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Abstract

Gromov introduced a notion of hyperbolicity for discrete groups (and gen-
eral metric spaces) as an abstraction of the properties of universal covers of
closed, negatively curved manifolds and their fundamental groups. The funda-
mental group of a manifold with pinched negative curvature and a cusp is not
hyperbolic, but it is relatively hyperbolic with respect to the cusp subgroup,
which has polynomial growth. We introduce a thinning technique which allows
to reduce questions about these classical relatively hyperbolic groups to the case
of bounded geometry hyperbolic graphs. As applications, we show that such
groups admit a proper affine action on an LP-space and are weakly amenable in
the sense of Cowling-Haagerup. These results generalize earlier work of G. Yu
and N. Ozawa, respectively, from the setting of hyperbolic groups to classical
relatively hyperbolic groups.

1. INTRODUCTION

Many properties of hyperbolic groups seem natural to extend to relatively hyperbolic
groups. A group is hyperbolic if it acts properly and cocompactly on a hyperbolic
space. Roughly speaking, a group is hyperbolic relative to a subgroup if, modulo that
subgroup, it acts properly on a hyperbolic space. See §2 for a precise definition.

Unfortunately, many properties of hyperbolic graphs (and metric spaces) rely on a
bounded geometry assumption in their proofs. The most relevant examples for us
are the existence of proper affine actions of hyperbolic groups on ¢P-spaces [Yu05|,
and weak amenability [Oza08], and each of these properties will be discussed be-
low. Another example is finite asymptotic dimension [Roe05]. The hyperbolic spaces
usually introduced to study relative hyperbolicity do not have bounded geometry,
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and some are not even locally finite. In generalizing results such as those above to
the relatively hyperbolic setting a key step is to develop an appropriate substitute
for bounded geometry. In the case of finite asymptotic dimension, for example, see
[Osi05].

The concept of a relatively hyperbolic group was originally introduced by Gromov
as a general setup which included non-uniform lattices in rank one simple Lie groups
and, more generally, fundamental groups of cusped manifolds with pinched negative
curvature. In these cases the parabolic, or cusp subgroups are nilpotent. Taking
this as motivation, we shall call a group that is relatively hyperbolic with respect to
subgroups of polynomial growth a classical relatively hyperbolic group. We shall see
that this class is somehow easier to work with due to the following fact: a Cayley graph
of a classical relatively hyperbolic group G can be embedded into a bounded geometry
hyperbolic graph such that each coset of a parabolic subgroup lies at bounded distance
from a horosphere. See section 3, especially Proposition 3.7. This hyperbolic graph,
and its construction, would therefore seem perfectly suited to allow for generalizing
properties of hyperbolic groups to classical relatively hyperbolic groups. However, a
significant defect of this graph is that it is does not (and indeed cannot) admit an
action of G. We do, however, have an action of G on the space of all such graphs,
and our main result in this paper is to show that this space can be equipped with a
G-invariant probability measure. See Proposition 3.6.

While we believe these ideas will be useful for future applications, in the present work
we shall use them to adapt two results from the setting of hyperbolic to classical rela-
tively hyperbolic groups: the first, due to Yu [Yu05], and building on a key averaging
technique due to Mineyev [Min01], concerns proper affine actions; the second, due to
Ozawa [Oza08| concerns weak amenability. Here then are our results.

Theorem A. Let G be a finitely generated discrete group which is hyperbolic relative
to a subgroup P of polynomial growth. Then G admits a (metrically) proper action
on a mized (P -space, and also on an LP-space, for sufficiently large p.

Theorem B. A discrete group G as in the previous theorem is weakly amenable.

After reviewing basic facts about relative hyperbolicity, essentially following the treat-
ment of Groves and Manning [GMO8] we introduce thinnings in section 3. This is the
technical heart of the paper. The final two sections are devoted to the applications:
in section 4 we discuss proper affine actions on LP-spaces, and in section 5 we discuss
weak amenability. Some time after our results were announced, Chatterji and Dah-
mani proved a permanence result for proper affine actions on Banach spaces more
general than our application in section 4 [CD18].
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2. RELATIVE HYPERBOLICITY

We shall work in the setting of locally finite graphs. To establish notation, let I" be
a (simplicial) graph with vertex set V(I') and edge set F(I'); we shall denote these
simply by V and E when no confusion can arise. A graph is locally finite if each
vertex belongs to only finitely many edges; if there is a uniform bound on the number
of edges to which a vertex belongs the graph has bounded geometry. We shall equip
a graph (or rather, its vertex set) with the edge path distance in which the distance
between two vertices is the smallest number of edges on an edge path connecting
them. A geodesic is an edge path which realizes the distance between its endpoints.

Gromov introduced a notion of hyperbolicity for general metric spaces [Gro87]. There
are many equivalent definitions, and in our context a convenient choice is the definition
in terms of thin triangles: a geodesic triangle in a graph I' is §-thin if each side of the
triangle is contained in the d-neighborhood of the union of the other two sides; and
the graph I' is hyperbolic if there exists d > 0 such that every geodesic triangle in I' is
0-thin.

Let now G be a finitely generated discrete group, with fixed (finite, symmetric) gen-
erating set S. The Cayley graph of G (with respect to the generators S) is the graph
I' with vertex set G and in which vertices represented by group elements g and h span
an edge precisely when g='h belongs to S. The group G is hyperbolic if its Cayley
graph is hyperbolic; since hyperbolicity (for graphs) is a quasi-isometry invariant this
is well-defined independent of the choice of generating set.

In this paper, our interest is in relative hyperbolicity, also introduced by Gromov.
The basic setting here is that of a finitely generated group G together with a finitely
generated subgroup P of G. The subgroup P is the peripheral subgroup. (It is
possible to consider a finite collection of peripheral subgroups, but for simplicity we
shall restrict attention to the case of a single peripheral.) Very roughly speaking, G
is relatively hyperbolic with respect to P if the geometry of G between or transverse
to the cosets of P is hyperbolic.

As with hyperbolicity, the precise definition of relative hyperbolicity admits a great
many variants; the original definition of Gromov [Gro87] has been reinterpreted by
Farb, Bowditch and Osin, for example [Far98, Bow12, Osi06]. We shall work with a
characterization given by Groves and Manning [GMO08]. To formulate the definition,
we fix finite, symmetric generating sets S; of P and S of G such that S; ¢ S and
such that S \ 57 does not contain any elements of P. Denote the Cayley graph of
G with respect to S by I'. The force of the above setup is that the Cayley graph
of P with respect to S; appears as the full subgraph of I' on the subset P c V(T').
Similarly, the full subgraph on each (left) coset t of P is isomorphic to the Cayley
graph of P; (left) multiplication by any element of the coset gives an isomorphism.
Then, G is hyperbolic relative to P if the cusped space obtained from I' by attaching



combinatorial horoballs to these copies of the Cayley graph of P is hyperbolic in the
usual sense. The balance of the section is dedicated to the precise definitions.

