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Abstract. Nous introduisons une nouvelle propriété des systèmes

dynamiques topologiques, que nous appelons complexité dynamique

finie. Les produits-croisés de C˚-algèbres associés aux systèmes dy-

namiques ayant cette propriété peuvent être décomposés en parties

plus simples, ce qui permet de calculer leurs groupes de K-théorie,

via des méthodes de K-théorie contrôlée.

Dans cet article, nous illustrons cette idée en donnant une nou-

velle preuve de la conjecture de Baum-Connes pour les actions de

complexité dynamique finie. Nous avons essayé de rendre l’article

aussi indépendant du reste de la littérature que possible, afin qu’il

reste accessible pour quelqu’un n’ayant suivi qu’un premier cours

de K-théorie opératorielle. En particulier, nous ne supposons au-

cune connaissance préalable de la K-théorie contrôlée, et nous util-

isons un nouveau modèle concret pour la conjecture de Baum-

Connes à coefficients qui n’utilise pas la K-théorie bivariante de

Kasparov.
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Abstract. In this paper, we introduce a property of topological

dynamical systems that we call finite dynamical complexity. For

systems with this property, one can in principle compute the K-

theory of the associated crossed product C˚-algebra by splitting

it up into simpler pieces and using the methods of controlled K-

theory. The main part of the paper illustrates this idea by giving

a new proof of the Baum-Connes conjecture for actions with finite

dynamical complexity.

We have tried to keep the paper as self-contained as possible: we

hope the main part will be accessible to someone with the equiva-

lent of a first course in operator K-theory. In particular, we do not

assume prior knowledge of controlled K-theory, and use a new and

concrete model for the Baum-Connes conjecture with coefficients

that requires no bivariant K-theory to set up.
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1. Introduction

Throughout this paper, the symbol ‘Γ ü X’ will mean that Γ is a

countable discrete group, X is a compact Hausdorff space, and Γ acts

on X by homeomorphisms. We will abbreviate this information by

saying that ‘Γ ü X is an action’.

Our work here is based around a new property for actions, which

we call finite dynamical complexity. This is partly inspired by the

geometric notion of finite decomposition complexity, introduced by the

first and third authors together with Tessera [8], and by the notion of

dynamic asymptotic dimension, which was introduced by the current

authors in earlier work [10].

The precise definition of finite dynamical complexity requires groupoid

language to state; rather than get into details here, we just give an idea

and refer the reader to Definition 3.14 (see also Definition A.4) for the

precise version. Roughly, then, we say an action Γ ü X decomposes

over some collection C of ‘dynamical systems’ (more precisely, étale

groupoids) if it can be ‘locally cut into two pieces’, each of which is in

C. The action Γ ü X has finite dynamical complexity if it is contained

in the smallest class C that is: closed under decompositions; and con-

tains all dynamical systems that are ‘essentially finite’ (more precisely,

have compact closure inside the ambient étale groupoid).

This definition allows the K-theory groups K˚pCpXq ¸r Γq to be

computed, at least in principle: the idea is that one can often com-

pute the K-theory of essentially finite pieces using classical (‘commu-

tative’) techniques from algebraic topology and the theory of type I
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C˚-algebras, then use generalized (‘controlled’ [19]) Mayer-Vietoris ar-

guments to reassemble this into the K-theory of the whole crossed

product CpXq ¸r Γ. Strikingly, the C˚-algebras CpXq ¸r Γ to which

these methods apply are often simple; thus one has no hope of apply-

ing classical Mayer-Vietoris techniques, as these require the presence

of non-trivial ideals. This strategy works particularly well when one is

trying to show vanishing of certain K-theory groups.

To illustrate this strategy for computing K-theory, the main part of

this paper applies the idea above to the Baum-Connes conjecture for

an action Γ ü X with finite dynamical complexity. This conjecture (a

special case of the Baum-Connes conjecture for Γ with coefficients [4])

posits that a particular assembly map

(1.1) µ : KKtop
˚ pΓ, CpXqq Ñ K˚pCpXq ¸r Γq

is an isomorphism; here the domain is a topologically defined group

associated to the action, and the codomain is the operator K-theory

of the reduced crossed product C˚-algebra CpXq ¸r Γ, an analytically

defined object. The existence of such an isomorphism relating two quite

different aspects of the action has important consequences for both: for

example, it has consequences for Novikov-type conjectures associated

to Γ, and implies the existence of various tools to better understand

the K-theory of the crossed product.

The main part of the paper proves the following result, which is

inspired in part by the third author’s work [38] on the coarse Baum-

Connes conjecture for spaces with finite asymptotic dimension, the first

and third authors’ work with Tessera on the bounded Borel conjecture

for spaces with finite decomposition complexity [8], and the work of all

three authors on dynamic asymptotic dimension [10].

Theorem 1.1. Let Γ ü X be an action with finite dynamical com-

plexity, where X is a second countable compact space. Then the Baum-

Connes conjecture holds for Γ with coefficients in CpXq.

Our proof of Theorem 1.1 starts by replacing the problem of prov-

ing that µ as in line (1.1) above is an isomorphism with the prob-

lem of showing that the K-theory of a certain obstruction C˚-algebra

ApΓ ü Xq vanishes. For this obstruction C˚-algebra one can apply
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the strategy for computing K-theory outlined above, and show that it

is indeed zero.

The hypotheses of Theorem 1.1 cover many interesting actions: we

refer the reader to our companion paper [10], particularly the introduc-

tion, for a discussion of the case of finite dynamic asymptotic dimen-

sion. We suspect that finite dynamic dimension implies finite dynami-

cal complexity, but did not seriously pursue that problem.

