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Abstract. Property A is a non-equivariant analogue of amenability defined for metric
spaces. Euclidean spaces and trees are examples of spaces with Property A. Simultaneously
generalizing these facts, we show that finite dimensional CAT(0) cube complexes have Prop-
erty A. We do not assume that the complex is locally finite. We also prove that given a
discrete group acting properly on a finite dimensional CAT(0) cube complex the stabilisers
of vertices at infinity are amenable.

Introduction

This paper is devoted to the study of Property A for finite dimensional CAT(0) cube

complexes. These spaces, which are generalizations of (products of simplicial) trees, appear

naturally in many problems in geometric group theory and low dimensional topology [AR90,

HW07, Sag97, Wis04]. Property A was introduced by Yu as a non-equivariant generalisation

of amenablity from the context of groups to the context of discrete metric spaces. It was

used with great effect in his attack on the Baum Connes conjecture, in which he proved,

among other things, that Gromov’s δ-hyperbolic spaces, and hence hyperbolic groups, satisfy

Property A, even though they may be very far from amenable [Yu00].

One of the most frequently used characterisations of amenability for a group is Følner’s

criterion, which asserts the existence of an equivariant family of subsets of the group which

satisfy a certain growth property. Yu’s definition of Property A may be viewed as relax-

ing this notion to give a family of subsets which are ‘asymptotically invariant’, suitably

interpreted of course as there is no group action associated with the definition.

In this paper we prove:
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Theorem. Let X be a finite dimensional CAT(0) cube complex. Equipped with the geodesic

metric, X has Property A. The vertex set of X, equipped with the edge-path metric has

Property A.

The result is known for finite dimensional CAT(0) cube complexes admitting a cocompact

action by a countable discrete group [CN05], and known to be false for infinite dimensional

cube complexes [Now07]. Thus our result is the best possible. The approach taken in [CN05]

involved a deformation of the standard embedding of the cube complex in Hilbert space and

rested on a functional analytic argument involving the uniform Roe algebra to conclude

Property A (see [GK04] and [BNW07]). That approach is ultimately unsuitable for non-

locally finite complexes. Here, we shall remove the assumption of local finiteness by offering

a direct proof of Property A in which the asymptotically invariant functions called for in

Yu’s non-equivariant generalisation of the Følner criterion are explicitly constructed.

The problem of clarifying the relationship between Property A and coarse embeddability

(in Hilbert space) has attracted some attention lately, and indeed was a motivation for our

study. As a consequence of the above theorem, and the coarse invariance of Property A, we

obtain the following corollaries.

Corollary. A metric space that coarsely embeds in a finite dimensional CAT(0) cube complex

has Property A.

Corollary. A countable discrete group acting metrically properly on a finite dimensional

CAT(0) cube complex has Property A.

Putting the corollaries in perspective, one can use an approximation argument to show

that a metric space which coarsely embeds in Hilbert space coarsely embeds in an infinite

dimensional CAT(0) cube complex. (This follows from the observations that the infinite

dimensional Euclidean space R∞ is an infinite dimensional cube complex and a dense subset

of the Hilbert space `2.)

Our construction may have other applications, and we present one here. A group act-

ing properly on an Hadamard space, a building for example, fixing a point in a suitable

refinement of the visual boundary is amenable [Cap07]. There is a less well known notion

of combinatorial boundary for a CAT(0) cube complex and an action of a group on such a

complex extends to the combinatorial boundary.

Theorem. A countable group acting properly on a finite dimensional CAT(0) cube complex

and fixing a vertex at infinity is amenable.
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1. Preliminaries

1.1. Property A. In his work on the Novikov conjecture Yu introduced Property A [Yu00].

There are now several variants of the basic definition, all of which are equivalent for spaces

of bounded geometry ; see for example [HR00, Tu01, DG05]. We, however, intend to study

spaces that do not have bounded geometry and shall restrict ourselves to the definition

below. The definition we have chosen is the strongest, implying all others in full generality.

Before formally introducing Property A we recall some elementary notions from coarse

geometry. Let X and Y be metric spaces. A function φ : X → Y is a coarse embedding if:

(a) For every A > 0 there exists B > 0 such that

d(x, x′) < A⇒ d(φ(x), φ(x′)) < B.

(b) For every B > 0 there exists A > 0 such that

d(φ(x), φ(x′)) < B ⇒ d(x, x′) < A.

A subset Z ⊂ Y is coarsely dense if there exists C > 0 such that for every y ∈ Y there

exists z ∈ Z such that d(y, z) < C. A coarse embedding φ : X → Y is a coarse equivalence

if its image is coarsely dense in Y . If there is a coarse equivalence X → Y the metric space

X is coarsely equivalent to Y . Although not apparent, coarse equivalence is an equivalence

relation.

Proposition 1.1. Every metric space contains a discrete coarsely dense subset. In particu-

lar, every metric space is coarsely equivalent to a discrete metric space.

Proof. A straightforward application of Zorn’s lemma. �

Definition 1.2. A discrete metric space X has Property A if for every R > 0 and every

ε > 0 there exists an S > 0 and a family of finite non-empty subsets Ax ⊂ X × N, indexed

by x ∈ X, such that:

(a) For every x, x′ ∈ X with d(x, x′) < R we have
|Ax∆Ax′ |
|Ax| < ε.

(b) For every (x′, n) ∈ Ax we have d(x, x′) ≤ S.

An arbitrary metric space X has Property A if it contains a discrete coarsely dense subset

with Property A.

Remark. We shall see presently that if one discrete coarsely dense subset of a metric space

has Property A then every such subset has Property A (see Proposition 1.4 below).



4 J. BRODZKI, S.J. CAMPBELL, E. GUENTNER, G.A. NIBLO, AND N.J. WRIGHT

Proposition 1.3. Let X and Y be discrete metric spaces. If X is coarsely embeddable in Y

and Y has Property A then X has Property A.

Proof. Let φ : X → Y be a coarse embedding. Let ψ : Y → X be a function satisfying

d(φ(ψ(y)), y) ≤ d(φ(X), y) + 1.

Let R > 0 and ε > 0. Since φ is a coarse embedding there exists R′ > 0 such that

d(x, x′) < R⇒ d(φ(x), φ(x′)) < R′.

Since Y has Property A there is a family {By }y∈Y and an S ′ satisfying the conditions of

Definition 1.2 for R′ and ε. Define

Ax =
{

(x′, n) ∈ X × N : n ≤ |{ (y,m) ∈ Bφ(x) : ψ(y) = x′ }|
}

and, using once more the fact that φ is a coarse embedding, we obtain S such that

d(φ(x), φ(x′)) ≤ 2S ′ + 1⇒ d(x, x′) ≤ S.

The family {Ax }x∈X and S satisfy the conditions of Definition 1.2 for R and ε. Indeed, if

(x′, n) ∈ Ax then there exists (y,m) ∈ Bφ(x) such that ψ(y) = x′. It follows that d(φ(x), y) ≤
S ′ and

d(φ(x), φ(x′)) ≤ d(φ(x), y) + d(y, φ(x′)) = d(φ(x), y) + d(y, φ(ψ(y))) ≤ 2S ′ + 1,

hence also d(x, x′) ≤ S. Finally, suppose d(x, x′) ≤ R. Then d(φ(x), φ(x′)) ≤ R′ so that

|Ax∆Ax′|
|Ax|

≤
|Bφ(x)∆Bφ(x′)|
|Bφ(x)|

< ε. �

Proposition 1.4. Property A is a coarse invariant of discrete metric spaces. Precisely, if

X and Y are coarsely equivalent discrete metric spaces then X has Property A if and only

if Y has Property A.