COMBINATORIAL HOROBALLS Let I" be a (typically infinite) graph with vertex set
V and edge set E. The combinatorial horoball over ', denoted B(I") or simply B
when no confusion can arise, is the graph with:

(1) vertex set V(B) =V xN, and
(2) edge set E(B) with two kinds of edges:

(a) vertical edges: (v,n)~ (v,n+1) forallveV and neN
(b) horizontal edges: (v,n) ~ (w,n) if dr(v,w) < 2".

Vertices of the form (v,n), together with the edges as in (b), comprise level n; this
is the full subgraph of B on the vertices of the form (v,n). With this terminology,
note that the 0t"-level is a copy of the original graph I' and the remaining levels are
copies of I' with extra edges. For a drawing of a piece of the combinatorial horoball
over (the Cayley graph of) Z see figure 1 below.
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Figure 1: The combinatorial horoball over Z.

Clearly, if I is locally finite so is the combinatorial horoball B. Further, if I' is infinite
and has bounded geometry, B is again locally finite but does not have bounded
geometry; the valence of vertices increases with their level.

Metric balls in a bounded geometry graph have (at most) exponential growth. While
not true for general locally finite graphs, we shall require the following simple result
concerning the growth of metric balls in a combinatorial horoball. For the statement,
denote the (closed) r-ball with center v by N,(v); we shall employ this notation
consistently throughout and, when confusion could arise, shall indicate with a super-
script which graph is under consideration. Recall that a graph has polynomial growth
if #N,(v) < Krk, for some k € N and K > 0, independent of the center v.

2.1 Proposition. If ' as polynomial growth, then the combinatorial horoball B has



exponential growth for balls centered on level 0: there exist k € N and C' >0 such that
for every vertex (v,0) on level 0 we have #NP(v,0) < Ck".

Proof. We have that NB(v,0) ¢ Ni,(v) x{0,1,...,r}, which has cardinality at most
#NL(v)-(r+1)<C(r+1)(2)F<C(2k+ 1) O

THE CUSPED SPACE We return now to our group GG and subgroup P, with fixed
(finite, symmetric) generating sets S and S; as above. We then have the Cayley
graph I' = I'(G) and, as remarked earlier, the full subgraph of I' on the vertices in a
coset t of P is isomorphic to the Cayley graph of P. The cusped space is defined by
attaching a combinatorial horoball B(t) to I" over the coset t. Explicitly, the cusped
space is the graph X with

(1) vertex set G x N, and

(2) edge set with two kinds of edges: horizontal edges
(a) (g,0) ~ (h,0)if gth e S, and
(b) (g,n) ~ (h,n) if g~th is the product of (at most) 2" generators in Sj;
(¢) and vertical edges (g,n) ~ (g,n+1) for all n e N.

2.2 Remark. The full subgraph of X on the vertices at level 0 is the Cayley graph
I' of G. On levels n >0, if (g,n) ~ (h,n) then g and h are in the same coset of P.

Here then is our working definition of relative hyperbolicity [GMO08]. As was the case
with hyperbolicity, this is independent of the choice of generating sets.

2.3 Definition (Groves-Manning). A finitely generated group G is hyperbolic relative
to a finitely generated subgroup P if the associated cusped space X is hyperbolic.

3. THINNING THE CUSPED SPACE

While is natural to exploit the hyperbolicity of the cusped space (or other associated
hyperbolic spaces) when studying relatively hyperbolic groups, the lack of bounded ge-
ometry can cause difficulties. In this section we introduce a thinning technique which
enables us, in the classical case in which the peripherals have polynomial growth,
to treat the cusped space as though it had bounded geometry. While we hope the
thinning technique will be useful elsewhere, we shall apply it in the following sections
to the problem of existence of proper actions and to weak amenability.

The problem that we are facing is that we can discretize the space to have bounded
geometry, but cannot preserve the action of the group at the same time. The solution
will be to organize the space of thinnings into a compact space.



THINNING A HOROBALL Let I" be a locally finite graph and B = B(I") its combi-
natorial horoball. We shall be working with subgraphs of B, each of which has its
own graph distance; recall that we denote the closed r-ball in B with center v by by
NB(v), and similarly for subgraphs.

3.1 Definition. Fix a € (0,1] and d,C € N. A subset T of the vertex set of B is an
(e, d, C)-thinning of B if the following conditions hold:

(1) for every x € T we have #(NZ(z)nT) <d+1;
(2) for every y € B we have NF(y) nT # @; and
(3) for every x € T and r € N, we have T'n NB (z) c NI'(z).

By convention a thinning includes all vertices on level 0. When the constants are
clear from context, we say simply that 7" is a thinning of B. We denote the (possibly
empty) set of thinnings of B by I (B).

Formally, a thinning 7" is a subset of the vertex set of B. To interpret metric notions,
we regard it also as a full subgraph of B so that it has its own edge path distance
(which is not the subspace distance inherited from B). In this way, the closed r-ball
NT(z) in condition (3) makes sense. Moreover, all three conditions in the defintion
can be interpreted metrically.

3.2 Remark. The above conditions on a thinning imply:

(1) T has bounded geometry, with the valence of each vertex bounded by d;
(2) T is C-coarsely dense in B; and
(3) the inclusion 7' < B is a quasi-isometric embedding, and in fact

adr(z,y) <dp(z,y) <dr(v,y),  Vr,yeT.

The first issue we need to address is the existence of thinnings. The rough idea of the
proof of Proposition 3.3 is already clear in the following simple case. In figure 2 below
we show a piece of a thinning of (the Cayley graph of) Z. The blue vertices belong
to the thinning; these include every vertex on level 0, every second on level 1, every
fourth on level 2, etc. Together with the blue edges the thinning is a full subgraph
of the combinatorial horoball. In the general case, the vertices of the thinning 7" will
come from a decreasing sequence of nets in I'. For the statement recall that a graph
has strict polynomial growth if there exist constants D € N and K > 1, such that

K rP < #NF(w) < KrP,

for every r > 1, independent of the center w. We call D the degree of growth of T'.
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Figure 2: Thinning the combinatorial horoball over Z.

3.3 Proposition. Let I' be an (infinite) graph of strict polynomial growth and let B
be the combinatorial horoball over I'. There exists dy € N, depending on the growth
function of T, such that the space of (a,d,C)-thinnings of B is non-empty, for every
a <1/195, every d > dy and every C > 1.

Proof. Let I' be as in the statement. The general statement follows immediately once
we construct a (1/195, dy, 1)-thinning, for some dy depending on the growth of I'. We
shall construct our thinning from a decreasing sequence of subsets of I'. Define these
as follows: let 'y = I'; and for every n > 1, let I';, be a maximal 2"-separated subset
of I';,-1. Our thinning T" is now defined as follows:

T=||Thsx{n}.

