of projections P~ is a norm continuous family, and hence the same is true of

the projections 1−P~. Thus, by Lemma 7.1 the zero element of E0(Ω) is represented

by the zero generalized asymptotic morphism C0(Ω) → Cb({K((1−P~)A) }). Adding

this class to the Berezin class we see that the latter is represented by the asymptotic

morphism

ϕ 7−→ P~MϕP~ : C0(Ω) → K(A).

Further, by (21) this asymptotic morphism is asymptotically equivalent to the as-

ymptotic morphism

ϕ 7−→ P~Mϕ : C0(Ω) → K(A).

But, the suspension of this asymptotic morphism is in turn asymptotically equivalent

to αt by (20). �

Proposition 6.3. The family of functions βt defined on basic tensors by

βt(f ⊗ ϕ) = f(t−1/4(D + V/2) + xγ), for all f ∈ C0(R) and ϕ ∈ C0(Ω)

extends to an asymptotic morphism from C0(R)⊗ C0(Ω) to C0(R)⊗K(A). Further-

more, βt represents the E-homology class of the Dolbeault operator of Ω:

[βt] = [D] ∈ E0(Ω).

Proof. The proof that βt defines an asymptotic morphism is identical to the proof of

Theorem 3.4 in [Gue98]. In fact, βt is a simple rescaling of the asymptotic morphism

defining the E-homology class of the operator D + V/2 and hence represents that

class. But there is an equality

[D] = [D + V/2] ∈ E0(Ω)

([Gue98], Proposition 3.7) and the desired result follows. �
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With these propositions in hand we can complete the proof of Theorem 6.1:

Proof of Theorem 6.1. In the notation of the previous two propositions it suffices to

show that the asymptotic morphisms αt and βt from C0(R)⊗C0(Ω) to C0(R)⊗K(A)

represent the same E-homology class:

[αt] = [βt] ∈ E0(Ω).

We construct an explicit homotopy from αt to βt. Define a family of functions ηt by

ηt(f ⊗ ϕ) = f
(
σ−1Dτ−1 + xγ

)
ϕ, for all f ∈ C0(R) and ϕ ∈ C0(Ω),

where we have defined for s ∈ [0, 1] and t ≥ 1

σ4 = ((1− s) + st) , and τ = ((1− s)t+ s) .

It is immediate from these definitions that αt and βt are obtained by composing ηt
with evaluation at s = 0 and s = 1, respectively. It remains only to check that ηt
defines an asymptotic morphism from C0(R) ⊗ C0(Ω) to C0(R × [0, 1],K(A)). This

follows from Lemma 7.1 of [Gue98] once we prove:

(i) ϕ 7−→ 1⊗1⊗Mϕ is a ∗-homomorphism from C0(Ω) into Cb(R× [0, 1],B(A)),

(ii) f 7−→ f (σ−1Dτ−1 + xγ) is a continuous family of ∗-homomorphisms from

C0(R) to C0(R× [0, 1],B(A)),

(iii) for fixed s ∈ [0, 1] and t ≥ 1 the product f (σ−1Dτ−1 + xγ)Mϕ is a compact

operator on A, and

(iv) for all f ∈ C0(R) and ϕ ∈ C0(Ω) the commutator [Mϕ, f (σ−1Dτ−1 + xγ)]

tends to zero as t→∞ (considered as an element of C0(R× [0, 1],K(A))).

Of these, (i) is obvious, (iii) follows from standard arguments (see the proof of

Theorem 5.7), and (ii) ane (iv) are treated in the following lemmas. �

Lemma 6.4. The assignment

(22) f 7−→ f
(
σ−1Dτ−1 + xγ

)
, for all f ∈ C0(R)

defines a continuous family of ∗-homomorphisms from C0(R) to C0(R× [0, 1],B(A)).
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Proof. We must verify that for fixed t ≥ 1 the expression in (22) is continuous in

(x, s) ∈ R× [0, 1] and vanishes at infinity. Further, we must verify that the resulting

element of C0(R× [0, 1],B(A)) varies continuously with t ≥ 1. It suffices to consider

the case f = r± is one of the resolvent functions.