Relating the above to the literature, we should note that Theorem

1.1 is implied by earlier work: indeed, it follows from work of Tu [31]

on the Baum-Connes conjecture for amenable groupoids and the fact

(Theorem A.3 below) that finite dynamical complexity of a groupoid

implies amenability. Some of the key tools in Tu’s proof are the Dirac-

dual-Dirac method of Kasparov [16], the work of Higson and Kasparov

on the Baum-Connes conjecture for a-T-menable groups [11], and Le

Gall’s groupoid-equivariant bivariant K-theory [18]. As already hinted

at above, our proof is quite different: it gives a direct way of under-

standing the group K˚pCpXq ¸r Γq that uses much less machinery.

Our motivations for giving a new proof of Theorem 1.1 are four-

fold. First, we want to illustrate the controlled methods for computing

K-theory as already mentioned above. Second, we want to make the

Baum-Connes theory more direct so that it might be adapted to com-

putations of K-theory for much more general classes of C˚-algebras

with an eye on the Künneth theorem and UCT problem as pursued

in [20, 34] and [36] respectively. Third, we want to make techniques

from the Baum-Connes theory more algebraic, so as to highlight and

strengthen interactions with the Farrell-Jones theory in algebraic topol-

ogy [2, 3]. Fourth, the proof is fairly self-contained: we have tried to

make it accessible to a reader who has understood an introduction to

C˚-algebra K-theory at the level of [27] or [32].

On this fourth point, we hope that the paper can be read with-

out prior knowledge of Baum-Connes theory, groupoids, controlled K-

theory, or even crossed product C˚-algebras. This makes the proof

more elementary than most existing proofs of special cases of the Baum-

Connes conjecture. In order to do this, we introduce a direct geometric

/ combinatorial reformulation of the Baum-Connes conjecture; we show
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that it agrees with the traditional one using Kasparov’s KK-theory [4]

in an appendix. Using these elementary methods also has the advan-

tage that Theorem 1.1 remains true (correctly interpreted) if one drops

the second countability assumption on X.

To conclude this introduction, we should note that this paper only

just starts the study of finite dynamical complexity and its relation to

other properties. We ask several open questions in A.14 through A.19

below: some of these might be difficult, but we suspect some are quite

accessible.

Outline of the paper. Section 2 builds a concrete model for the Baum-

Connes assembly map for an action Γ ü X based on the localization

algebras used by the third author to give a model for the coarse Baum-

Connes assembly map [37]. Section 3 introduces some language from

groupoid theory that will be useful in carrying out various decom-

positions, and which is crucial for the definition of finite dynamical

complexity given at the end of that section. Section 4 gives a self-

contained description of the controlled K-theory groups we will need

for the proof, following work of the third author [38], and of Oyono-

Oyono in collaboration with the third author [19]. Section 5 lays out

the strategy for proving Theorem 1.1, which is based roughly on the

proof of the coarse Baum-Connes conjecture for spaces with finite as-

ymptotic dimension of the third author [38], and the work of the first

and third authors with Tessera [8] on the stable Borel conjecture; in

particular, it reduces the proof to two technical propositions. These

technical propositions are established in Sections 6 and 7. There are

two appendices, which require a bit more background of the reader.

Appendix A relates our finite dynamical complexity to finite decompo-

sition complexity in the sense of [8], and to topological amenability [1]

as well as asking some questions; this requires some background in the

general theory of étale groupoids. Appendix B identifies our model for

the Baum-Connes assembly map with one of the standard models using

KK-theory; as such, it requires some background in equivariant KK-

theory. The appendices are included to connect what we have done

here to preexisting theory, and are certainly not needed to understand

the rest of the paper.
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2. Assembly maps

Throughout this section, Γ ü X is an action in our usual sense: Γ

is a countable discrete group, X is a compact Hausdorff topological

space, and Γ acts on X by homeomorphisms. Our goal in this section

is to develop a concrete and elementary model for the Baum-Connes

assembly map for Γ with coefficients in CpXq. The construction is mod-

eled on the localization algebra approach to the coarse Baum-Connes

conjecture of the third author [37].

We will assume throughout that Γ is equipped with a proper length

function and the associated right invariant metric as in the next defi-

nition.

Definition 2.1. A (proper) length function on a group Γ is a function

| ¨ | : Γ Ñ N that satisfies the following conditions:

(i) |g| “ 0 if and only if g “ e (where e is the identity element of Γ);
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(ii) |gh| ď |g| ` |h|;

(iii) |g´1| “ |g|;

(iv) for any r ě 0, tg P Γ | |g| ď ru is finite.

Associated to such a length function is a metric defined by dpg, hq :“

|gh´1|.

Note that the right action of the group on itself preserves the metric

associated to a length function, and that if the length function is proper,

then for any r ě 0 there is a uniform bound on the cardinality of all r-

balls. Examples of length functions and associated metrics are provided

by word metrics associated to finite generating sets, when such exist.

Length functions always exist on a countable group, whether or not it is

finitely generated, and the metrics they define are unique up to ‘coarse’

(large-scale) equivalence: see for example [33, Proposition 2.3.3]. Our

use of a length function will only depend on the coarse equivalence

class, and therefore fixing one makes no real difference.

Definition 2.2. Let s ě 0. The Rips complex of Γ at scale s, denoted

PspΓq, is the simplicial complex with vertex set Γ, and where a finite

subset E of Γ spans a simplex if and only if

(2.1) dpg, hq ď s for all g, h P E.

Points z P PspΓq can be written as formal linear combinations

z “
ÿ

gPΓ

tgg,

where each tg is in r0, 1s and
ř

gPΓ tg “ 1. We equip the space PspΓq

with the `1-metric

d
´

ÿ

gPΓ

tgg,
ÿ

gPΓ

sgg
¯

“
ÿ

gPΓ

|tg ´ sg|.