In other words, the set I',,_5 comprises the vertex set of T" at level n. (By convention
[, = T when n is negative.) As a full subgraph of B, vertices of T" at level n are
connected by a (horizontal) edge when their distance in I" is at most 2.

Before verifying that T satisfies the three conditions in Definition 3.1 we record a
coarse density property of the I',, that we require. By maximality, every I',,_1-ball of
radius 2" contains at least one element of I',,. In other words, I',, is 2"-coarsely dense
in anl:
[1c U N(z,2m),
xel'y,

where, for this proof only, we write N'(x,2") for the ball in T" of radius 2" and center
x. A simple induction shows then that I',, is 6 - 2"-coarsely dense I'":

(1) Ic|J NU(z,6-2).

xel'y,

We can now check that 7" satisfies the conditions Definition 3.1. The second condition
(with C' = 1) is immediate from (1), which shows that every z € B at level n is joined
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by an edge in B to an element = € T' (at the same level); indeed any z € I',,_5 at
distance at most 6-2"° < 2" from z works.

The first condition, regarding the valence, follows from a doubling property of I'. Fix
a vertex z € T' at level n. If another vertex z € T" at level n is connected by an edge
to 2z then the distance in I' between x and z is at most 2" and we have

NF(I,Qn_G) - Nf(z,2n+2n—6) c NF(Z,2n+1).

On the other hand, if x and y € T" are distinct vertices at level n then, by separatedness,
their distance in I" is at least 27~ so that

NY (2,27 n NV (y,2" %) = 2.

Put together we see that the ‘horizontal valence’ of z is not more than the maximum
number of disjoint I-balls of radius 276 a I-ball of radius 27*! can contain. But this
is easy to bound using strict polynomial growth. Indeed, suppose D is the degree of
growth of I'. Counting points, we see that a I'-ball of radius 27! cannot contain more
than 128° K2 disjoint balls of radius 276, Taking into account the vertical edges, the
valence of T' is at most dy = 128°P K2 + 2.

Finally, we turn to the third condition. We must show that for vertices x, y € T we
have that

dr(z,y) <195-dp(z,y).

For this, let k = dg(x,y) and consider a geodesic (of length k) in B connecting x and
y. By the above, every vertex of this geodesic is at distance at most 1 in B from a
vertex of T. Replacing them with these new vertices we obtain a sequence of vertices
inT,

T =1g,...,t6 =1,
with the property that the distance in B between any two consecutive vertices is at
most 3. It therefore suffices to show the following: if two vertices ¢t and ¢’ € T" are such
that dg(t,t") <3 then dp(t,t') < 195. Permuting ¢ and ¢’ if necessary, we may assume
that ¢ is a vertex on level n, while ¢’ is on level n’ and n’ =3 <n <n’. Since I'; is a
decreasing sequence, every vertical edge in B from a vertex of T" towards a lower level
is contained in 7. It follows that ¢’ is at distance at most 3 in T" from a vertex s €T
at level n, and we are therefore reduced to showing the following: if vertices s and
t € T are both on level n and dg(s,t) <6 then dr(s,t) < 192. Writing s = (¢,n) and
t = (h,n) for g and h €T, it follows easily that dr(g,h) < 6-27+3 = 192-27-2. Consider
a sequence of vertices in I,

9=90s---:9¢ = h,
such that dr(g;,¢i+1) <2772, and ¢ < 192. By construction, gy and g, belong to I',,_s.
Using (1) again, choose for each of the remaining g; a t; € I',,_5 at a distance at most
6-2775. From the triangle inequality we see

dr(titis) <6272 +2772 4 6.2775 = 20. 2775 < 2™,
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so that every two consecutive ¢; are joined by an edge in 7. The resulting path
to, ..., t, shows that dr(s,t) <192 and we are done. O

Henceforth, by an appropriate choice of constants we shall mean a choice of o > 0
and d, C' € N for which the space I (B) of («,d,C)-thinnings is non-empty. We shall
topologize the (non-empty) set I (B) as a subspace of the collection of all subsets of
(the vertex set of) B. A convenient description of this topology is that a basic open
neighborhood of a subset Z c B is

(%) Up(Z)={YcB:YnF=ZnF},
where F' is a finite subset of B.

3.4 Proposition. For each appropriate choice of constants the (non-empty) set
T (B) of (a,d,C)-thinnings of B is compact.

Proof. The space of all subsets of B is compact in the above topology; indeed, upon
identification of the power set of B with the product II{ 0,1} (indexed over B) in the
obvious way, the topology above is the infinite product topology. So, it suffices to see
that I (B) is a closed subset of this space. We shall check that the complement of
each condition in Definition 3.1 is open.

For condition (1), let T' be a subset of B and suppose there exists an z € T" such that
#(NEB(z)nT) > d+ 1; then the same holds for every subset belonging to the open
neighborhood of T determined by the finite subset N(z) ¢ B according to (x). For
condition (2) we suppose instead that there exists a y € B such that NE(y)nT = @;
then the same is true for every subset belonging to the open neighborhood of T
determined by the finite subset N5 (y) c B. And finally for condition (3) we suppose
there exists an z,y € T and r € N such that y € NB () c NP(x), but y ¢ NI (z); then
the same is true for every element of the open neighborhood of T" determined by the
finite subset NB(z) c B. O

Suppose now that P is a group of polynomial growth, that I' is the Cayley graph of
P with respect to a fixed (finite, symmetric) generating set, and that B = B(I) is the
combinatorial horoball. It follows from Gromov’s polynomial growth theorem [Gro81]
and earlier work of Bass [Bas72| that P automatically has strict polynomial growth
(there is no elementary proof of this available). Thus we have access to Proposition 3.3
and the space J(B) of («a,d,C)-thinnings is non-empty, for appropriate choice of
constants. In this setting P acts on B by graph automorphisms, with p € P sending
(¢,n) to (pg,n). We obtain a continuous action on the space of subsets of B which
preserves J (B). Since P has polynomial growth it is amenable, and J (B) admits a
P-invariant measure.



3.5 Proposition. For each appropriate choice of constants, the (non-empty) compact
space T (B) of (a,d, C)-thinnings of B admits a P-invariant probability measure. We
shall denote one such measure by v. [

THINNING THE CUSPED SPACE We return to our original setting: G is a finitely
generated group, relatively hyperbolic with respect to a finitely generated subgroup
P of polynomial growth; S; c S are (finite, symmetric) generating sets of P and G,
respectively, as above. Recall that the associated cusped space X was constructed by
attaching to the Cayley graph of G a combinatorial horoball B(t) over each coset t of
P. Building on the construction of I (B) in the previous section, we shall construct
a space I (X) of thinnings of the cusped space X, and equip it with a G-action and
G-invariant probability measure. Essentially, a thinning of X is obtained by replacing
the horoballs attached over the cosets of P by thinned horoballs. Formally then, we

define
I(X)= gpoj(B(t)).