Proof. If X and Y are coarsely equivalent then each is coarsely embeddable in the other. �

We shall work exclusively with the following characterisation of Property A.

Proposition 1.5. A discrete metric space X has Property A if and only if there exists a

sequence of families of finitely supported functions fn,x : X → N ∪ {0}, indexed by x ∈ X,

and a sequence of constants Sn > 0, such that:

(a) For every n and x the function fn,x is supported in BSn(x).
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(b) For every R > 0

‖fn,x − fn,x′‖
‖fn,x‖

→ 0

uniformly on the set {(x, x′) : d(x, x′) ≤ R} as n→∞.

Furthermore, if X is the vertex set of a graph, equipped with the edge-path metric, it is

sufficient to require (b) only for R = 1.

Remark. The norm ‖·‖ is the `1-norm on the space of (finitely supported) functions on X.

This is the only norm we shall encounter.

Proof. Both Property A and the conditions in the proposition are equivalent to the following

statement: for every R > 0 and ε > 0 there exists a family of finitely supported functions

fx : X → N∪ {0}, indexed by x ∈ X, and an S > 0 such that fx is supported in BS(x), and

d(x, x′) ≤ R =⇒ ‖fx − fx
′‖

‖fx‖
< ε.

The equivalence with the conditions of the proposition is elementary. The equivalence with

Property A is given by mapping Ax to fx(y) = |Ax ∩ ({y} × N)|, and conversely by mapping

fx to Ax = {(y, n) : 1 ≤ n ≤ fx(y)}.
It remains to check that in the case of a metric graph (b) for R = 1 implies (b) for every

R > 0. It follows from (b) for R = 1 that

(1) ‖fn,x‖ ‖fn,x′‖−1 → 1

as n→∞, uniformly on the set of pairs of adjacent vertices x and x′. Given two vertices x

and x′ with d(x, x) ≤ R we find an r ≤ R and a sequence of vertices x = x0, x1, . . . , xr = x′

comprising an edge-path from x to x′. Writing

‖fn,x‖ ‖fn,x′‖−1 = ‖fn,x0‖ ‖fn,x1‖
−1 · ‖fn,x1‖ ‖fn,x2‖

−1 · · ·
∥∥fn,xr−1

∥∥ ‖fn,xr‖
−1

it follows that the convergence in (1) is in fact uniform on the set { (x, x′) : d(x, x′) ≤ R }.
The condition (b) for R is now an application of the triangle inequality: writing

‖fn,x − fn,x′‖
‖fn,x‖

≤
r−1∑
i=0

∥∥fn,xi
− fn,xi+1

∥∥
‖fn,x‖

=
r−1∑
i=0

∥∥fn,xi
− fn,xi+1

∥∥
‖fn,xi

‖
· ‖fn,xi

‖
‖fn,x‖

,

note that each summand converges to zero uniformly on the appropriate set. �

Definition 1.6. We shall refer to functions fn,x as in Proposition 1.5 as weight functions.
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1.2. CAT (0) cube complexes. A cube complex is a polyhedral complex in which the cells

are Euclidean cubes of side length one, the attaching maps are isometries identifying the

faces of a given cube with cubes of lower dimension and the intersection of two cubes is a

common face of each [Gro87, Sag95, BH99]. One dimensional cubes are called edges , two

dimensional cubes are called squares and a cube complex is finite dimensional if there is a

bound on the dimension of its cubes.

The Euclidean distance between points in a cube is well-defined, allowing us to define the

length of a rectifiable path. If a cube complex is finite dimensional it is a complete geodesic

metric space with respect to the geodesic metric, in which the distance between two points

is defined to be the infimum of the lengths of rectifiable paths connecting them [BH99]. A

finite dimensional cube complex is a CAT(0) cube complex if the geodesic metric satisfies

the CAT(0) inequality , according to which a geodesic triangle in the complex is ‘thinner’

than a triangle in Euclidean space with the same side lengths. Equivalently, the underlying

topological space of the complex is simply connected and the complex satisfies Gromov’s

link condition, [Gro87]; these requirements comprise the definition for infinite dimensional

CAT(0) cube complexes.

The vertex set of a cube complex is also equipped with the edge-path metric, in which the

distance between vertices is defined to be the minimum number of edges on an edge-path

connecting them.

A CAT(0) cube complex possesses a rich combinatorial structure. A (geometric) hyper-

plane H divides the vertex set into two path connected subspaces which we shall refer to as

half-spaces. Two hyperplanes provide four possible half-space intersections; the hyperplanes

intersect if and only if each of these four half-space intersections is non-empty. Two vertices

in a half-space are connected by an edge-path that does not cross H whereas an edge-path

connecting a vertex in one half-space to one in the other must cross H. In the latter case

we say that H separates the two vertices. The set of hyperplanes separating the vertices x

and y is denoted H(x, y). The interval from x to y, denoted [x, y], is the intersection of all

half-spaces containing both x and y. A set of vertices is convex if whenever it contains both

x and y it contains the entire inverval [x, y]. Finally, the set of vertices of a CAT(0) cube

complex is a median space; the median of the vertices w, x and y is the (unique) vertex in

[w, x] ∩ [x, y] ∩ [w, y] [Rol98].

Proposition 1.7. Let X be a CAT(0) cube complex. The restriction of the geodesic metric

to the vertex set is coarsely equivalent to the edge-path metric. Moreover, if X is finite

dimensional the vertex set (with either metric) is coarsely equivalent to X.
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Proof. For the purposes of the proof denote the geodesic metric by d2 and the edge-path

metric by d1. Let x and y be vertices in X. Let x = x0, x1, . . . , xn = y be the ordered

sequence of vertices on a shortest edge-path from x to y. By the triangle inequality,

d2(x, y) ≤
n∑
i=1

d2(xi−1, xi) = n = d1(x, y).

Conversely, given two vertices x, y with d1(x, y) = k the interval between them is a CAT(0)

cube complex with exactly k hyperplanes, and therefore embeds as a subcomplex of the

k-dimensional unit cube. This embedding is an isometry for the edge-path metrics and a

contraction at the level of the geodesic metrics. We denote the image of a point z under

this embedding by z, and abuse notation by letting d1 and d2 to refer to the edge-path and

geodesic metrics in both cube complexes. We conclude d1(x, y) = d1(x, y) =
√
d2(x, y) ≤√

d2(x, y). Thus, the metrics are coarsely equivalent as required.

If X is finite dimensional the vertex set is
√

dim(X)/2-dense in X in the geodesic metric.

Consequently, the vertex set with the (restriction of the) geodesic metric is coarsely equivalent

to X. �

A CAT(0) cube complex also possesses a combinatorial boundary , which we now describe.

A function σ assigning to each hyperplane one of its two half-spaces is an ultrafilter if it

satisfies the following condition: for two hyperplanes H and K the half-spaces σ(H) and

σ(K) have non-trivial intersection. (The condition is vacuous when the hyperplanes H and

K themselves intersect.)