The barycentric coordinates on PspΓq are the continuous functions ptg :

PspΓq Ñ r0, 1sqgPΓ indexed by g P Γ that are uniquely determined by

the condition

z “
ÿ

gPΓ

tgpzqg

for all z P PspΓq.
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Using the fact that balls of radius s in Γ are (uniformly) finite, it

is straightforward to check that PspΓq is finite dimensional and locally

compact. Note also that the right translation action of Γ on itself

extends to a right action of Γ on PspΓq by (isometric) simplicial auto-

morphisms.

We now want to build Hilbert spaces and C˚-algebras connected

to both the large scale geometry of Γ (called ‘Roe algebras’) and the

topological structure of PspΓq (called ‘localization algebras’).

Definition 2.3. For each s ě 0, define

Zs :“

#

ÿ

gPΓ

tgg P PspΓq
ˇ

ˇ

ˇ
tg P Q for all g P Γ

+

.

Note that Zs is Γ-invariant, so the Γ-action on PspΓq induces a (right)

action on each Zs.

Let `2pZsq denote the Hilbert space of square-summable functions on

Zs. Let `2pXq denote the Hilbert space of square-summable functions

on X. Fix also a separable infinite dimensional Hilbert space H, and

define

Hs :“ `2
pZsq b `

2
pXq bH b `2

pΓq.

Equip Hs with the unitary Γ action defined for g P Γ by

ug : δz b δx b η b δh ÞÑ δzg´1 b δgx b η b δgh,

where z P Zs, x P X, η P H and h P Γ. When convenient, we will use

the canonical identification

(2.2) Hs “ `2
pZs ˆX,H b `

2
pΓqq

of Hs with the Hilbert space of square-summable functions from ZsˆX

to H b `2pΓq.

Note that if s0 ď s then Ps0pΓq identifies equivariantly and isometri-

cally with a subcomplex of PspΓq, and moreover Zs0 Ď Zs. Hence there

are canonical equivariant isometric inclusions

(2.3) Hs0 Ď Hs

which we will use many times below.

Write now KΓ for the compact operators on Hb`2pΓq equipped with

the Γ action by ˚-automorphisms that is induced by the tensor product



10 ERIK GUENTNER, RUFUS WILLETT, AND GUOLIANG YU

of the trivial action on H and the (left) regular representation on `2pΓq.

Equip the C˚-algebra CpX,KΓq “ CpXq bKΓ of continuous functions

from X to KΓ with the diagonal action of Γ induced by the actions

on CpXq and KΓ. Note that the canonical faithful representation of

CpX,KΓq on `2pXqbH b `2pΓq is covariant for the unitary representa-

tion defined by tensoring the canonical permutation action on `2pXq,

the trivial representation on H, and the regular representation on `2pΓq.

Definition 2.4. Let T be a bounded operator on Hs. We may think

of T as a Zs ˆ Zs-indexed matrix T “ pTy,zq, where each entry is a

bounded operator on `2pXq bH b `2pΓq. We will be interested in the

following properties of such T .

(i) T is Γ-invariant if ugTu
˚
g “ T for all g P Γ.

(ii) The Rips-propagation of T is the number

r “ suptdPspΓqpy, zq | Ty,z ‰ 0u.

(iii) The Γ-propagation of T is the supremum (possibly infinite) of the

set

tdΓpg, hq | Ty,z ‰ 0 for some y, z P Zs with tgpyq ‰ 0, thpzq ‰ 0u,

where tg, th : PspΓq Ñ r0, 1s are the barycentric coordinates asso-

ciated to g and h as in Definition 2.2 above.

(iv) T is X-locally compact if for all y, z P Zs, the operator Ty,z is in

the C˚-subalgebra CpX,KΓq of the bounded operators on `2pXqb

H b `2pΓq, and moreover if for any compact subset K of PspΓq,

the set

tpy, zq P K ˆK | Ty,z ‰ 0u

is finite.

Remark 2.5. (This remark relates the definition above to earlier ones

in the literature, and can be safely ignored by readers who do not know

the earlier material). Traditionally in this area (see for example [37])

one defines a suitable length metric on each Rips complex PspΓq, and

uses only the propagation defined relative to this metric. We have

‘decoupled’ the notion of propagation into the Γ-propagation (relevant

only for large-scale structure) and the Rips-propagation (relevant only

for small scale structure). The reason for doing this is that in the

traditional approach the metric depends on the Rips parameter s, and

it is convenient for us to have metrics that do not vary in this way.
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Definition 2.6. Let CrΓ ü X; ss denote the collection of all Γ-invariant,

X-locally compact operators on Hs, with finite Γ-propagation. It is

straightforward to check that CrΓ ü X; ss is a ˚-algebra of bounded

operators.

Let C˚pΓ ü X; sq denote the closure of CrΓ ü X; ss with respect

to the operator norm. The C˚-algebra C˚pΓ ü X; sq is called the Roe

algebra of Γ ü X at scale s.

We will always consider CrΓ ü X; ss and C˚pΓ ü X; sq as con-

cretely represented on Hs, and equipped with the corresponding oper-

ator norm. Elements of C˚pΓ ü X; sq can be thought of as matrices

pTy,zqy,zPZs with entries continuous equivariant functions Ty,z : X Ñ KΓ

in a way that is compatible with the ˚-algebra structure; we will fre-

quently use this description below.

Remark 2.7. The Roe algebras C˚pΓ ü X; sq are all isomorphic to the

stabilization of the reduced crossed product C˚-algebra CpXq¸rΓ. We

do not need this remark in the main body of the paper, but include it

now as it may help orient some readers. See Appendix B for a proof.