We equip J(X) with the infinite product topology, in which it is compact (and
non-empty for each appropriate choice of constants).

As for the probability measure, we should like to use the infinite product of the
measure v of the previous section with itself. Denote by B the combinatorial horoball
over the Cayley graph of P, and recall that v is a P-invariant probability measure
on J(B). For each coset t € G/P we identify B =~ B(t) and I (B) =2 I (B(t)) using
multiplication by an element ¢ € t and we consider the push-forward measure v; = g-v.
This is independent of the choice of g € t: if g1 € t is another choice we have

gv=9(glg) v=g-v,
where we use that v is P-invariant and that ¢g-'g; € P. Now the infinite product ®v;

is a probability measure on I (X'), which we denote p.

Here then is the first result we require on the space of thinnings of the cusped space.

3.6 Proposition. The Borel measure pn on I (X) is G-invariant.

To understand the statement, G' acts on I (X) through its action on X: an element
T €T (X) is a family of thinnings T; € I (B(t)) of the cosets t; in particular the T} are
a family of (disjoint) subsets of X; multiplication by an element g € G yields another
such family.

For the proof, we shall describe the action more concretely. Selecting coset rep-
resentatives provides us with ‘coordinates’ on I (X). Precisely, if g; € t are coset
representatives we have

(1) [17B)-TX)=[[ TBW®), (T~ (9T

teG/P teG/P
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where now the thinning 7} € I (B) is translated by ¢; to a thinning ¢,;7; € T (B(t)).
Written in these coordinates the action of an element g € GG is given by the associ-
ated permutation of the cosets, followed with rotation by elements of P within the
individual cosets. Precisely, if s and ¢ are cosets and ¢-s =t then the composition

P—-s—>t—-P

is simply multiplication by p(g, s) = g;1ggs € P; here the first and third maps identify
the cosets s and ¢t with P by multiplication with the appropriate coset representative
(or its inverse), and the middle map is multiplication by g. In terms of the coordinates
(1) then, g acts on the infinite product on the left according to

(—H) (g'T)t:p(gas)Tsa S:g_l'ty

in other words as multiplication by p(g,s) € P from the factor corresponding to s to
that corresponding to t.

Proof. Given the discussion above this is essentially obvious: pu is precisely the push
forward of the infinite product measure ®v under the coordinate map (f) and we have
described the action in terms of these coordinates. The measure ®v is determined by
its values on the cylinder sets:

ov(U) = H v(Uy), U= H U, ;

teG/P teG/P

here each U, is an open set in I (B) and for all but finitely many ¢ we have U, = T (B),
so that all but finitely many terms in the product on the left are = 1. It suffices to see
that the measure of such a U is preserved by the action of an element g of G. But,
according to (f1) ¢g- U is obtained by permuting the index set and following within
each coordinate by an element of P, so that

ov(g-U) = ®l/( [T r(g.97" 't)Ugl.t) =[] v (p(g,g‘1 't)qu.t) =ov(U),

teG/P teG/P

where we use that v is P-invariant. OJ

A thinning T € F(X) is a family T; € F(B(t)) of thinnings of the combinatorial
horoballs over the the individual cosets ¢ € G/P, and in particular a disjoint family
of subsets of (the vertex set of) X. The union of these is a subset of X. As before,
we consider the full subgraph on this subset and equip it with its graph distance.
Abusing notation, we denote the resulting graph and metric space also by T. We
require one further result, which relates the geometry of a thinning of the cusped
space X to the geometry of X itself.
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3.7 Proposition. Fiz an appropriate choice of constants « € (0,1] and d,C € N.
For every T € T (X) the inclusion T c X is a quasi-isometry, with quasi-isometry
constants independent of T and depending only on the constants. Consequently, these
T are 6-hyperbolic for a 6 >0 independent of T

Proof. Let T € I (X) be a thinned cusped space. First, T is C-coarsely dense in X
since each thinned horoball T} is C-coarsely dense in the corresponding B(t). Next,
since T' is a subgraph of X, we have for every x,y e T

dx(l’, y) < dT(w7 y)7
and it remains only to show that adr(z,y) < dx(z,y).

To prove this let x, y € T, and let w be a geodesic path from x to y in X. As a path
in X, the geodesic w will pass through a number of horoballs. To transit between
horoballs w must to return to level 0 of X because at higher levels the horoballs are
disjoint from one another. Hence we may realize w as the concatenation of subpaths
w; such that each (except possibly the first and last) begins and ends in level 0 of
X, and may be entirely contained in level 0. In particular, each w; is either entirely
within a single horoball or is a path in the Cayley graph of G.

Suppose that w; lies entirely within the horoball B(t) sitting over the coset ¢. Its
endpoints w;, belong to 7; and we obtain a geodesic path @; in T; with the same
endpoints. It follows that

|wi | = dp() (wi-, wis ) 2 adr, (Wi-, wir ) = af T,
where we recall that for each thinned horoball T; and every x,y € T; we have

Odet (‘Ta 3/) < dB(t) (SC, y)

See Remark 3.2. In the event that w; lies entirely within level 0 of X let @; = w;,
which is a geodesic path in X and also in T'. Concatenating the &; we obtain a path
@ in T from z to y. Conclude that

dx(z.y) = |w|= Y |wi] > ¥ alar| = al @] > adr(a,y),
where we recall that o < 1.

We have shown that the inclusion 7' ¢ X is a quasi-isometry, with quasi-isometry
constants depending only on o« and C. By the quasi-isometry invariance of hy-
perbolicity for geodesic spaces, the T are all §-hyperbolic for a common § [BH99,
Thm. 1T1.1.9]. O

3.8 Remark. Viewing a thinning 7" as a subset of X provides an alternate, and quite
convenient description of I (X)), its topology and G-action. The space of thinnings
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J (X) homeomorphic to a (closed) subspace of the (compact) space of subsets of
X, topologized as in (x). The natural action of G on X induces an action of G by
homeomorphisms on the set of subsets of X, which restricts to the (continuous) action
of G on J(X).

4. PROPER AFFINE ACTIONS

This section contains our first application: the existence of a proper affine action of
G on a Banach space. The strategy is to use the thinning technique introduced above
to adapt Yu’s proof, which is based on an averaging technique of Mineyev, that a
hyperbolic group admits a proper affine action on an ¢P-space for p sufficiently large
[Yu05, Min01]. Later, in an unpublished manuscript, Lafforgue gave a self-contained
treatment which incorporates both Mineyev’s averaging technique and Yu’s proof;
we shall follow this unified treatment, which recently appeared in [AL17]. The core
technical results of this approach are sumarized in the following proposition; we refer
to [AL17] for the proof and relevant notation (see especially [AL17, Thm. 4.1]).