A vertex x ∈ X defines an assignment of half-spaces to hyperplanes as follows: assign to

the hyperplane H the half-space Hx that contains x. The assignment is an ultrafilter since

for two hyperplanes H and K we have x ∈ Hx∩Kx. Further, distinct vertices define distinct

ultrafilters; indeed, if x 6= y then Hx 6= Hy precisely when H separates x and y. We have

thus described an injective function from vertices of X to ultrafilters. Ultrafilters that are

not in the image of this map are vertices at infinity ; these comprise the ideal boundary ∂X

of X and we denote X = X ∪ ∂X.

The elementary combinatorics of hyperplanes and half spaces extends to X. Let z, w ∈ X.

Being an ultrafilter, z associates to each hyperplane H one of its two half spaces; we denote

this half space by Hz. A hyperplane H separates z and w if Hz 6= Hw; the set of these

hyperplanes is denoted H(z, w). We say that Hz contains z, and define the interval [z, w] to

be the intersection of of all half spaces containing both z and w. Observe that [z, w] ⊂ X.

Lemma 1.8. Let x, w ∈ X and z ∈ X. If w ∈ [x, z] then [x,w] ⊂ [x, z].
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Proof. The intersection of convex sets is convex; in particular, intervals are convex. �

Lemma 1.9. Let x, y, w ∈ X and z ∈ X. If w ∈ [x, z] and y ∈ [x,w] then H(y, w) ⊂ H(y, z).

Proof. If not there is a hyperplane H such that Hz = Hy 6= Hw. We must have either

Hx = Hz or Hx = Hw, but the first of these statements contradicts w ∈ [x, z] and the second

contradicts y ∈ [x,w]. �

The set X carries a natural topology. We shall require only the following, which we take

as a definition: a sequence of vertices zj ∈ X converges to a vertex z ∈ X if and only if for

every hyperplane H we have H /∈ H(zj, z) for almost every j ∈ N. (As usual, we say that a

property holds for almost every j ∈ N if the set of those j ∈ N for which the property does

not hold is finite.)

Lemma 1.10. Let z ∈ X. There exists a sequence (zj)j∈N of vertices in X converging to z.

Proof. Let H1, H2, . . . be the (countable) set of hyperplanes of X. An induction involving

the median operator shows that the intersection of a finite collection of pairwise intersect-

ing convex sets is nonempty [Rol98, Helly’s Theorem 2.2]. Choose zj arbitrarily from the

nonempty set H1,z ∩ · · · ∩Hj,z. �

Lemma 1.11. Let zj ∈ X, z ∈ X and let zj → z. A hyperplane H separates y from z

percisely when it separates y from almost every zj:

H(y, z) =
⋃
k

⋂
j≥k

H(y, zj).

Proof. A hyperplane H separates y from z means that Hy 6= Hz; zj → z means that for

every hyperplane H we have Hz = Hzj
for almost every j. �

Lemma 1.12. Let zj ∈ X, z ∈ X and suppose zj → z. Let x and y ∈ X. Precisely one of

the following two statements holds:

(a) y ∈ [x, zj] for almost every j,

(b) y /∈ [x, zj] for almost every j.

In the first case y ∈ [x, z] whereas in the second y /∈ [x, z].

Proof. The first statement fails if and only if y /∈ [x, zj] for infinitely many j; this is clearly

implied by the second statement, and we must show it implies the second statement. Now, if

y /∈ [x, zj] there exists exists H ∈ H(x, y) such that Hx = Hzj
. Assuming this is the case for

infinitely many j then, since H(x, y) is finite, there exists H ∈ H(x, y) such that Hx = Hzj
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for infinitely many j. By the definition of convergence we have Hz = Hzj
for almost every j.

Thus, Hx = Hz = Hzj
for almost every j. In particular, y /∈ [x, zj] for almost every j, and

y /∈ [x, z].

It remains only to see that the first statement implies y ∈ [x, z]. But, if y /∈ [x, z] there

exists an H ∈ H(x, y) such that Hx = Hz. By the definition of convergence, we have

Hz = Hzj
for almost every j, so that y /∈ [x, zj] for almost every j. �

Lemma 1.13. Let x, y ∈ X and z ∈ X. The intersection of the intervals [x, y], [x, z] and

[y, z] consists of a single vertex of X.

Proof. To prove uniqueness suppose m 6= m′ are in [x, y] ∩ [x, z] ∩ [y, z] and let H be a

hyperplane separating m and m′. Two of the three half spaces Hx, Hy and Hz must be

equal; suppose, for example, Hx = Hz. Since Hm 6= Hm′ only one of these can be Hx; if, for

example, Hm 6= Hx we have m /∈ [x, z], a contradiction.

To prove existence, let zj ∈ X be such that zj → z. The interval [x, y] is finite and contains

the medians mj = m(x, y, zj). Hence there exists an m ∈ [x, y] such that m = mj ∈ [x, zj] for

infinitely many j. By Lemma 1.12, m ∈ [x, zj] for almost every j and m ∈ [x, z]. Similarly,

m ∈ [y, z]. �

Lemma 1.14. Let x ∈ X and let z ∈ X. There exists a sequence (zj)j∈N of vertices in [x, z]

such that zj → z.

Proof. Let wj ∈ X be such that wj → z; this is possible by Lemma 1.10. Let zj = m(x,wj, z)

so that zj ∈ [x, z] We claim that zj → z. Indeed, if H is a hyperplane then Hwj
= Hz for

almost every j and, since zj ∈ [wj, z] for every j, we also have Hzj
= Hwj

= Hz for almost

every j. �

Let x ∈ X and z ∈ X. Denote by Nz(x) the set of hyperplanes separating x and z and

adjacent to x. (The notation is inspired by [NR98]; when z ∈ X the hyperplanes in Nz(x)

span the first cube on the normal cube path from x to z.)

Lemma 1.15. Let X be a finite dimensional CAT(0) cube complex. Let x ∈ X and z ∈ X.

The cardinality of Nz(x) is bounded by the dimension of X.

Proof. Since a family of pairwise intersecting hyperplanes have a common point of intersec-

tion the cardinality of such a family is bounded by the dimension of X [Sag95, Theorem 4.14].

Thus, it suffices to show that every pair of hyperplanes H and K ∈ Nz(x) intersect. For

such H and K we have Hx ∩Kx 6= ∅. Further the vertex immediately across H from x lies
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in Hz ∩Kx; similarly Hx ∩Kz 6= ∅. Finally, if zj ∈ X converge to z then for almost every j

we have zj ∈ Hz ∩Kz. All four half-space intersections being nonempty, H and K intersect.

Compare [NR98, Proposition 3.3]. �

Our final result concerning the geometry of CAT(0) cube complexes involves embedding

intervals into intervals in Rd. Compare [CR05]. We view Rd as a cube complex in the obvious

way; the vertex set is the integer grid Zd and the (top dimensional) cubes are the translates

of the unit cube with vertices { 0, 1 }d. An interval in Rd is a cuboid. Precisely, the interval

[x, y] for the vertices x = (x1, . . . , xd) and y = (y1, . . . , yd) is the product

(2) {x1, . . . , y1 } × { x2, . . . , y2 } × · · · × {xd, . . . , yd },

where for simplicity we assume that xi ≤ yi for all i. We allow the possibility that one or

both of xi and yi are vertices at infinity, meaning that some xi = −∞ or yi =∞ (or both).