Note that the Rips-propagation is not relevant to the definition of

the Roe algebras; it is, however, used in a crucial way in the next

definition.

Definition 2.8. Let CLrΓ ü X; ss denote the ˚-algebra of all bounded,

uniformly continuous functions

a : r0,8q Ñ CrΓ ü X; ss

such that the Γ-propagation of aptq is uniformly finite as t varies, and

so that the Rips-propagation of aptq tends to zero as t tends to infinity.

Let C˚LpΓ ü X; sq denote the completion of CLrΓ ü X; ss for the

norm

}a} :“ sup
tPr0,8q

}aptq}C˚pΓüX;sq.

The C˚-algebra C˚LpΓ ü X; sq is called the localization algebra of Γ ü

X at scale s.
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Note that an element a of C˚LpΓ ü X; sq comes from a unique

bounded, uniformly continuous functions

a : r0,8q Ñ C˚pΓ ü X; sq

(satisfying some additional properties). We will think of CLrΓ ü X; ss

and C˚LpΓ ü X; sq as concretely represented on the Hilbert space

L2r0,8q bHs in the obvious way.

Finally in this section, we come to the definition of the assembly

map. First, let

(2.4) ε0 : K˚pC
˚
LpΓ ü X; sqq Ñ K˚pC

˚
pΓ ü X; sqq

denote the evaluation-at-zero ˚-homomorphism a ÞÑ ap0q. Assume that

s0 ď s. Then the isometric equivariant inclusion Hs0 Ď Hs from line

(2.3) above induces isometric inclusions

C˚pΓ ü X; s0q Ď C˚pΓ ü X; sq

and

C˚LpΓ ü X; s0q Ď C˚LpΓ ü X; sq

of C˚-algebras, and thus we get directed systems pC˚pΓ ü X; sq
˘

sě0

and
`

C˚LpΓ ü X; sq
˘

sě0
of C˚-algebra inclusions. Moreover the evaluation-

at-zero maps from line (2.4) are clearly compatible with these inclu-

sions, whence we may make the following definition.

Definition 2.9. The assembly map for Γ ü X is the direct limit

ε0 : lim
sÑ8

K˚pC
˚
LpΓ ü X; sqq Ñ lim

sÑ8
K˚pC

˚
pΓ ü X; sqq

of the evaluation-at-zero maps from line (2.4) above.

Remark 2.10. This map identifies naturally with the Baum-Connes as-

sembly map for Γ with coefficients in CpXq, whence the name. Analo-

gously to Remark 2.7 above, we do not need this fact in the main body

of the paper, but include it now in case it is helpful for some readers.

See Appendix B for a proof.

Our main goal in this paper is to prove the following theorem.

Theorem 2.11. Let Γ ü X be an action with finite dynamical com-

plexity. Then the assembly map is an isomorphism.
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Remark 2.12. Thanks to the results of Appendix B, this is the same

result as Theorem 1.1 from the introduction, although without the

assumption that X is second countable. The only reason for includ-

ing second countability of X in the statement of Theorem 1.1 is to

avoid technical complications that arise in the traditional statement of

the Baum-Connes conjecture with coefficients in a non-separable C˚-

algebra. Assuming separability would make no difference for the proof

of Theorem 2.11, however, so we omit the assumption here.

In order to prove this theorem, it is convenient to shift attention to

an ‘obstruction group’.

Definition 2.13. Let C˚L,0pΓ ü X; sq denote the C˚-subalgebra of

C˚LpΓ ü X; sq consisting of functions a such that ap0q “ 0. The C˚-

algebra C˚L,0pΓ ü X; sq is called the obstruction algebra of Γ ü X at

scale s.

There is clearly a directed system
`

C˚L,0pΓ ü X; sq
˘

sě0
of obstruction

algebras. The following straightforward lemma explains the terminol-

ogy ‘obstruction algebra’: the K-theory of these algebras obstructs

isomorphism of the assembly map.

Lemma 2.14. The assembly map of Definition 2.9 is an isomorphism

if and only if

lim
sÑ8

K˚pC
˚
L,0pΓ ü X; sqq “ 0.

Proof. The short exact sequence

0 // C˚L,0pΓ ü X; sq // C˚LpΓ ü X; sq // C˚pΓ ü X; sq // 0

gives rise to six term exact sequence in K-theory. The lemma follows

from this, continuity of K-theory under direct limits, and the fact that

a direct limit of an exact sequence of abelian groups is exact. �

Thus in order to prove Theorem 2.11, it suffices to prove that the

group in the statement of Lemma 2.14 vanishes whenever Γ ü X

has finite dynamical complexity. The proof of this occupies the next

five sections. We spend the next two sections developing machinery: in

Section 3 we introduce some convenient language from groupoid theory,

use this to define useful subalgebras of the obstruction algebras, and
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introduce finite dynamical complexity; and in Section 4 we introduce

controlled K-theory, which gives us extra flexibility when performing

K-theoretic computations.

Having built this machinery, Section 5 sketches out the strategy of

the proof of Theorem 2.11: the basic idea is to first use a homotopy

invariance result to show that the K-theory of the obstruction algebra

associated to an ‘essentially finite’ dynamical subsystem of Γ ü X

vanishes; and then to use a Mayer-Vietoris type argument to show that

the class of dynamical subsystems of Γ ü X for which the K-theory of

the obstruction algebra vanishes is closed under decomposability. The

proofs of the homotopy invariance result, and of the Mayer-Vietoris

type argument are somewhat technical, and are carried out in Sections

6 and 7 respectively.