4.1 Proposition. Let Z be a d-hyperbolic graph with bounded geometry. There exists
a function T : Z x Z - Prob(Z) with the following properties:

(1) if 7(x,a)(b) #0 and dz(z,a) > A then be [z,a]ss and dz(a,b) = A;
if T(x,a)(b) #0 then be [z,alss and dz(a,b) < A; here A =44
(2) there exits € >0 such that Yk, 3Cy so that

d(z,2") <k = |r(z,a) - 7(z',a)|; < Cre =@,

Furthermore, if g: Z — Z' is an isomorphism of d-hyperbolic graphs we have

(3) 7(z,a)(b) = 7'(gz,ga)(gb).

The constants depend only on the hyperbolicity constant 0 and the bounded geometry
of Z (so not on the particular 7). O

In what follows we shall refer to (1) as the support condition, to (2) as the decay con-
dition and to (3) as the equivariance condition. The intuition behind the proposition
is clear: 7(x,a) € (1(X) is a probability measure supported near a which indicates
the direction from a to x. See [NY12] for the very relevant and motivating case of the
fundamental group of a closed, negatively curved manifold for more.

4.2 Remark. Below, when generalizing to the relatively hyperbolic setting, we shall
require analogs of the three conditions in this proposition. The support condition
is more involved than the other two, and shall require us to make an observation
on the construction in the paper [AL17] of Alvarez and Lafforgue that lies behind
this proposition. While they took A = 44, inspection of the argument there reveals
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that we may choose any A > 49 and the proposition still holds, although the other
constants in the conclusion may depend on the choice.

Proposition 4.1 has the following routine consequence; the proof is standard, and is
included in a form to which we can conveniently refer later.

4.3 Theorem. Let Z be a d-hyperbolic graph of bounded geometry, and suppose G
acts properly on Z by graph automorphisms. Then G admits a proper affine action
on P(Z (Z)), for sufficiently large p.

Proof. For every 1 < p < co we have a linear, isometric representation of G on the
Banach space P(X, 1 (X)); viewing elements ¢ of this space as two-variable functions
the representation is given by the formula

g- QZS(CL, b) = ¢(g_1a7 g_lb)'
We shall define a formal cocycle for this representation. Let 7 be as in the previous
proposition, fix xg € Z and define ¢ : Z - (1(Z) by ¢(a) = 7(x¢,a). Observe that ¢
belongs to ¢=°(Z,¢*(Z)) and so does the formal cocycle b(g) = g- ¢ — ¢. It remains to

check that for sufficiently large p the cocycle belongs to ¢P(Z,¢*(Z)), and is proper.
It is for this that we shall use the hypotheses of the proposition.

A simple calculation using the equivariance condition gives

b(9)(a,b) = p(g7a,g7'b) — p(a)(b)
= 7(20,97"a)(g7'b) = 7(w0,a) (b)
= 7(gxo,a)(b) — 7(x0,a)(b),

so that also

() [o() P =3 [6(g) (@)} = X |7 (g0, a) = 7(xo, @) .

aeZ aeZ
This equality is the basis of our analysis of the cocycle.

Well-definedness: The well-definedness of the cocycle follows from the decay condi-
tion, combined with the bounded geometry hypothesis which we shall use in the form
that metric balls in Z grow at most exponentially. Formally, let d be a uniform bound
on the valence of the vertices of Z and let p be large enough so that e*Pd < 1, where
¢ is as in the Proposition 4.1. The expression in (k) is then bounded above by

Z Ceepd(zoa) < Z e~ Pk < C Z(e“”’d)k < 00,
k=0 k=0

aeZ

where C' depends on d(gzg, o) as in Proposition 4.1. So b(g) € P(X, (1 (X)).
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Properness: The properness follows from the support condition. To understand this,
recall from [AL17] that b € [z,a]ss means that d(x,b) + d(b,a) < d(z,a) +25. The
support condition now easily implies that if a belongs to a geodesic from xq to gy and
is sufficiently far (at distance at least A =44) from the endpoints then the functions
T(x0,a) and 7(gzo,a) are disjointly supported. Choose a’s evenly spaced out along a
geodesic from x( to gz so that their number is proportional to the distance between
xo and gzrg. The norm of each difference 7(gzo,a) - 7(x0,a) appearing in (xx) is then
2, so that this expression is bounded below by a constant proportional to d(zg, gzo).
Since the action of G on Z is assumed proper, we are through. m

4.4 Remark. We record several remarks on the proof which we shall require later.
A careful reading of well-definedness argument above reveals that, beyond the decay
condition, we only used the exponential growth of balls in Z centered at the fixed
base point xg. As for the properness, the support condition gives that 7(x,a) is
supported near the geodesic from a to xy at a prescribed distance from a, which in
turn guaranteed disjointness of the supports of 7(xg,a) and 7(gxg,a). Finally, a free
action on a locally finite graph is metrically proper.

Here then is the main result of this section. Our strategy for the proof shall be to
mimic the proof of Theorem 4.3 using a suitably modified version of Proposition 4.1.

4.5 Theorem. Let G be a finitely generated group, relatively hyperbolic with respect
to a finitely generated subgroup P of polynomial growth. For sufficiently large p we
have:

(1) G admits a proper action on a mized (P-0*-space; and
(2) G admits a proper action on a LP-space.

Let G and P be as in the statement. Recall our setup: X is the corresponding
cusped space for suitable choices of generators; and, for appropriate choice of con-
stants, J (X)) is the space of thinnings of X on which G acts with a G-invariant
probability measure p. We view thinnings T € F (X)) as full subgraphs of X and as
such these have bounded geometry, are hyperbolic and quasi-isometric to X, with
valence, hyperbolicity and quasi-isometry constants independent of 7.

According to Proposition 4.1, for each T € J (X) we have a function
71T x T - Prob(T), 71 (z,a)(b) €[0,1]

of three variables, x, a and b € T. We restrict the first variable to G, which appears as
level 0 of each thinning 7'; and we use the extension by 0 to view Prob(7") c Prob(X)
and thereby extend the third variable to all of X. Finally we define

77 G x X - Prob(X), 7T(x,a) = average 7' (z,a’)
TNNZ (a)
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as the average over those a’ € T for which dx(a,a’) < C; this is now a function of
three variables x € G and a, b € X. A final average removes the dependence on the
thinning:

7:G x X - Prob(X), 7(x,a) = [( )TT(x,a) du(T),
T(X

also a function of three variables x € G and a, b € X. We interpret the integral
pointwise: fix a,b € X and z € G and then 7(z,a)(b) is the integral of a [0, 1]-valued
function of T' € T (X); given the description of the topology on I (X) in (%) and
looking at the construction in [AL17] it is straightford to check that this function is
continuous.

4.6 Remark. The support of 7(x,a) is finite, and also contained in an X-ball of
uniform radius. This follows directly from the first of the following two observations:

(1) if 77(x,a)(b) # 0 then dx(a,b) < C'+ A;
(2) the support of 77(x,a) has cardinality at most Ny, independent of x, a and T.