Theorem 1.16. Let X be a CAT(0) cube complex of dimension d and let x and y be vertices

in X. The interval [x, y] admits an isometric embedding into an interval in the cube complex

Rd (the d-dimensional Euclidean cube complex together with its combinatorial boundary).

We mean by this that there exists an isometry φ : [x, y]→ Zd such that φ([x, y]) is contained

in the interval [φ(x), φ(y)] of Rd.

For purposes of the proof we define a partial order on the set H(x, y) of hyperplanes

separating x and y as follows:

H ≤ K ⇔ Hx ⊂ Kx.

Lemma 1.17. Two hyperplanes H and K ∈ H(x, y) are incomparable for the partial order

precisely when they intersect.

Proof. The intersections Hx ∩ Kx and Hy ∩ Ky are always non-empty since Hx ∩ Kx = ∅
contradicts the fact that x defines an ultrafilter; further Hx ∩ Ky = ∅ ⇔ Hx ⊂ Kx and

Hy ∩ Kx = ∅ ⇔ Kx ⊂ Hx. Consequently, H and K are incomparable precisely when the

four possible intersections of half-spaces determined by H and K are non-empty, in other

words, when they intersect. �

Lemma 1.18. The partially ordered set H(x, y) is a disjoint union of d (possibly empty)

chains:

H(x, y) = P1 ∪ · · · ∪Pd (disjoint).
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Proof. According to the previous lemma an anti-chain in H(x, y) is a collection of pairwise

intersecting hyperplanes. A collection of pairwise intersecting hyperplanes has a common

intersection [Sag95, Theorem 4.14]. As a consequence, the cardinality of an anti-chain in

H(x, y) is bounded by the dimension of X. With this remark, the result is an immediate

consequence of Dilworth’s lemma [Dil50, Theorem 1.1]. �

Proof of Theorem 1.16. We shall require, and prove, the result only in the case x is a vertex

of X. We use the decomposition of H(x, y) given in the previous lemma to define a function

z 7→ z of the interval [x, y] ⊂ X into Zd (the d-dimensional Euclidean cube complex together

with its combinatorial boundary):

z = (z1, . . . zd), zi = |{H ∈ Pi : z ∈ Hy }| .

Note that x = 0, whereas the coordinates of y are yi = |Pi|; we allow the possibility that

some yi =∞. For every z ∈ [x, y] the coordinates of z are finite and further z ∈ [x, y]. The

function is an isometric embedding. Indeed, we calculate for v, w ∈ [x, y],

d(v, w) =
d∑
i=1

|{H ∈ Pi : H ∈ H(v, w) }| = |H(v, w)| = d(v, w),

since H(v, w) ⊂ H(x, y). �

1.3. Combinations. The weights that we give to vertices in a CAT(0) cube complex will

be defined in terms of the function
(
n
r

)
. A priori this function is defined on pairs of integers

with 0 ≤ r ≤ n. It is uniquely determined by the following properties:

(a)
(
n
0

)
=
(
n
n

)
= 1 for n ≥ 0.

(b)
(
n
r

)
=
(
n−1
r−1

)
+
(
n−1
r

)
for 1 ≤ r ≤ n.

In fact the function
(
n
r

)
can be defined for all pairs of integers. It is the unique function on

Z× Z with the following properties

(a)
(
n
0

)
= 1 for n ≥ 0, and

(
n
n

)
= 1 for all n ∈ Z.

(b)
(
n
r

)
=
(
n−1
r−1

)
+
(
n−1
r

)
for all n, r ∈ Z.

It follows that
(
n
r

)
vanishes when r > n or r < 0 ≤ n. Moreover it satisfies the identity(

n
r

)
= (−1)n+r

(−1−r
−1−n

)
, which allows one to compute

(
n
r

)
for r < 0.

We will make use of
(
n
r

)
for r ≥ −1 and n ∈ Z, where the function takes exclusively

non-negative values. In particular note that
(
n
−1

)
= (−1)n−1

(
0

−1−n

)
which is 1 if n = −1 and

vanishes otherwise.
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2. The Euclidean case

The standard proof that Zd has Property A proceeds as follows. The weight function fn,x
is the characteristic function of the ball of radius n and center x. The variation property,

condition (b) of Proposition 1.5, follows from the facts that balls are Følner sets for Zd and

that the weight functions fn,x are translates of the single function fn,0.

In this section we shall offer a different proof of Property A for Zd. Our proof parallels the

standard proof for Zd, but with several differences, each of which is important for generalising

the argument to arbitrary finite dimensional CAT(0) cube complexes (which do not in general

admit an action by an amenable group). First, our weight functions fn,x will be supported

on a certain subset of the n-ball with center x, rather than the whole ball. Second, they will

not be characteristic functions. Finally, for fixed n and varying x the fn,x will be defined

separately, rather than being translates of a single function.

For the remainder of the section fix an ambient dimension N ≥ d− 1. In proving that Rd

has Property A we will take N ≥ d; it will nonetheless be useful to note that the definitions

and some of the results remain valid in the case N = d− 1 when the codimension is said to

be −1.

2.1. Construction of weight functions. Our definition of weight functions for Zd, and

indeed for general CAT(0) cube complexes, is motivated by the following example.

Example. Let X be a (simplicial) tree. To show that X has Property A one can use weight

functions defined as follows. Fix a basepoint O ∈ X. For each vertex x ∈ X place weights

on the interval [O, x] according to

fn,x(y) =


1 if y 6= O and d(x, y) ≤ n

n− d(x, y) + 1 if y = O and d(x, y) ≤ n

0 if d(x, y) > n.

Heuristically we imagine that a charge of n + 1 units has been placed at the vertex x and

has then flowed towards the origin, where, ultimately it ‘piles up’.

In higher dimensions we take the same heuristic point of view, that we will ‘flow’ a charge

from a vertex x towards the origin O, distributing it across the interval [O, x]. As with the

tree case, excess charge will collect at the origin, but, unlike the tree case, there will be

additional points at which the charge accumulates. This occurs wherever the charge reaches

the boundary on its journey towards the origin, losing a degree of freedom in the routes it
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can travel as it continues to flow. This loss of freedom is quantified as a ‘deficiency’, defined

below. Fix a basepoint O = (0, 0, . . . , 0) of Rd.

Definition 2.1. The deficiency δ(y) of a vertex y = (y1, . . . , yd) ∈ Zd is N minus the number

of non-zero coordinates of y.

Definition 2.2. For a vertex x ∈ Zd define the weight function fn,x : Zd → N ∪ {0} by

fn,x(y) =


(
n−d(x,y)+δ(y)

δ(y)

)
, y ∈ [O, x]

0, otherwise.

We make several remarks on the definition. First, since N ≥ d− 1 we have δ(y) ≥ −1 for

all y, so that fn,x is non-negative integer valued. Second, fn,x is supported in the interval

[O, x] so that it lies in the space of finitely supported functions on the vertex set. Finally,

although it is not reflected in the notation, the weight functions depend on the fixed ambient

dimension N .