By virtue of the identity (aDb + xγ)2 = a2D2
b + x2 we see that the spectrum of

aDb + xγ lies in the complement of (−x, x), independently of a and b ∈ R. Thus,

simple calculations show that

(23) ‖r± (aDb + xγ) ‖ ≤ 1√
x2 + 1

,

independently of a and b ∈ R. From this we conclude that for each t ≥ 1 the resolvent

r±(σ−1Dτ−1 + xγ) vanishes at infinity in (x, s) ∈ R × [0, 1]. We record for later use

the similar fact that, independently of a, b, and x ∈ R,

(24) ‖ (aDb + xγ) r± (aDb + xγ) ‖ ≤ 1.

Define for s′ ∈ [0, 1] and t′ ≥ 1

(25) σ4
1 = ((1− s′) + s′t′) , and τ1 = ((1− s′)t′ + s′) ,

and introduce the convenient shorthand

D = σ−1Dτ−1 + xγ, and D1 = σ−1
1 Dτ−1

1
+ x1γ.

From the resolvent identity

(26) r±(D)− r±(D1) = r±(D1) (D− D1) r±(D).

we are lead to calculate the difference D− D1. Since

Dτ−1 −Dτ−1
1

=
(
D +

τ

2
V

)
−

(
D +

τ1
2
V

)
=

(
τ − τ1

2

)
V.
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we have

σ−1Dτ−1 − σ−1
1 Dτ−1

1
= σ−1Dτ−1 − σ−1

1

(
Dτ−1

τ − τ1
2

V

)
= (σ−1 − σ−1

1 )Dτ−1 +
σ−1

1 (τ − τ1)

2
V

= (1− σσ−1
1 )σ−1Dτ−1 +

σ−1
1 (τ − τ1)

2
V

= (1− σσ−1
1 )

(
σ−1Dτ−1 + xγ

)
− (1− σσ−1

1 )xγ +
σ−1

1 (τ − τ1)

2
V

= (1− σσ−1
1 )D− (1− σσ−1

1 )xγ +
σ−1

1 (τ − τ1)

2
V.

We therefore conclude that

(27) D− D1 = (1− σσ−1
1 )D− (1− σσ−1

1 )xγ +
σ−1

1 (τ − τ1)

2
V + (x− x1)γ.

Collecting (26) and (27) we conclude that for all x ∈ R, s ∈ [0, 1] and t ≥ 1 the

norm of r±(D)− r±(D1) is bounded by the sum of four terms

|1− σσ−1
1 | ‖r±(D1)‖ ‖Dr±(D)‖

|1− σσ−1
1 | |x| ‖r±(D1)‖ ‖r±(D)‖∣∣∣σ−1

1 (τ−τ1)

2

∣∣∣ ‖V ‖ ‖r±(D1)‖ ‖r±(D)‖

|x− x1| ‖r±(D1)‖ ‖r±(D)‖

Employing now (23) and (24) we bound the sum of these four terms, and hence the

norm of r±(D)− r±(D1) by

(28) ‖r±(D)− r±(D1)‖ ≤ C1|1− σσ−1
1 |+ C2|σ−1

1 (τ − τ1)|+K|x− x1|,

where C1, C2 and K are constants independent of (x, s) ∈ R× [0, 1] and t ≥ 1.

To conclude the proof we require some further elementary estimates. We have

(29) |τ − τ1| ≤ (1 + t)|s′ − s|+ |t′ − t|,
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and a similar estimate for |σ4− σ4
1|. Further, σ4 = (1− s) + st ≥ 1 so that σ ≥ 1 and

σ−1 ≤ 1. We conclude that

|σ4 − σ4
1| = |σ2 − σ2

1| |σ2 + σ2
1| ≥ 2|σ − σ1| |σ + σ1| ≥ 4|σ − σ1|,

and further that

(30) 4|1− σσ−1
1 | = 4|σ1 − σ| |σ−1

1 | ≤ (1 + t)|s′ − s|+ |t′ − t|.

For our final estimate we combine (28), (29) and (30) to obtain a bound on the norm

of r±(D)− r±(D1) in terms of (x, s) ∈ R× [0, 1] and t ≥ 1:

‖r±(D)− r±(D1)‖ ≤ C ((1 + t)|s′ − s|+ |t′ − t|) +K|x− x1|,

where C and K are constants independent of (x, s) ∈ R × [0, 1] and t ≥ 1. The

content of this last estimate is that for a fixed T ≥ 1 the resolvent r±(D) is uniformly

continuous in the variables (x, s) ∈ R × [0, 1] and t ∈ [1, T ]. The desired result

follows. �

Lemma 6.5. For all f ∈ C0(R) and ϕ ∈ C0(Ω) the commutator

(31) [Mϕ, f
(
σ−1Dτ−1 + xγ

)
],

tends to zero as an element of C0(R× [0, 1],K(A)) as t→∞.