The metric bound in (1) is straightforward. If 77(x,a)(b) # 0 then necessarily b e T
and there exists an a’ € T' such that both dx(a,a’) < C and dr(a’,b) < A. It follows
that

dx(a,b) <dx(a,a’) +dx(a’,b) <dx(a,a’) +dr(a’,b) <C+A.

The cardinality bound in (2) is only slightly more involved. First, observe that the
average defining 77(z,a) is over a uniformly finite set. If a’ € T n N3 (a) then for
any other a” € T'n NZ (a) we have that adr(a’,a"”) < dx(a’,a”) < 2C so that the
average is over a subset of NJJ, ,(a’). By the uniform bounded geometry condition
on thinnings, the cardinality of this set is bounded independent of T'.

Next, for every a’ € T the support of 77 (,a’) is contained in the T-ball of radius A
and center a’. Again by the uniform bounded geometry condition on thinnings, the
cardinality of this set is bounded independent of T'. It now follows that the support
of 77(x,a) is contained in the finite union of finite sets, with all cardinalities bounded
independent of 7' (and z and a as well). O

As indicated, the proof of Theorem 4.5 shall, using the 7 defined above as input, follow
the proof of Theorem 4.3. We shall need analogs of the support, decay and equivari-
ance conditions for the 77, and for 7 itself. We begin with the equivariance condition,
the proof of which is immediate from the corresponding statement in Proposition 4.1.

4.7 Lemma (Equivariance). Let g € G. We have 797 (gx, ga)(gb) = 77 (x,a)(b), for
every v € G, every a and be X and every thinning T € T (X). O
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4.8 Lemma (Decay). There exists € > 0 with the following property: for every k there
exists Cy, such that for every x,z' € G and every T € J (X) we have

dX(x,x’) <k=> ”TT(I,CL) —TT(J}’,CL)Hl < C«ke—edx(m,a)7

for every a e X.

Proof. This follows readily from Proposition 4.1. Take ¢ as in that proposition. Given
k the proposition provides a constant Cy-15. If now dx (x,z’) < k then dr(z,2') < a 'k
for every thinning 7" so that

17" (z,a") -7 (', a")||1 < C,-1 e =0T (@a’)

for every a’ € T. The definition of 77(x,a), and of 77(2',a) involves an average over
those a’ € T for which dx(a,a’) < C; for such a’ we have

dr(z,a") >dx(x,a") > dx(z,a) - C.
Putting things together we get
|77 (2, a) =77 (¢, a) |1 < Coor 7@ e (m0)
as required. O

4.9 Lemma (Support). Let z,y € G, and let a belong to a geodesic in X connecting
x and y sufficiently far from the endpoints. For every pair of thinnings T1,Ts € T (X)
the supports of 7T (x,a) and 772 (y,a) are disjoint.

Proof. 1t is here that we shall use the added flexibility of choosing a large A; see
Remark 4.2. Let x € G and a € X be given; let w be an X-geodesic connecting a
and z. Roughly, we shall show that the support of 77(x,a) is clustered near the
X-geodesic w and at a sufficient distance from a. Precisely, we shall show that if
7T (x,a)(b) # 0 then there exists a b’ on w such that

dx(b,b') <40+ R and dx(a,b")>aA-(C+ R+45)

for all sufficiently large A and a sufficiently far (depending on A) from x; here R =
R(«,0) is a constant depending only on a and ¢. Importantly, the inequalities above
are independent of the particular thinning 7.

From this, the lemma follows easily (and in direct analogy with the support argument
given in the proof of Theorem 4.3). Indeed, in the notation of the statement if both
1 (2,a)(b) and 772(y, a)(b) are non-zero we have b/, and b, on the geodesic connecting
x and y at distance at least 2(aA — (C' + R +44)); on the other hand

dx (b, by,) < dx(b,b;,) +dx(b,b}) <8 +2R.

zr Yy
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This is a contradiction for A chosen larger than a=1(8) + 2R+ C).

So, choose such a A. Return to z € G, a € X and an X-geodesic w connecting them:;
assume further that dx(a,z) > A+ C. If 77(z,a)(b) # 0 then there exists an a’ € T'
such that dx(a,a’) < C and 7' (x,a)(b) # 0. We have

dr(a',z) >dx(a',x) >dx(a,x) —dx(a,a') > A+C-C = A,

so that from Proposition 4.1 we have dr(a’,b) = A and b€ [a’, x]55. Choose by € T on
a T-geodesic o7 connecting a’ to = such that dr(a’,b;) = A. An elementary argument
then gives that dr(b,b;) < 39; see Lemma 3.3 in [AL17].

Let now o be an X-geodesic connecting the same points a’ and x. Being a T-geodesic,
ol is an X-quasi-geodesic by Proposition 3.7 (in fact, it is a~!-bi-Lipschitz in X).
So the X-Hausdorff distance between o7 and o is at most R, for some constant R
depending only on ¢ and ot [BH99, Thm. IT1.1.7]. It follows that there exists by € &
such that dx(by,by) < R which gives

dx(b, b2) < dx(b, bl) +dx(b1,172) < dT(b, bl) + dx(bl,bg) < 30+ R.

Finally, consider a geodesic triangle in X with corners a, a’, z, and with the X-geodesic
w forming the side from a to x, and ¢ forming the side from a’ to x. This triangle
is 0-slim so that for the point by on ¢ there is a point b’ belonging either to w or
to the side between a and o/, satisfying dy(bs,b’) < §. For such a point it follows
immediately that

dx (b,0') < dx(b,by) +dx (bo,b') <36+ R+6 =46 + R,

as required. It remains to show that b’ lies on w and to bound its X-distance to a
below.

We claim 0’ cannot be on the side between a and a’ and so much be on the X-geodesic
w. For the bound, begin by observing that

dx(a,, bg) < dX(a’,a) + dx(a, b,) + dx(b’,bg) <C+ dx((l,b,) + 57
so that also

dx(a,b") >dx(a’,by) = (C+6) >dx(a’,b) —dx(b,by) - (C+6)
>dx(a’,b) = (C+ R+49) 2 adr(a’,b) - (C+ R+49)
=aA - (C+ R+49),

as required. The check that b' belongs to w is similar: since dy(a,a’) < C a point on
o that is within § of a point on the side a to a’ has X-distance at most ¢ + C' from
a’, but we know that dx(a’,by) is at least «A - (30 + R) > 50 + R+ C, which would be
a contradiction. O
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Proof of Theorem 4.5. The proof of the first statement is completely analogous to the
proof of Theorem 4.3. Above we have defined a function 7 : G x X - Prob(X) and,
following the proof of Theorem 4.3, we define

blg)=g-0-¢,  ¢el=(X, (X)), &(a)=1(z0,a)

for some fixed xy € G (for example, xy = the identity of G). We shall show that
b(g) € tP( X, (1(X) for sufficiently large p, and for this we must only verify appropriate
analogs of the hypotheses of Proposition 4.1 for our function 7 and make a few
additional remarks.