3. Groupoids and decompositions

Our goal in this section is to show how ‘subgroupoids’ of the action

Γ ü X give rise to C˚-subalgebras of the Roe algebras and localization

algebras of Section 2. We try to keep the exposition self-contained: in

particular, we do not assume that the reader has any background in

the theory of locally compact groupoids or their C˚-algebras.

Throughout this section Γ ü X is an action in our usual sense: Γ

is a countable discrete group and X is a compact space equipped with

an action of a Γ by homeomorphisms. We also fix a (proper) length

function on Γ and associated right-invariant metric as in Definition 2.1.

Definition 3.1. The transformation groupoid associated to Γ ü X,

denoted Γ˙X, is defined as follows. As a set, Γ˙X is equal to

tpgx, g, xq P X ˆ ΓˆX | g P Γ, x P Xu.

The set Γ˙X is equipped with the topology such that the (bijective)

projection Γ ˙ X Ñ Γ ˆ X onto the second and third factors is a

homeomorphism.

The topological space Γ˙X is equipped with the following additional

structure.
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(i) A pair
`

phy, h, yq, pgx, g, xq
˘

of elements of Γ ˙ X is composable

if y “ gx. If the pair is composable, their product is defined by

phgx, h, gxqpgx, g, xq :“ phgx, hg, xq.

(ii) The inverse of an element pgx, g, xq of Γ˙X is defined by

pgx, g, xq´1 :“ px, g´1, gxq.

(iii) The units are the elements of the open and closed subspace

pΓ˙Xqp0q :“ tpx, e, xq P Γ˙X | x P Xu

of Γ˙X.

We can now discuss the algebra of supports of elements in the Roe

algebra. For this, recall from Definitions 2.4 and 2.6 that we can think

of an operator T in C˚pΓ ü X; sq as a matrix pTy,zqy,zPZs indexed by

Zs with entries continuous functions Ty,z : X Ñ KΓ.

Definition 3.2. Let s ě 0, and let PspΓq be the associated Rips com-

plex with barycentric coordinates tg : PspΓq Ñ r0, 1s as in Definition

2.2. Define the support of z P PspΓq to be the finite subset

supppzq :“ tg P Γ | tgpzq ‰ 0u

of Γ. Define the support of T P C˚pΓ ü X; sq to be the subset

supppT q :“

"

pgx, gh´1, hxq there are y, z P Zs with Ty,zpxq ‰ 0

P Γ˙X and g P supppyq, h P supppzq

*

of Γ˙X.

Note that for T P CrΓ ü X; ss, the Γ-propagation of T as in Defi-

nition 2.4 is equal to the largest value of |k| such that px, k, yq appears

in supppT q for some x, y P X.

Supports of operators behave well with respect to composition and

adjoints; this is the content of the next lemma. To state it, note that

the groupoid operations on Γ ˙ X extend to subsets in natural ways:

if A,B Ď Γ˙X then we define

A´1 :“ ta´1
| a P Au

and

AB :“ tab | a P A, b P B and pa, bq composableu.
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Lemma 3.3. Let S, T P C˚pΓ ü X; sq. Then

supppS˚q “ supppSq´1 and supppST q Ď supppSqsupppT q.

Proof. As the adjoint of S has matrix entries pS˚qy,z “ S˚z,y, the state-

ment about adjoints is clear. To see the statement about multiplication,

say T, S P C˚pΓ ü X; sq, and pgx, gh´1, hxq is a point in the support

of TS. Then there are y, z P Zs such that g P supppyq, h P supppzq,

and pTSqy,zpxq ‰ 0. Hence there is w P Zs with Ty,wpxq ‰ 0, and

Sw,zpxq ‰ 0. Say k is any point in supppwq, so we must have that

pgx, gk´1, kxq is in the support of T and pkx, kh´1, hxq is in the sup-

port of S. As

pgx, gh´1, hxq “ pgx, gk´1, kxqpkx, kh´1, hxq,

this shows that the support of TS is contained in the product of the

supports of T and S. �

The lemma implies that subspaces of Γ ˙ X that are closed under

the groupoid operations will give rise to ˚-subalgebras of CrΓ ü X; ss.

The relevant algebraic notion is that of a subgroupoid as in the next

definition.

Definition 3.4. Let Γ˙X be the transformation groupoid associated

to the action Γ ü X. A subgroupoid of Γ˙X is a subset G of Γ˙X

closed under the operations in the following sense.

(i) If phgx, h, gxq and pgx, g, xq are in G, then so is the composition

phgx, hg, xq.

(ii) If pgx, g, xq is in G, then so is its inverse px, g´1, gxq.

(iii) If pgx, g, xq is in G, then so are the units px, e, xq and pgx, e, gxq.

A subgroupoid is equipped with the subspace topology inherited from

Γ˙X.

The following lemma is now almost clear.

Lemma 3.5. Let G be an open subgroupoid of Γ˙X. Define CrG; ss to

be the subspace of CrΓ ü X; ss consisting of all operators T with sup-

port contained in a compact subset of G. Then CrG; ss is a ˚-subalgebra

of CrΓ ü X; ss.
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Proof. Lemma 3.3 gives most of this: the only remaining point to check

is that a product of two relatively compact subsets1 of G is relatively

compact, which we leave it to the reader (or see for example [10, Lemma

5.2] for a more general statement and proof). �

Using this lemma, the following definitions make sense.

Definition 3.6. Let G be an open subgroupoid of Γ˙X. Let CLrG; ss

denote the ˚-subalgebra of CLrΓ ü X; ss (see Definition 2.8 above)

consisting of all a such that
Ť

t supppaptqq has compact closure inside

G. Let CL,0rG; ss denote the ideal of CLrG; ss consisting of functions

such that ap0q “ 0.