The definitions are motivated by the following geometric intuition. Imagine a vertex x in

the ambient RN , all of whose coordinates exceed n. The intersection of the interval from x to

the origin with the ball of radius n is an N -dimensional tetrahedron containing
(
n+N
N

)
points

of ZN . Projecting RN onto a subspace Rd (supposing d ≤ N) the image is a d-dimensional

tetrahedron, and the fibre over a vertex y will be an (N − d)-dimensional tetrahedron, the

sides of which have length n − d(x, y). Hence each fibre contains
(
n−d(x,y)+N−d

N−d

)
points of

ZN . We thus take a weighting of
(
n−d(x,y)+N−d

N−d

)
on each point of the image tetrahedron

in Zd. Now suppose that the coordinates of x do not all exceed n. Then the tetrahedron

will cross outside the interval from x to the origin, and we must further project points of

the tetrahedron onto the faces of the interval. This results in higher deficiencies than the

standard N − d.

2.2. Analysis of weight functions. We conclude our proof of Property A for Zd. The

first step it to show that the norm of the weight function fn,x depends only on n and N , and

in particular does not depend on x or d. Indeed, as the intuition above indicates the norm

is exactly the number of points of ZN contained in a tetrahedron of side length n.

Proposition 2.3. For every N ≥ d− 1 and x ∈ Zd, the `1-norm of fn,x is
(
n+N
N

)
.
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Proof. In the proof we write fdn,x in place of fn,x. We shall show that for every 0 ≤ d ≤ N+1

and for every n ∈ N and x ∈ Zd ∑
y∈Zd

fdn,x(y) =

(
n+N

N

)
.

Recall that for d in the range considered fdn,x is non-negative and integer valued.

The proof is by induction on d. In the case d = 0 we also have x = O. The sum has the

single term y = O and, since the deficiency is N , we have f 0
n,O(O) =

(
n+N
N

)
.

Suppose d > 0 and let x = (x1, . . . , xd) ∈ Zd. Denote the projection of z = (z1, . . . , zd) ∈
Zd to Zd−1 by ẑ = (z2, . . . , zd). The decomposition of the interval [O, x] as a product

[0, x1]× [Ô, x̂] gives a natural fibring of [O, x] over [Ô, x̂]. The interval [0, x1] in Z is ordered

from 0 to x1, which is the usual order in Z when x1 ≥ 0 and is the reverse order when x1 < 0.

We enumerate the points in the fibre over ŷ in [Ô, x̂] in the order y0, y1, . . . , y|x1| determined

by the ordering of the interval [0, x1]. This is illustrated in Figure 1.

We shall show that for every ŷ ∈ [Ô, x̂]

(3)

|x1|∑
j=0

fdn,x(y
j) = fd−1

n,bx (ŷ) =
def

(
n− d(x̂, ŷ) + δ(ŷ)

δ(ŷ)

)
.

Once we have established this equality, we can compute the `1-norm of fdn,x as follows:

∑
z∈Zd

fdn,x(z) =
∑

z∈[O,x]

fdn,x(z) =
∑

by∈[ bO,bx]

|x1|∑
j=0

fdn,x(y
j)

=
∑

by∈[ bO,bx]

fd−1
n,bx (ŷ)

=
∑

by∈Zd−1

fd−1
n,bx (ŷ) =

(
n+N

N

)
,

where the equality on the second line follows from equation (3) and the final equality follows

from the induction hypothesis.

To establish (3) let ŷ ∈ [Ô, x̂]; we shall prove by induction on i that, for 0 ≤ i ≤ |x1|,

(4)
i∑

j=0

fdn,x(y
j) =

(
n− d(x, yi) + δ(ŷ)

δ(ŷ)

)
.

In coordinates, ŷ = (y2, . . . , yd) so that y0 = (0, y2, . . . , yd) and yj = (±j, y2, . . . , yd) for

j ≥ 1, where we choose ± according to whether x1 is greater or less than zero. It follows
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that ŷ and y0 have the same number of non-zero coordinates, and hence the same deficiency:

δ(ŷ) = δ(y0). Similarly for j ≥ 1 we find that δ(yj) = δ(ŷ) − 1. In particular, we see that

fdn,x(y
0) =

(
n−d(x,y0)+δ(by)

δ(by)

)
yielding equation (4) in the case i = 0.

Assume that (4) holds for i. Split the sum for i + 1 into the sum for i and the term for

i+ 1, apply the induction hypothesis and the definition of fdn,x to obtain

i+1∑
j=0

fdn,x(y
j) =

(
n− d(x, yi) + δ(ŷ)

δ(ŷ)

)
+ fdn,x(y

i+1)

=

(
n− d(x, yi) + δ(ŷ)

δ(ŷ)

)
+

(
n− d(x, yi+1) + δ(yi+1)

δ(yi+1)

)
=

(
n− d(x, yi+1) + δ(ŷ)− 1

δ(ŷ)

)
+

(
n− d(x, yi+1) + δ(ŷ)− 1

δ(ŷ)− 1

)
=

(
n− d(x, yi+1) + δ(ŷ)

δ(ŷ)

)
,

where we have used δ(yi+1) = δ(ŷ) − 1 (i ≥ 0) and d(x, yi) = d(x, yi+1) + 1 in the third

equality. The final equality is the binomial coefficient formula from Section 1.3.

The formula (3) follows from (4) taking i = |x1| and noting that d(x, y|x1|) = d(x̂, ŷ). �

Figure 1. Projecting to Zd−1

The second step in our proof of Property A for Zd is to estimate the norm of the difference

fn,x − fn,x′ of weight functions when x and x′ are adjacent vertices. We shall see that the

norm of this difference depends only on n and N , and in particular does not depend on the

points x and x′ or on d.
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Proposition 2.4. For every N ≥ d and adjacent vertices x and x′ ∈ Zd, the `1-norm of

fn,x − fn,x′ is 2
(
n+N−1
N−1

)
.

Proof. In the proof we shall encounter weight functions for various values of ambient dimen-

sion N ; we incorporate the ambient dimension into the notation where necessary to avoid

confusion writing, for example, fNn,x.

Let x and x′ ∈ Zd be adjacent vertices and suppose, without loss of generality that x′ is

closer to the origin than x. It follows that the interval [O, x′] is contained in [O, x]. Further,

for every y ∈ [O, x′] we have x′ ∈ [y, x] so that d(x, y) = d(x′, y) + 1. We calculate the

difference, for y ∈ [0, x′],

fNn,x′(y)− fNn,x(y) =

(
n− d(x′, y) + δ(y)

δ(y)

)
−
(
n− (d(x′, y) + 1) + δ(y)

δ(y)

)
=

(
n− d(x′, y) + δ(y)− 1

δ(y)− 1

)
= fN−1

n,x′ (y),

where the last equality results from the observation that replacing N by N −1 has the effect

of reducing all deficiencies by one. Note also that N−1 ≥ d−1 so that fN−1
n,x′ is non-negative

valued. We conclude from Proposition 2.3 that

(5)
∑

y∈[O,x′]

∣∣fNn,x′(y)− fNn,x(y)
∣∣ =

∑
y∈[O,x′]

fN−1
n,x′ (y) =

∥∥fN−1
n,x′

∥∥ =

(
n+N − 1

N − 1

)
.