The equivariance follows immediately from Lemma 4.7 and the G-invariance of the
measure g on J(X). As for the well-definedness, the decay condition follows from
Lemma 4.8 upon averaging over 1" € I (X). Also, as described in Remark 4.4 we
need exponential growth of metric X-balls with center in G, which follows from
Proposition 2.1; while that proposition was stated only for a single combinatorial
horoball the generalization to the cusped space is immediate using finite generation
of G. And finally, given our work above in Lemma 4.9 one checks easily that the
supports of 7(x,a) and 7(y,a) are disjoint for a on a geodesic in X connecting = and
y that is sufficiently far from both x and y.

Let us turn to the second statement. We shall replace the space 7(X,¢'(X)) on
which G is currently acting by an LP-space in two steps. For the first step, we modify
the function 7 so that it takes values in ¢2(X) instead of Prob(X) c ¢/1(X). We do
this using the Banach-Mazur map, defined for a unit vector u = (u,) € £*(X) by

B(u)s = ua]"? sign(us);

B is a homeomorphism from the unit sphere in ¢*(X) onto the unit sphere of £2(X)
and it satisfies the inequalities

= vl < 18(u) = B0} < VEJu o]},

for u, v € £1(X) of norm 1. See [BL0O0, Chapter 9.1]. Further, § preserves supports and
is G-equivariant when each sphere is equipped with the norm-preserving action of G
coming from its action on the set X. With these observations, the proof above carries
through immediately to give a proper cocycle for the action of G on 7( X, (2(X)), for
all sufficiently large p.

In the second step, we shall replace ¢2(X) by the space LP(€, 1) for some probability
space (€2, 1) equipped with a measure preserving action of G; the unitary action of
G on (P(X, LP(Q, 1)) will be the natural one and we must show this representation
admits a proper cocycle. The key to this is a standard construction that converts an
orthogonal representation of a (locally compact) group G into a subrepresentation of
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a representation coming from a measure preserving action on some standard Borel
probability space, the details of which are presented in [BAIHVO08, Appendix AT].
(See also [NPO8] for a related argument.) We shall apply this construction to the
representation of G on (2(X). We conclude, combining [BAIHV08, Theorem A.7.13]
with [BAIHV08, Example A.7.6], that there exists a standard Borel probability space
(2, ) on which G acts by measure preserving transformations such that ¢2(X) is
isomorphic as a representation of G to a subrepresentation of L2(£2, 1) corresponding
to a Gaussian Hilbert subspace K. Recall that a Gaussian Hilbert subspace is a Hilbert
subspace K ¢ L?(Q, ) with the property that every X € K is a centered Gaussian
random variable. Putting everything together, we have a proper cocycle b for the
natural representation of G on (P(X,L2(£, 1)), and the values of b belong to the
subspace ?(X, K).

Now we claim that the cocycle b is a proper cocycle for the natural representation
of G on (P(X,Lr(§2, 1)) as well. For this observe that the Gaussian Hilbert space
K is in fact contained in each LP(€2, u) for finite p, and moreover that the LP-norm
on K is simply the L?-norm multiplied by the LP-norm of the standard Gaussian
random variable (which is finite). It follows easily that the values of b belong to
P(X,LP(Q, 1)) and that viewed in this way b remains proper; it is a cocycle on
formal grounds alone. O]

4.10 Remark. In the previous proof it is tempting to omit the second step of the
argument and move directly from ¢'(X) to ¢P(X) using the appropriate Banach-
Mazur map. This is problematic because the Holder constant of the Banach-Mazur
map map depends on p (it is only 1/p-Holder).

5. WEAK AMENABILITY

This section contains our second application: weak amenability of G. Weak amenabil-
ity and ideas surrounding it were introduced and developed by Haagerup and various
coauthors in a series of papers [CH89, DCHS85]. Most of the initial papers focus pri-
marily on locally compact groups and their lattices, and more specifically on rank
1 semi-simple Lie groups. In the context of discrete groups weak amenability was
quickly seen to be equivalent to an approximation property of the (reduced) group
Cr-algebra [Haal6]. A general reference for this is [BO0S].

We recall the definitions. Let S be a set. A kernel ¢: Sx.S — C is completely bounded
if there exists a Hilbert space ‘H and uniformly bounded functions «, 3 :.S — H such
that

o(z,y) = (a(x), B(y));

in this case the completely bounded norm (cb-norm) of ¢ is at most the product of
the ,-norms of a and . Precisely,

[les = nf [ af[eo] 5o,
a75
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where the infimum is taken over all possible maps « and 3 as above. Let now G
be a (countable discrete) group. A function f : G - C completely bounded if the
corresponding kernel ¢ : G x G - C defined by ¢(g,h) = f(h7'g) is completely
bounded, and in this case | f | = | ¢ |s- Finally, the group G is weakly amenable
(with Cowling-Haagerup constant C') if there exists a sequence of finitely supported
functions {f,,} : G - C such that f,, converges pointwise to 1 and each f,, is completely
bounded with cb-norm at most C.

The above discussion raises the possibility of using geometric properties of G, or
of a space on which G acts, to construct kernels or functions which are completely
bounded; the o and § required to show complete boundedness are constructed geomet-
rically. The first construction of this type was put forward by Bozejko and Picardello
who showed that free products of amenable groups are weakly amenable [BP93].
Their construction works directly on the Cayley graph of a free group and gives a
very easy proof that finitely generated free groups are weakly amenable. Ozawa later
generalized the construction and used it to show that hyperbolic groups are weakly
amenable [Oza08], and this is our starting point. Our strategy is, as above, to use
the thinning technique to adapt the construction to prove that classical relatively
hyperbolic groups are weakly amenable. Here then is the main result of this section,
and an immediate corollary which is apparently not known by other means.

5.1 Theorem. A finitely generated group G which is relatively hyperbolic with respect
to a finitely generated subgroup P of polynomial growth is weakly amenable.

5.2 Corollary. Let H be a hyperbolic group and P be a group of polynomial growth.
The free product H x P is weakly amenable. In particular, the free product H « Z™ is
weakly amenable.

We shall be terse, having given a quite detailed treatment in the case of proper actions
in the previous section. The results we need from Ozawa’s work on hyperbolic groups
are summarized in the following proposition. (See [Oza08], Thm. 1, and its proof.)

5.3 Proposition. Let Z be a bounded geometry hyperbolic graph. There exists a
constant C' depending only on the bounded geometry and hyperbolicity constants of Z
with the following properties: for every r € (0,1) and every n € N

(1) the kernel (x,y) = r?z(®y) 4s completely bounded with cb-norm at most C;
(2) the characteristic function of the set Ez(n) = {(x,y) : dz(x,y) < n} is com-
pletely bounded with cb-norm at most C'(n+1). O

5.4 Remark. As a formal consequence of the above we have: for every sequence
rn ~ 1 with 7, € (0,1) there exists a sequence R, » oo with R, € N such that the
kernel

rdz@v) St dy (2, y) < Ry

0, else

o7 (x,y) ={
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is completely bounded, with cb-norm at most 2C. It is these kernels that we shall
use below. Observe that if Z is the Cayley graph of a hyperbolic group G then the
kernels ¢,, are left invariant and come from functions on G which witness its weak
amenability.