Let C˚pG; sq, C˚LpG; sq, and C˚L,0pG; sq denote the closures of CrG; ss,

CLrG; ss, and CL,0rG; ss inside C˚pΓ ü X; sq, C˚LpΓ ü X; sq, and

C˚L,0pΓ ü X; sq respectively.

Note that operators of finite Γ-propagation always have support con-

tained in some compact subset of Γ ˙ X. Hence if G “ Γ ˙ X then

C˚pG; sq is just C˚pΓ ü X; sq, and similarly for the localization and

obstruction algebras.

Remark 3.7. (This remark may be safely ignored by readers who do

not have any background in groupoids and the associated C˚-algebras.)

Analogously to Remark 2.7, for any open subgroupoid G of Γ˙X, the

C˚-algebra C˚pG; sq is Morita equivalent to the reduced groupoid C˚-

algebra C˚r pGq; this makes sense, as an open subgroupoid of Γ ˙X is

étale so has a canonical Haar system given by counting measures. We

only include this remark as it might help to orient some readers; we

will not use it in any way, or prove it.

Our next goal in this section is to construct filtrations on these C˚-

algebras in the sense of the definition below, and discuss how they

interact with the subalgebras coming from groupoids above.

Definition 3.8. A filtration on a C˚-algebra A is a collection of self-

adjoint subspaces pArqrě0 of A indexed by the non-negative real num-

bers that satisfies the following properties:

1Recall that a subset of a topological space is relatively compact if its closure is

compact.
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(i) if r1 ď r2, then Ar1 Ď Ar2 ;

(ii) for all r1, r2, we have Ar1 ¨ Ar2 Ď Ar1`r2 ;

(iii) the union
Ť

rě0Ar is dense in A.

As the case of the obstruction C˚-algebras will be particularly im-

portant for us, we introduce some shorthand notation for that case.

Definition 3.9. For an open subgroupoid G of Γ˙X and s ě 0, define

AspGq to be the C˚-algebra C˚L,0pG; sq. For each r P r0,8q, define

AspGqr :“ ta P CL,0rG; ss | aptq has Γ-propagation at most r for all tu,

and define AspGq8 :“ CL,0rG; ss. In the special case that G “ Γ ˙X,

we omit it from the notation and just write As and Asr.

When convenient, we will consider all these C˚-algebras as faithfully

represented on the Hilbert space

L2
pr0,8q, Hsq “ L2

r0,8q b `2
pZsq b `

2
pXq bH b `2

pΓq.

Lemma 3.10. For any open subgroupoid G of Γ ˙X and any s ě 0,

the subsets pAspGqrqrě0 define a filtration of AspGq in the sense of

Definition 3.8.

Proof. An element a P AspGq is in AspGqr if and only if it is in the dense

˚-subalgebra CL,0rG; ss and if whenever pgx, g, xq is in supppaptqq for

some t, we have |g| ď r. The filtration properties follows directly from

this, the facts that |gh| ď |g||h| and |g´1| “ |g|, and Lemma 3.3. �

Our next goal in this section is to discuss what happens when we

take products of elements from Asr and AspGq for some G and r. Note

first that analogously to the case of subgroups, one may build a sub-

groupoid generated by some S Ď Γ ˙ X by iteratively closing under

taking compositions, inverses, and units in the sense of parts (i)-(iii)

of Definition 3.4 above. From this, it is straightforward to check that

if S is an open subset of Γ ˙ X, then the subgroupoid it generates is

also open: see [10, Lemma 5.2] for a proof.

Definition 3.11. Let r ě 0 and G be an open subgroupoid of Γ˙X,

and H be an open subgroupoid of G. The expansion of H by r relative

to G, denoted H`r, is the open subgroupoid of Γ˙X generated by

H Y tpgx, g, xq P G | |g| ď r, x P Hp0q
u.
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Note that the expansion H`r depends on the ambient groupoid G;

we do not include G in the notation, however, to avoid clutter, and as

which groupoid we are working inside should be clear from context.

We now have two basic lemmas.

Lemma 3.12. Let G be an open subgroupoid of Γ˙X, and H an open

subgroupoid of G. Let r, s ě 0. Then

AspHq ¨ AsrpGq Y A
s
rpGq ¨ A

s
pHq Ď AspH`r

q.

Proof. Immediate from Lemma 3.3. �

Lemma 3.13. For any r1, r2 ě 0 and open subgroupoid H of an open

subgroupoid G of Γ˙X, we have that pH`r1q`r2 Ď H`pr1`r2q.

Proof. Clearly H`r1 Ď H`pr1`r2q, so it suffices to show that if x is in

the unit space of H`r1 and |g| ď r2 is such that pgx, g, xq is in G, then

pgx, g, xq is in H`pr1`r2q. Indeed, as x is in the unit space of H`r1

there is phx, h, xq P G with h P Γ, |h| ď r1, and hx P Hp0q. Hence

pgx, gh´1, hxq and phx, h, xq are in H`pr1`r2q and we have

pgx, g, xq “ pgx, gh´1, hxqphx, h, xq P H`pr1`r2q

as required. �

Finally, we conclude this section with the definition of finite dynam-

ical complexity and a basic lemma about the property.

Definition 3.14. Let Γ ü X be an action, let G be an open sub-

groupoid of Γ˙X, and let C be a set of open subgroupoids of Γ˙X.

We say that G is decomposable over C if for all r ě 0 there exists an

open cover Gp0q “ U0 Y U1 of the unit space of G such that for each

i P t0, 1u the subgroupoid of G generated by

tpgx, g, xq P G | x P Ui, |g| ď ru

(i.e. the expansion U`ri relative to G of Definition 3.11) is in C.