Recall that fNn,x′ is supported in [O, x′] ⊂ [O, x], whereas fNn,x and the difference fNn,x′−fNn,x
are supported in [O, x]. Applying again Proposition 2.3 we obtain∑

y∈[O,x]

fNn,x′(y) =
∑

y∈[O,x]

fNn,x(y),

which, by rearranging, leads to∑
y∈[O,x′]

fNn,x′(y)− fNn,x(y) =
∑

y∈[O,x]\[O,x′]

fNn,x(y)− fNn,x′(y),

where all terms in both sums are positive. Thus∑
y∈[O,x]

∣∣fNn,x′(y)− fNn,x(y)
∣∣ = 2

∑
y∈[O,x′]

fNn,x′(y)− fNn,x(y) = 2

(
n+N − 1

N − 1

)
. �

Theorem 2.5. The Euclidean space Rd has Property A for every d.

Proof. As Rd and Zd are coarsely equivalent, it suffices to show that Zd has Property A.

To accomplish this we shall show that the sequence of families fn,x defined above, together
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with the sequence of constants Sn = n satisfy the conditions given in Proposition 1.5. The

support condition (a) is immediate: fn,x is supported in Bn(x) since
(
n−d(x,y)+δ(y)

δ(y)

)
vanishes if

n− d(x, y) + δ(y) < δ(y). The variation condition (b) follows directly from Propositions 2.3

and 2.4: if d(x, x′) ≤ 1 then

‖fn,x − fn,x′‖
‖fn,x‖

≤
2
(
n+N−1
N−1

)(
n+N
N

) =
2N

n+N
→ 0

as n→∞, the convergence being uniform on { (x, x′) : d(x, x′) ≤ 1 }. �

3. Property A for CAT(0) cube complexes

In this section we shall generalise the techniques of the previous section to prove that a

finite dimensional CAT(0) cube complex has Property A. The construction of the weight

functions fn,x generalises in a fairly straightforward manner. The main obstacle to the

analysis of the weight functions is the computation of their norm, as in Proposition 2.3.

To accomplish this step we shall develop a fibring technique for intervals in a CAT(0) cube

complex. Let X be a CAT(0) cube complex of dimension d <∞. As in the previous section,

fix an ambient dimension N ≥ d− 1.

3.1. Construction of the weight functions. The definition of the weight functions is

exactly as in the Euclidean case. Fix a basepoint O ∈ X.

Definition 3.1. The deficiency δ(y) of a vertex y ∈ X is the ambient dimension minus the

number of hyperplanes both adjacent to y and separating it from O:

δ(y) = N − |NO(y)| .

In the Euclidean case, with basepoint O = 0, the cardinality of NO(y) is the number of

nonzero coordinates of y. Thus, the definition generalises the one in the previous section.

Definition 3.2. For a vertex x ∈ X define the weight function fn,x : X → N ∪ {0} by

fn,x(y) =


(
n−d(x,y)+δ(y)

δ(y)

)
, y ∈ [O, x]

0, otherwise.

As in the Euclidean case, fn,x is a non-negative integer valued function because N ≥ d − 1

implies that δ(y) ≥ −1 for all y.
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3.2. Fibring intervals. Let x ∈ X. According to Theorem 1.16 we may embed the interval

[O, x] into an interval in Zd. We denote the image of a vertex y by y and assume that

the embedding maps the basepoint O ∈ X to the basepoint O = (0, . . . , 0) ∈ Zd; by our

convention the coordinates of x are non-negative. Our objective is to fibre the interval

I = [O, x] (in Zd) over the image J of the interval [O, x].

Figure 2. An interval embedded in the plane

Definition 3.3. Let y ∈ [O, x] with image y. The i-coordinate is y-bound if the vertex in Zd

with coordinates (y1, . . . , yi − 1, . . . , yd) is in the image of the embedding. The i-coordinate

is y-free if it is not y-bound.

In Figure 2 the first coordinate of y is y-bound, whereas the second coordinate is y free.

Definition 3.4. Let y ∈ [O, x]. The fibre of I over y is the set of vertices a = (a1, . . . , ad) ∈
Zd with coordinates satisfying

(a) if i is y-bound then ai = yi,

(b) if i is y-free then 0 ≤ ai ≤ yi.

The fibre of I over y is denoted by Fy.

Remark. For every y ∈ [O, x] the fibre Fy is an interval in Rd; in fact if Oy is defined in

coordinates by

Oy,i =

yi, i is y-bound

0, i is y-free

then Fy = [Oy, y]. In particular, for every y ∈ [O, x] we have y ∈ Fy.
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As the terminology suggests we shall show, in a sequence of lemmas, that each fibre

contains a unique vertex of J , that the fibres of distinct vertices are disjoint, and indeed that

they partition I.

Lemma 3.5. For every y 6= z ∈ [O, x] the fibres Fy and Fz are disjoint.

Proof. Let y 6= z ∈ [O, x]. Since y 6= z it follows that either y /∈ [O, z] or z /∈ [O, y];

exchanging y and z if necessary we may assume that y /∈ [O, z]. Let m be the median of

O, y and z; since m is the unique vertex in [O, y] ∩ [O, z] ∩ [y, z] it follows that m 6= y and

m ∈ [O, x]. Let H ∈ H(y,m) be adjacent to y. See Figure 3.

y

Figure 3. Medians

It follows from the definition of m that H ∈ H(y, z) ∩ H(y,O) so that also H /∈ H(z,O).

Let i be the coordinate to which H contributes, and suppose that H is the pth hyperplane in

the chain. It follows that zi ≤ p−1, so that the same inequality holds for every vertex in Fz.

On the other hand, it follows from the definitions that yi = p and that i is y-bound so that

every vertex in Fy has i-coordinate equal to p. We conclude that Fy and Fz are disjoint. �

Lemma 3.6. For every a ∈ I there exists y ∈ [O, x] such that a ∈ Fy.

Proof. Let y ∈ [a, x] minimise the distance from a to [a, x] ∩ J . We shall show that a ∈ Fy.

The condition y ∈ [a, x] is equivalent to the inequalities yi ≥ ai, for all coordinates i.

Consequently, it remains to show that for every y-bound coordinate i we have ai ≥ yi. But,

if the i-coordinate is y-bound and ai < yi then (y1, . . . , yi − 1, . . . , yd) ∈ [a, x] ∩ J and is

nearer a than y. This contradicts the choice of y. �

From these lemmas and the preceeding discussion we obtain:

Proposition 3.7. The interval I is the disjoint union of the fibres of the vertices in [O, x],

and each fibre intersects J in exactly one point. �
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Definition 3.8. For vertices x and z in a CAT(0) cube complex we define nz(x) = |Nz(x)|.
Recall that Nz(x) is the set of hyperplanes in H(x, z) adjacent to x.

Remark. We shall employ this notation when z is the basepoint of an interval [z, y] containing

x. In this case Nz(x) ⊂ H(z, y).

We record two special cases of this notation. If a ∈ I = [O, x] then nO(a) is the number of

non-zero coordinates of a; further, if y is the unique element of [O, x] such that a ∈ Fy, an

interval with basepoint Oy, then nOy(a) is the number of non-zero y-free coordinates of a.