We return to the relatively hyperbolic case, and shall use the notation of the previous
sections. For each thinning 7' € I (X) we have a sequence of kernels ¢! : T'xT — [0, 1]
and, since the T are uniformly d-hyperbolic and have uniformly bounded geometry,
the cb-norms of these kernels are bounded independently of 7" (and of course also of
n): there exists C' < oo such that || ¢ |4 < 2C for all T. We restrict both variables
to G, which appears as level 0 of every thinning and note that this does not increase
the cb-norm. And as in the the previous section, we eliminate the dependence on T'
by integration:

(i) Gu(ew) = [ty du(D).

for x and y € G. We interpret the integral pointwise, in light of the following lemma.

5.5 Lemma. Let x,y € X. For every r € (0,1) and every n € N the function

0, else

is continuous on I (X).

Proof. This follows easily from the following assertion: the set of all T' € I (X) for
which dr(z,y) <n (so also x,y € T') is a clopen set. To see that it is open, suppose
T is such that dp(z,y) <n. If F c X is the (finite) set of vertices along a T-geodesic
from = to y then every T; belonging to the basic open neighborhood of T defined
by F contains F' and so satisfies dr, (z,y) < n. To see that its complement is open,
suppose T is such that dr(x,y) >n. If Fc X is the (finite) set of vertices belonging
to a path in X of length < n connecting x and y then every 75 belonging to the basic
open neighborhood of T defined by F' satisfies dr,(x,y) > n; otherwise the vertices
on a path of length <n connecting x and y in such a T, would belong to T, n F', and
hence also to T which is a contradiction. O]

Proof of Theorem 5.1. We first show that each ¢, is G-invariant. The action of g € G
on X induces a graph isomorphism 7" — ¢7T', and so also an isometry of these graphs.
It follows easily that ¢’ (gz,gy) = ¢L (x,y) for every x, y € T and, in particular for
every x, y € G. Applying the G-invariance of the measure p the result follows:

%(gw,gy):[j(x) o (9, 9y) du(T)=L_(X) 09 T(z,y) du(T) = pulz,y).
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The left invariant the kernel ¢,, arises in the usual way from the real-valued function
x — ¢p(e,x) on G, where e denotes the identity element of G. We must show that this
function is finitely supported and converges to 1 pointwise. These assertions follow
from properties of the ¢1 and the fact that the X and T-distances are bi-Lipschitz
when restricted to GG, with constants independent of T'.

More precisely, if dx(e,x) > R, then also dr(e,x) > R, for every T and the integrand
in (1f) is identically 0. Since the X-distance is proper and left invariant on G finiteness
of the support follows. As for the convergence, for sufficiently large n we have that
R, >a tdx(e,x) > dr(e, ) so that the integrand in (If) satisfies

rz—ldx(e,x)gqbg;(e’x)sl’

independent of T'. So, ¢, (e, z) satisfies similar inequalities and the result follows.

It remains only to estimate the cb-norm of the ¢,. This is more involved, and we
shall treat it in the following lemma. O

5.6 Lemma. The ¢, are completely bounded, with cb-norm at most 2C'.
For the proof we record a few details regarding the kernels ¢Z introduced in Re-

mark 5.4, in particular why they have cb-norm at most 2C'. As remarked, this is a
formal consequence of Proposition 5.3. We introduce the kernels

Z(2,y) = Bz (R) (2, y) 2@,

and observe that

R )
Tr(@y) =3 (Bz(k) = Bg(k=1))r* = vtz = 57 (Eg(k) - Bz (k-1))r",

k=0 k=R+1

where we abuse notation by writing E(k) for the characteristic function of this set,
and understand Ez(-1) =0. Now, given r,, / 1 we select R,, / oo such that for each
n the tail in the above expression has cb-norm < C"

S | Eg(k)=Ez(k=1) |ark < Y 20(k+1)rk < C,
k=R,+1 k=R,+1

where we have applied Proposition 5.3. Applying the proposition again gives that
the cb-norm of ¢Z = an R, 18 at most 2C. The value in this analysis is that it shows
quite concretely how the kernels ¢Z are constructed from the more primitive kernels
provided by Proposition 5.3. Each of the algebraic operations involved (essentially
addition and subtraction) has an analog at the level of the Hilbert space valued «, (
and it is this that we shall exploit below.
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Proof. Tt is clear from the previous discussion that the kernels ¢! appearing in the
integrand (1) are constructed from the primitive kernels

(2,y) = r7@D and  (2,y) = Er(k)(z,y)

in identical fashion, independent of T'; this is because the estimates in Proposition 5.3
are independent of T'. Suppose af, 3! : G — H are Hilbert space valued functions
realizing the conclusions of Proposition 5.3 in the sense that for every =,y € G we

have
rir@y) = (ol (2),B1.(y)) and  Ep(k)(z,y) = (ad (), B2, () );

and suppose further these are normalized so that, for example, |af (z)] < V/C and

|af(2) | < /CO(k+1) for every z € G, etc. Tt is then clear that the kernel ¢ is
realized by

X k2
alf(z) =af, ()@ ) gﬁ 17%/ (ofp(z) @ al, (x))
=Rn+

i) =6l e @ ' (-61v) e i1, (v)):
k=R,+1

these are functions G — H where H is an appropriate large direct sum of copies
of H. Further, the constituent a’s and [’s give, for each z and y € G respectively,
measurable (in the weak sense) functions I (X) — H, where #H is a Hilbert space
constructed from the ¢2-space on the (countable) collection of finite subsets of X.
This follows from the detailed construction of these in Ozawa’s paper. In particular,
al'(z) and BI'(y) are themselves measurable functions of T', for every z and y € G,
respectively.

To estimate the cb-norm of the kernels ¢,, we assemble the above data into functions
from G into the direct integral Hilbert space as follows:

b G— [ A an@)= (T al(@), ) =(To 5LW).

(X)

From here, everything is a direct calculation. First, these «, and (3, represent the
kernel ¢,,:

(n(@).5aw)) = [ (ol (@) A1) ) du(T) [ 0E ) dn(T) = 00 (.0

T(X)

and second the norm of «,(x) is easily seen to be

lan(@) 1= [ lak() | du(T)
- [ (et @i S ek e L@ 1)) ancr)

k=R,+1

sf (C+ 3 2C(k+1)r,’3) du(T) <20,
7 (X)

k=Rn+1
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and similarly for 3,(y). It follows that the cb-norm of ¢,, is < 2C', as required. O]
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