An open subgroupoid of Γ ˙ X (for example, Γ ˙ X itself) has fi-

nite dynamical complexity if it is contained in the smallest set D of
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open subgroupoids of Γ˙X that: contains all relatively compact open

subgroupoids; and is closed under decomposability2.

We will need a slight variation of this definition.

Definition 3.15. Say that an open subgroupoid G of Γ˙X is strongly

decomposable over a set C of open subgroupoids of Γ˙X if for all r ě 0

there exists an open cover Gp0q “ U0 Y U1 of the unit space of G such

that for each i P t0, 1u, if Gi is the subgroupoid of G generated by

tpgx, g, xq P G | x P Ui, |g| ď ru,

then G`ri (with expansion taken relative to G) is in C. Let Ds be the

smallest class of open subgroupoids of G that contains the relatively

compact open subgroupoids, and that is closed under strong decom-

posability.

The following lemma records two basic properties of finite dynamical

complexity that we will need later.

Lemma 3.16. With notation as above:

(i) if G is an open subgroupoid of Γ˙X in the class D (respectively

Ds), then all open subgroupoids of G are in D (respectively Ds);

(ii) we have D “ Ds.

Proof. For part (i), we just look at the case of D; the case of Ds is

similar. Let D1 be the set of all open subgroupoids of Γ ˙ X, all of

whose open subgroupoids are in D. Clearly D1 Ď D, and D1 contains

all open subgroupoids with compact closure. To complete the proof

of (i), it suffices to show that D1 is closed under decomposability. Say

then G is an open subgroupoid of Γ˙X that decomposes over D1. Say

H is an open subgroupoid of G and r ě 0. Let tU0, U1u be an open

cover of Gp0q such that for each i P t0, 1u, the subgroupoid Gi of G

generated by

tpgx, g, xq P G | x P Ui, |g| ď ru

is in D1. Let Vi “ Ui X Hp0q. Then tV0, V1u is an open cover of Hp0q

such that the (open) subgroupoid Hi of H generated by

tpgx, g, xq P H | x P Vi, |g| ď ru

2More precisely, we mean ‘upwards closed’: if G decomposes over D, then G is

in D.
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is contained in Gi. As each Gi is in D1, this implies that each Hi is in

D; in other words, H decomposes over D, and is thus in D as required.

For part (ii), it clearly suffices to prove that D is closed under strong

decomposability, and that Ds is closed under decomposability. For the

former, say that G strongly decomposes over D. Then for any r ě 0,

there is an open cover tU0, U1u of Gp0q such that if Gi is generated by

tpgx, g, xq P G | x P Ui, |g| ď ru,

then G`ri is in D. However, Gi is an open subgroupoid of G`ri whence

is in D by part (i). Hence G decomposes over D, and thus is in D as

required.

For the other case, say G decomposes over Ds and let r ě 0. Then

there is an open cover Gp0q “ U0 YU1 such that the subgroupoid Hi of

G generated by

tpgx, g, xq P G | x P Ui, |g| ď 2ru

is in Ds. We claim that if Gi is the subgroupoid of G generated by

tpgx, g, xq P G | x P Ui, |g| ď ru,

then G`ri is an open subgroupoid of Hi; this will suffice to complete

the proof by part (i). Indeed, we have that G`ri is generated by Gi and

(3.1) tpgx, g, xq P G | x P G
p0q
i , |g| ď ru;

as Gi is clearly contained in Hi, it suffices to show that the latter set

is in Hi. Let then pgx, g, xq be in the set in line (3.1). As x P G
p0q
i , we

have x “ ky for some y P Ui, and k P Γ with |k| ď r. Hence we may

rewrite

pgx, g, xq “ pgky, g, kyq “ pgky, gk, yqpy, k´1, kyq;

as y P Ui and |gk|, |k´1| ď 2r, the product on the right is in Hi and we

are done. �

4. Controlled K-theory

In this section we will introduce the main general tool needed for the

proof of Theorem 2.11: controlled K-theory.
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Our treatment in this section is based on the detailed development

given by Oyono-Oyono and the third author [19]. Our controlled K-

theory groups are, however, both more general in some ways, and more

specific in others, than those of [19]. We thus try to keep our exposition

self-contained; in particular, we assume no background beyond the

basics of C˚-algebra K-theory as covered for example in [27] or [32].

Throughout, we provide references to [19] for comparison purposes,

and the reader is encouraged to look there for a broader picture of the

theory.

We now define the controlled K-groups that we need. Compare [19,

Section 1.2] for the following definition.

Definition 4.1. Let A be a C˚-algebra. A quasi-projection in A is an

element p of A such that p “ p˚ and }p2´p} ă 1{8. If S is a self-adjoint

subspace of A, write MnpSq for the matrices in MnpAq with all entries

coming from S, and P
1{8
n pSq for the collection of quasi-projections in

MnpSq.

Let χ “ χp1{2,8s be the characteristic function of p1{2,8s. Then χ is

continuous on the spectrum of any quasi-projection, and thus there is

a well-defined map

κ : P 1{8
n pSq Ñ PnpAq, p ÞÑ χppq,

where PnpAq denotes the projections in MnpAq.

Remark 4.2. The choice of ‘1{8’ in the above is not important: any

positive number less than 1{4 would do just as well. In some arguments

in controlled K-theory, it is useful to allow the bound on the ‘projection

error’ }p2 ´ p} to change; for this reason in [19, Section 1.2], what we

have called a quasi-projection would be called a p1{8q-projection. We

do not need this extra flexibility, so it is more convenient to just fix

an absolute error bound throughout. Similar remarks apply to quasi-

unitaries as introduced in Definition 4.4 below.