Proof. The proof of this proposition has much in common with the proof of Proposi-

tion 6.2. In particular, we rely on the fact that for all ϕ ∈ C0(Ω)

(32) [Mϕ, Pt−1 ] → 0, as t→∞

(compare to (21)). Our task is to show that the norm of the commutator (31) tends

to zero as t→∞ uniformly in (x, s) ∈ R× [0, 1]. We consider the cases s ≤ 1/2 and

s ≥ 1/2 separately, beginning with the former.

Retaining the notation of the previous proof, simple calculations show that for all

f ∈ C0(R) and ϕ ∈ C0(Ω)

(33) ‖[Mϕ, f(D)‖ ≤ 2‖ϕ‖‖f ⊗ Pτ−1 − f(D)‖+ ‖[Mϕ ⊗ 1, Pτ−1 ⊗ f ]‖.
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We proceed as in the proof of Proposition 6.2 to estimate the norm of the difference

(34) f(x)Pτ−1 − f(D) = f(x)Pτ−1 − f
(
σ−1Dτ−1 + xγ

)
by breaking the space A into the direct sum of Pτ−1A = kerDτ−1 and its orthogonal

complement. On kerDτ−1 this difference is zero. On its orthogonal complement Pτ−1

is zero and the spectral properties of the operators Dτ−1 outlined in Theorem 4.3

imply that (
σ−1Dτ−1 + xγ

)2
= σ−2D2

τ−1 + x2 ≥ σ−2D2
τ−1 ≥ 4σ−2(τ − 1),

independently of x ∈ R. We conclude that the norm of (34) is bounded by

sup{ |f(y)| : |y| ≥ 2σ−1
√
τ − 1 },

independently of x ∈ R. To show that this expression tends to zero uniformly in

s ∈ [−, 1/2] as t → ∞ we show that the expression 2σ−1
√
τ − 1 tends to infinity

uniformly in s ∈ [0, 1/2] as t → ∞. This follows from simple estimates regarding τ

and σ, each independent of s ∈ [0, 1/2]:

(i) σ−1 ≥ t−1/4

(ii) 4(τ − 1) ≥ 2(t− 1) ≥ t, for t ≥ 2.

Estimate (i) follows from σ4 = (1− s) + st ≤ t and (ii) from τ − 1 = (t− 1)(1− s).

Combining (i) and (ii) we conclude that for t ≥ 2,

2σ−1
√
τ − 1 ≥ t1/4,

independently of s ∈ [0, 1/2]. For such s we also have τ = (1− s)t+ s ≥ t/2, so that

it follows from (32) that

[Mϕ, Pτ−1 ] → 0, as t→∞

uniformly in s ∈ [0, 1/2]. Combining what we have thus far, we have shown that the

norm of (33) tends to zero as t→∞ uniformly in (x, s) ∈ R× [0, 1/2].

We now turn our attention to the complementary interval s ∈ [1/2, 1]. On this

interval we reduce to consideration of the resolvent functions f = r± and smooth and
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compactly supported ϕ. We use the identity

[Mϕ, r±(D)] = r±(D)[D,Mϕ]r±(D) = r±(D)σ−1[Dτ−1 ,Mϕ]r±(D),(35)

from which follows that

‖[Mϕ, r±(D)]‖ ≤ σ−1‖ gradient of ϕ ‖.

It thus remains only to verify that σ → ∞ uniformly in s ∈ [1/2, 1] as t → ∞.

It is, however, immediate from the definition of σ that σ4 ≥ t/2 independently of

s ∈ [1/2, 1]. The lemma is thereby proved. �

7. Appendix: Continuous Fields

In establishing notation and conventions for continuous fields of Hilbert spaces and

C∗-algebras we follow Dixmier [Dix70, Ch. 10].

A continuous field of Hilbert spaces over a topological space T consists of a family

of Hilbert spaces Ht, t ∈ T together with a vector space Γ of functions x(t) satisfying

certain axioms [Dix70, 10.1.2]. We denote a continuous field by ({Ht },Γ), although

whenever convenient we shall omit Γ from the notation, denoting the continuous field

by {Ht }. If each Ht is equal to a fixed Hilbert space H and Γ is the set of continuous

functions on T with values in H the field is called constant. We shall consistently

denote the constant field by {H }. A field isomorphic to a constant field is called

trivial.