Lemma 3.9. For every y ∈ [O, x] the number of y-bound coordinates is nO(y); for every

a ∈ Fy we have

(6) nO(a) = nOy(a) + nO(y).

Proof. Suppose the i-coordinate is y-bound. Obtain z ∈ [O, x] such that y and z agree except

in the i-coordinate for which zi = yi−1. Since the embedding y 7→ y is an isometry, we have

d(y, z) = 1 and d(O, y) = d(O, z) + 1. Hence, the unique hyperplane H separating y and z

also separates O and y.

We have thus described a function i 7→ H from the set of y-bound coordinates to the set

of hyperplanes adjacent to y and separating y from O. It remains to show it is bijective.

For injectivity, we merely observe that the hyperplane H associated to i separates O from

x, belongs to the chain Pi and the distinct Pi are disjoint. For surjectivity, we observe that

if H is adjacent to y and separates y from O then H separates O from x and is the image of

the i for which H belongs to the chain Pi.

For the equation we need to count the number of non-zero coordinates of a. Each of

these is either y-bound or y-free. By the observation above the number of non-zero y-free

coordinates is precisely nOy(a). By definition of the fibre all y-bound coordinates of a are

equal to the corresponding coordinates of y which are themselves non-zero so the number of

these is given by nO(y). �

Remark. It is instructive to examine the case a = y of the lemma. The number nOy(y) of

non-zero y-free coordinates of y is simply the dimension of the interval Fy. As a consequence,

subtracting both sides of (6) from N , we conclude that this dimension is the difference of

the deficiencies of y and y:

dimension of Fy = δ(y)− δ(y).
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Figure 4 illustrates the fibring in the case of an interval [O, x] embedded in R3. The vertex

x maps to x = (2, 1, 2), while O = (0, 0, 0). The fibres of the points w, x, y and z are as

indicated:

Fw = {w }

Fx = { (2, 0, 2), x }

Fy = { (2, 0, 0), (2, 0, 1), (2, 1, 0), (2, 1, 1) = y }.

The vertex x has deficiency one (computed with N = 3) while both y and z have deficiency

two. However, the corresponding elements x, y and z ∈ I all have deficiency zero. As

expected, the fibre Fx has dimension one and the fibres Fy and Fz both have dimension two.

The vertex w has deficiency two, as does w, so the fibre Fw has dimension zero and is reduced

to the single point w.

y

Figure 4. Fibring an interval over the embedding

3.3. Analysis of the weight functions. We complete our analysis of the weight functions

defined for a CAT(0) cube complex following the strategy we used in the Euclidean case.

The following analog of Proposition 2.3 provides the crucial step.

Proposition 3.10. Let X be a CAT(0) cube complex of dimension at most d, and let N ≥
d− 1. For a vertex of x ∈ X, the `1-norm of the weight function fn,x is

(
n+N
N

)
. In particular

the norm does not depend on the vertex x or the complex X.

The proof rests on a rather remarkable fact: although the construction of the fibres relies

heavily on the non-canonical embedding of an interval of X into a Euclidean interval the

process of summing the weights over each fibre gives a quantity which is independent of all
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choices. Specifically, summing over the fibre Fy one gets the value of fn,x(y), a quantity that

is defined intrinsically without reference to an embedding.

Proof. In the proof we shall encounter weight functions for the complex X and Euclidean

spaces of various dimensions, as well as for various values of the ambient dimension. To avoid

confusion we incorporate these parameters into the notation writing, for example, fN,Xn,x .

Fix x and an identification of the interval [O, x] with a subset J of an interval I = [0, x]

in Rd. As described above, we shall prove that for y ∈ [O, x]

(7) fN,Xn,x (y) =
∑
a∈Fy

fN,R
d

n,x (a).

Assuming this equality for the moment, we complete the proof of the theorem. Since fN,Xn,x

is non-negative valued and supported in the interval [O, x] and since the fibres partition I it

follows that ∥∥fN,Xn,x

∥∥ =
∑

y∈[O,x]

fN,Xn,x (y) =
∑
a∈I

fN,R
d

n,x (a) =
∥∥∥fN,Rd

n,x

∥∥∥ =

(
n+N

N

)
,

the last equality being Proposition 2.3.

We turn to the proof of (7). Fix a vertex y ∈ [O, x]. If d(x, y) > n then d(a, x) > n for all

a ∈ Fy and both sides of (7) are zero. Therefore, we may assume d(x, y) ≤ n.

The deficiency of y with respect to the basepoint O is denoted δN,X(y). A vertex a ∈ Fy

has two deficiencies: one with respect to the basepoint O ∈ I, which we denote δN,I(a) and

another with respect to the basepoint Oy of the interval Fy, which we denote δN,Fy(a). As

one might expect, these are related by a shift in the ambient dimension according to

(8) δN,I(a) = δNy ,Fy(a), Ny = N − nO(y).

According to our conventions, the deficiency on the right is defined only when the dimension

of Fy does not exceed Ny + 1. Indeed, this is the case: Fy has dimension nFy(y) and applying

Lemma 3.9 we conclude

nOy(y) = nO(y)− nO(y) ≤ d− nO(y) ≤ N + 1− nO(y) = Ny + 1.

The proof of (8) is straightforward. Indeed, directly from the definitions we have

(9) δN,I(a) = N − nO(a) δN,Fy(a) = N − nOy(a) δN,X(y) = N − nO(y).

so that applying Lemma 3.9 we conclude

δN,I(a) = N − nO(a) = (N − nO(y))− nOy(a) = δNy ,Fy(a).
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On the basis of (8) we complete the proof of (7). For a ∈ Fy we have the coordinate-wise

inequalities 0 ≤ ai ≤ yi ≤ xi so that d(x, a) = d(x, y) + d(y, a). Hence

fN,R
d

n,x (a) =

(
n− d(x, a) + δN,I(a)

δN,I(a)

)
=

(
(n− d(x, y))− d(y, a) + δNy ,Fy(a)

δNy ,Fy(a)

)
= f

Ny ,Fy

n−d(x,y),y(a).

Observe that n− d(x, y) = n− d(x, y) ≥ 0. Summing over a ∈ Fy, applying Proposition 2.3

and using again the fact that d(x, y) = d(x, y) we get∑
a∈Fy

fN,R
d

n,x (a) =
∥∥∥fNy ,Fy

n−d(x,y),y

∥∥∥ =

(
n− d(x, y) +Ny

Ny

)
.

Comparing (8) and (9) we see Ny = δN,X(y). A glance at the definition of fN,Xn,x (y) reveals

that (7) is proved. �

The following results are direct analogs of Proposition 2.4 and Theorem 2.5; their proofs

are identical to the proofs of their analogs in the Euclidean case, except making use of

Proposition 3.10 in place of Proposition 2.3.

Proposition 3.11. Let X be a CAT(0) cube complex of dimension at most d, and let N ≥ d.