Lemma 7.1. Let H be Hilbert space. For all t in a locally compact topological space

T let Ht be a Hilbert space and Ut : Ht → H be an isometry. Assume that the family

of range projections Pt of Ut is strongly continuous. The collection

Γ = {x(t) ∈ Ht : Utx(t) is continuous }

defines the structure of a continuous field {Ht }. Further, if T is an interval and the

Pt are norm continuous the field is trivial.

Proof. To see that Γ defines the structure of a continuous field we verify the axioms

directly. It is clear that Γ is a linear space and that for x ∈ Γ the function ‖x(t)‖
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is continuous. To show that {x(s) : x ∈ Γ } = Hs let v ∈ Hs be given. Define

w = Us(v) ∈ H and x(t) = U∗t w. It is easily verified that x(s) = v and further that

Utx(t) = Ptw is continuous in t. Finally let y(t) ∈ Ht be a function that is the local

uniform limit of elements of Γ. To see that y ∈ Γ let s be given and show that Uty(t)

is continuous at s. Let ε > 0 be given and obtain an open neighborhood O of s in T

and an x ∈ Γ such that

‖y(t)− x(t)‖ < ε, for all t ∈ O.

By reducing to a smaller neighborhood of s if necessary we further arrange that

‖Utx(t)− Usx(s)‖ < ε, for all t ∈ O.

It is then straightforward to verify that

‖Uty(t)− Usy(s)‖ ≤ 3ε, for all t ∈ O.

We turn to the triviality of the field in the case that T is an interval and the Pt
are norm continuous. In this case there exists a norm continuous family of unitaries

Vt such that for all t

VtPtV
∗
t = P1 = P.

It follows that PH = VtPtV
∗
t H = VtPtH and we therefore may view the product VtUt

as a unitary operator

Ht
Ut−−−→ PtH

Vt−−−→ PH.

This collection of unitary isomorphisms provides the desired trivialization; it is readily

verified that x ∈ Γ if and only if VtUtx(t) is a continuous H-valued function. �

Lemma 7.2. Employ the notation of Lemma 7.1. Let Kt be the C∗-algebra of com-

pact operators on Ht and ({Kt },Γ′) the continuous field of elementary C∗-algebras

associated to {Ht }. The collection of continuous sections of {Kt } is

Γ′′ = {K(t) ∈ Kt : UtK(t)U∗t is continuous }.
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Proof. Is suffices to show that Γ′ ⊂ Γ′′ (compare [Dix70]). Recall that Γ′ is the closure

with respect to local uniform convergence of the linear span of the rank one families

associated to continuous sections of {Ht };

Θx,y(t) = Θx(t),y(t) = 〈·, x(t)〉y(t).

It therefore suffices to show that

(i) Θx,y ∈ Γ′′ for all x and y ∈ Γ, and

(ii) the collection Γ′′ is closed under local uniform convergence.

The first assertion follows from the simple estimate

‖Θx,y −Θx′,y′‖ ≤ ‖x‖‖y − y′‖+ ‖x− x′‖‖y′‖

and calculation

UtΘx,y(t)U
∗
t = ΘUtx(t),Uty(t).

The second assertion follows as in the proof of the previous lemma. �

8. Appendix: E-Theory

Let A and B be C∗-algebras. An asymptotic morphism from A to B is a family of

functions {ϕt} : A→ B indexed by t ∈ T = [1,∞) satisfying the continuity condition

t 7→ ϕt(a) is a continuous B-valued function for all a ∈ A

as well as the asymptotic conditions

lim
t→∞


ϕt(a) + λϕt(a

′)− ϕt(a+ λa′)

ϕt(a)ϕt(a
′)− ϕt(aa

′)

ϕt(a)
∗ − ϕt(a

∗)

 = 0, for all a, a′ ∈ A and λ ∈ C.

Asymptotic morphisms {ϕt} and {ψt} are asymptotically equivalent if

lim
t→∞

(ϕt(a)− ψt(a)) = 0, for all a ∈ A.

Denote by B[0, 1] the C∗-algebra of continuous B-valued functions on the closed

interval [0, 1]. Asymptotic morphisms {ϕt} and {ψt} are homotopic if there is an

asymptotic morphism {αt} : A → B[0, 1] from which they may be recovered upon
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composition with evaluation at zero and one. Both asymptotic equivalence and ho-

motopy are equivalence relations on the set of asymptotic morphisms from A to B.

The set of homotopy classes is denoted [[A,B]].

Let K be the C∗-algebra of compact operators on a separable, infinite dimensional

Hilbert space. Let S be the C∗-algebra of continuous functions on R vanishing at

infinity and for any C∗-algebra A denote the suspension of A by SA = S ⊗ A.

The bivariant E-theory groups are defined by E(A,B) = [[SA,SB ⊗ K]]. Our

primary concern is with the E-homology groups defined by

E0(A) = E(A,C) = [[SA,S ⊗ K]],

although when speaking about commutative C∗-algebras, A = C0(X) where X is a

locally compact metrizable space, it is customary to denote these groups by

E0(X) = E0(C0(X)).

Remark. There are many seemingly different, but nonetheless equivalent, versions of

E-theory [Dad94, Gue99b, GHT00]. The equivalence of our definition with the orig-

inal definition of Connes-Higson is proven by a slight adaptation of the arguments in

[Hig87]. The equivalence of our definition with the one employed in [Gue98, Gue99a]

follows immediately from Bott Periodicity (compare [CH89]); we will use several re-

sults from these references.

In defining the E-theory class associated to the Berezin quantization it is convenient

to use a slightly generalized notion of asymptotic morphism. The benefit of this

slightly generalized notion is primarily one of notational convenience.

Let {H~ } be a continuous field of Hilbert spaces on the interval ~ ∈ (0, 1), together

with a trivialization {U~ }. In particular, the U~ are unitary isomorphisms from the

H~ to a fixed Hilbert space H and the continuous sections of {H~ } are precisely

the translates of continuous functions of ~ with values in H. The associated field of

elementary C∗-algebras, denoted K({H~ }) is trivialized by { adU~ }, where adU~ :
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K(H~) → K(H) is conjugation with U~. Denote by Cb({K~ }) and C0({K~ }) the C∗-

algebras of continuous bounded sections and continuous sections vanishing at zero of

K({H~ }), respectively.

A generalized asymptotic morphism is a function ϕ from A into the set of sections

of K ({H~ }) satisfying the continuity condition

ϕ(a) ∈ Cb({K~ }) for all a ∈ A

as well as the obvious asymptotic conditions
ϕ(a) + λϕ(a′)− ϕ(a+ λa′)

ϕ(a)ϕ(a′)− ϕ(aa′)

ϕ(a)∗ − ϕ(a∗)

 ∈ C0({K~ }), for all a, a′ ∈ A and λ ∈ C.

A generalized asymptotic morphism ϕ gives an asymptotic morphism {ϕ̃t} via the

prescription

ϕ̃t(a) = adU1/t(ϕ(a)(1/t)), for all a ∈ A.

Lemma 8.1. The homotopy class of the asymptotic morphism associated to the gen-

eralized asymptotic morphism ϕ is independent of the chosen trivialization of the field

{H~ }.

Proof. Let {U~ } be an isomorphism of constant fields {H } ∼= {H } and ϕ : A →
Cb{K(H) } be a generalized asymptotic morphism. We prove that the asymptotic

morphisms associated to ϕ and Uϕ are homotopic, where

Uϕ(a)(~) = U~(ϕ(a)(~)), for all a ∈ A and ~ ∈ (0, 1].

A homotopy from ϕ̃t to (Ũϕ)t is defined by

αt(a)(s) = Ust+(1−s)ϕt(a)U
∗
st+(1−s), for all a ∈ A and s ∈ [0, 1].

The required continuity properties of αt follow from elementary facts about the uni-

tary group U of H equipped with the strong operator topology; U is a metrizable

topological space and acts on K as a topological transformation group. In particular,

the map

(U,K) 7−→ UKU∗ : U × K → K
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is continuous so that the function Urϕt(s)U
∗
r of s ∈ [0, 1] and r ≥ 1 is uniformly

continuous on the the product of [0, 1] with any compact initial segment of the ray

r ≥ 1. The asymptotic properties of αt are also straightforwardly verified. �

We summarize the result from this appendix used in the defining the E-theory class

of the Berezin quantization.

Proposition 8.2. A generalized asymptotic morphism ϕ : A→ Cb({K~ }) defines an

element of the E-homology group E(A,C). This element is independent of the choice

of trivialization used to define it. �
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