For every pair x and x′ adjacent vertices in X the `1-norm of the difference fn,x − fn,x′ of

weight functions is 2
(
n+N−1
N−1

)
. �

Theorem 3.12. A finite dimensional CAT(0) cube complex has Property A. �

4. Point stabilisers at infinity

An amenable group of isometries of a locally compact Hadamard space is known either to

fix a point at infinity, or to preserve a flat subspace [AB98]. Under certain circumstances

there is a converse to this result, for example when a group G acts properly on a proper

CAT(0) space the stabiliser of a flat is virtually abelian [BH99], and if the space is an

Hadamard space, e.g., a building, then the stabiliser of a point in the visual boundary is

necessarily amenable [Cap07]. We shall adapt our construction from the previous section to

prove an analogous result for the combinatorial boundary of a CAT(0) cube complex.

Of the numerous characterizations of amenability for countable groups we select the Reiter

condition, which is most convenient for our purposes.
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Definition 4.1. A countable discrete group G is amenable if there exists a sequence of

finitely supported probability measures ξn ∈ `1(G) such that for every g ∈ G

lim
n→∞

‖ξn − g · ξn‖ = 0.

An action of a discrete group G on a CAT(0) cube complex X is understood to be cellular.

In particular, G acts on the set of vertices of X and on the sets of hyperplanes and half spaces,

and preserves all relevant combinatorics of the complex. In particular, the action on vertices

is isometric for the edge-path metric. Further, the action extends to the combinatorial

boundary ∂X and to the completion X. Not having gone into detail concerning the topology

on the combinatorial boundary, we remark only that if zj → z then g · zj → g · z.

Theorem 4.2. Let G be a countable discrete group acting properly on a finite dimensional

CAT(0) cube complex X and let z be a vertex at infinity of X. The stabiliser of z in G is

amenable, and hence virtually abelian.

Our proof will use the following criterion for amenability.

Proposition 4.3. Let G be a countable group acting properly on a discrete metric space X.

Assume X admits a sequence of families of `1 functions fn,x : X → N ∪ {0}, indexed by

x ∈ X, such that:

(a) For every pair of points x and x′ ∈ X we have

‖fn,x − fn,x′‖
‖fn,x‖

→ 0.

(b) For every g ∈ G, x ∈ X, and n ∈ N, fn,gx = g · fn,x.

Then G is amenable.

Remark. The properness assumption is equivalent to the action having finite point stabilizers.

Proof. We shall construct a sequence of probability measures as required by Definition 4.1.

Fix a base point x0 ∈ X. Let T be a transversal for the action of G on X; thus T contains

precisely one point from each G-orbit. For each n ∈ N and g ∈ G define

φn(g) =
∑
x∈T

fn,x0(gx)

|Gx|
,

where Gx is the stabilizer of x. Observe that fn,x is finitely supported, being an element of

`1(X) with values in N∪ { 0 }. Consequently the sum is finite, as indeed are all sums below.



PROPERTY A AND CAT(0) CUBE COMPLEXES 25

Further, φn is finitely supported. We compute ‖φn‖ as follows:

‖φn‖ =
∑
g∈G

φn(g) =
∑

g∈G,x∈T

fn,x0(gx)

|Gx|

=
∑
x∈T

∑
y∈G·x

fn,x0(y)
∑

g∈G:gx=y

1

|Gx|

=
∑
x∈T

∑
y∈G·x

fn,x0(y) = ‖fn,x0‖ .

A similar calculation yields the following estimate:

‖φn − g · φn‖ ≤ ‖fn,x0 − fn,gx0‖ .

We obtain the required probability measure by normalizing: ξn = φn/ ‖φn‖. �

Proof of Theorem 4.2. Let z be a vertex at infinity. Replacing G by the stabiliser of z, we

assume that G stabilises z. Define weight functions as in Definition 3.2, with z playing the

role of the base point O:

(10) fn,x(y) =


(
n−d(x,y)+δ(y)

δ(y)

)
, y ∈ [x, z]

0, y /∈ [x, z],

where the deficiency is defined relative to an ambient dimension N by δ(y) = N − |Nz(y)|.
Choosing N to be at least the dimension of the cube complex we ensure that all deficiencies

are non-negative so that fn,x takes its values in the non-negative integers. given in the

previous proposition.

We first note that the support of fn,x lies in the intersection of the ball of radius n around

x with the interval [x, z]. While the ball itself may contain infinitely many vertices, Theorem

1.16 tells us that the interval embeds in Rn for some (finite) n, so the intersection is in fact

finite, and fn,x is finitely supported, and therefore `1.

The equivariance condition is an immediate consequence of the manner in which G acts on

X and the fact that G fixes z. We verify the remaining condition through a limiting process.

Let zj be a sequence of vertices of [x, z] converging to z; this is possible by Lemma 1.14.

Define the weight functions as in Definition 3.2 with zj playing the role of the base point O:

(11) f zj
n,x(y) =


(
n−d(x,y)+δj(y)

δj(y)

)
, y ∈ [x, z]

0, y /∈ [x, z],
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where the deficiency is defined relative to an ambient dimension N by δj(y) = N −
∣∣Nzj

(y)
∣∣.

We now show that f
zj
n,x = fn,x, for almost every j. The support of fn,x is contained in

[x, z] ∩ B(x, n); similarly the support of f
zj
n,x is contained in [x, zj] ∩ B(x, n). Applying

Lemma 1.8 (with w = zj) we see that the support of f
zj
n,x is also contained in [x, z]∩B(x, n).

According to Theorem 1.16 this is a finite set.

It remains to show that for y ∈ [x, z]∩B(x, n) we have f
zj
n,x(y) = fn,x(y) for almost every j.

The only terms in (10) and (11) dependent on j are the deficiencies δ(y) and δj(y). Applying

Lemma 1.12 we see that y ∈ [x, zj] for almost every j and applying Lemma 1.9 (with w = zj)

we conclude that

(12) Nzj
(y) ⊂ Nz(y),

for almost every j. Applying Lemma 1.11 we have

Nz(y) =
⋃
k

⋂
j≥k

Nzj
(y).

Since Nz(y) is a finite set, and the union on the right is increasing, we conclude that

(13) Nz(y) ⊂ Nzj
(y),

for almost every j. Combining (12) and (13) we conclude that δ(y) = δj(y) for almost every

j. Comparing the definitions (10) and (11) we are done.

The almost invariance of the fn,x now follows. Let x and x′ ∈ X. Let m = m(x, x′, z) so

that m ∈ [x, z] ∩ [x′, z], hence also [m, z] ⊂ [x, z] ∩ [x′, z]. Let zj → z and zj ∈ [m, z]. We

have shown above that if zj → z and zj ∈ [x, z] then f
zj
n,x = fn,x for almost every j. Applying

this to both x and x′ we conclude that if x and x′ are adjacent then

‖fn,x − fn,x′‖ =
∥∥f zj

n,x − f
zj

n,x′

∥∥ = 2

(
n+N − 1

N − 1

)
and also

‖fn,x‖ =
∥∥f zj

n,x

∥∥ =

(
n+N

N

)
,

where in each case the first equality holds for almost every j and the second for every j by

Propositions 3.11 and 3.10, respectively. The argument now follows exactly the same course

as that of Theorem 2.5:

‖fn,x − fn,x′‖
‖fn,x‖

≤ 2d(x, x′)

(
n+N−1
N−1

)(
n+N
N

) =
2d(x, x′)N

n+N
,

which tends to zero uniformly on {(x, x′) : d(x, x′) ≤ R} as n→∞. �
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