If A is a C˚-algebra we denote its unitization by rA. For a natural

number n, let 1n denote the unit of Mnp rAq. For the following definition,

compare [19, Section 1, particularly Definition 1.12].

Definition 4.3. Let A be a non-unital C˚-algebra, and let S be a

self-adjoint subspace of A. Let rS denote the subspace S ` C1 of rA.
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Using the inclusions

P 1{8
n prSq Q p ÞÑ

ˆ

p 0

0 0

˙

P P
1{8
n`1p

rSq

we may define the union

P 1{8
8 prSq :“

8
ď

n“1

P 1{8
n prSq.

Let Cpr0, 1s, rSq denote the self-adjoint subspace of the C˚-algebra

Cpr0, 1s, rAq consisting of functions with values in rS. Define an equiva-

lence relation on P
1{8
8 prSqˆN by pp,mq „ pq, nq if there exists a positive

integer k and an element h of P
1{8
8 pCpr0, 1s, rSqq such that

hp0q “

ˆ

p 0

0 1n`k

˙

and hp1q “

ˆ

q 0

0 1m`k

˙

.

For pp,mq P P
1{8
8 prSq ˆ N, denote by rp,ms its equivalence class under

„.

Let now ρ : MnprSq ÑMnpCq be the restriction to MnprSq of the map

induced on matrices by the canonical unital ˚-homomorphism ρ : rAÑ

C with kernel A. Finally, define

K
1{8
0 pSq :“ trp,ms P

`

P 1{8
8 prSq ˆ N

˘

{ „ | rankpκpρppqqq “ mu.

The set K
1{8
0 pSq is equipped with an operation defined by

rp,ms ` rq, ns :“

«

ˆ

p 0

0 q

˙

, m` n

ff

.

Using standard arguments in K-theory, one sees that K
1{8
0 pSq is an

abelian group with unit r0, 0s: compare [19, Lemmas 1.14 and 1.15].

We now look at controlled K1 groups. Compare [19, Section 1.2] for

the following definition.

Definition 4.4. Let A be a unital C˚-algebra. A quasi-unitary in A

is an element u of A such that }1 ´ uu˚} ă 1{8 and }1 ´ u˚u} ă 1{8.

If S is a self-adjoint subspace of A containing the unit, write U
1{8
n pSq

for the collection of quasi-unitaries in MnpSq.
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Note that as }1 ´ u˚u} ă 1{8 ă 1, u˚u is invertible whence there is

a well-defined map

κ : U1{8
n pSq Ñ UnpAq, u ÞÑ upu˚uq´1{2,

where UnpAq denotes the unitaries in MnpAq.

For the following definition, compare [19, Section 1, particularly Def-

inition 1.12].

Definition 4.5. Let A be a non-unital C˚-algebra, and let S be a self-

adjoint subspace of A. Let rA denote the unitization of A and let rS be

the subspace S ` C1 of rA.

Using the inclusions

U1{8
n prSq Q u ÞÑ

ˆ

u 0

0 1

˙

P U
1{8
n`1p

rSq

we may define the union

U1{8
8 prSq :“

8
ď

n“1

U1{8
n prSq.

Define an equivalence relation on U
1{8
8 prSq by u „ v if there exists an

element h of U
1{8
8 pCpr0, 1s, rSqq such that hp0q “ u and hp1q “ v. For

u P U
1{8
8 prSq, denote by rus its equivalence class under „.

Finally define

K
1{8
1 pSq :“ U1{8

8 prSq { „ .

The set K
1{8
1 pSq is equipped with the operation defined by

rus ` rvs :“

„

u 0

0 v



.

Using standard arguments in K-theory, one sees that the operation

on K
1{8
1 pSq makes it into an abelian monoid3 with unit r1s: compare

[19, Lemmas 1.14 and 1.16].

Definition 4.6. Let A be a C˚-algebra and S a self-adjoint subspace

of A. Define

K1{8
˚ pSq :“ K

1{8
0 pSq ‘K

1{8
1 pSq.

3The usual arguments showing K1pAq has inverses do not apply as they involve

multiplying elements together, and so potentially go outside rS.
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The (graded, unital, abelian) semigroup K
1{8
˚ pSq is called the controlled

K-theory semigroup of S.

Note that K
1{8
˚ pSq depends on the embedding of S inside the ambient

C˚-algebra A; which embedding is being used will always be obvious,

however, so we omit it from the notation.

Remark 4.7. If S Ď T are nested self-adjoint subspaces of a (non-unital)

C˚-algebra A, then we may consider elements of matrix algebras over
rS as elements of matrix algebras over rT . This clearly gives rise to a

map on controlled K-theory

(4.1) K1{8
˚ pSq Ñ K1{8

˚ pT q

induced by the inclusion. To avoid clutter, we will not use specific nota-

tion for these inclusion maps; sometimes we refer to them as ‘subspace-

inclusion’ maps. We also sometimes abuse terminology and say some-

thing like ‘let x and y be elements of K
1{8
˚ pSq that are equal in K

1{8
˚ pT q’;

more precisely, this means that x and y are elements of K
1{8
˚ pSq that

go to the same element of K
1{8
˚ pT q under the map in line (4.1) above.

For the next definition and lemma, which compares controlled K-

theory to the usual K-theory groups of a C˚-algebra, compare [19,

Remark 1.18 and surrounding discussion]. Let K˚pAq :“ K0pAq ‘

K1pAq denote the usual (topological) K-theory group of a C˚-algebra

A.

Definition 4.8. Let A be a non-unital C˚-algebra, and let S be a self-

adjoint subspace of A. Let κ be one of the maps from Definition 4.1

and 4.4 (it will be obvious from context which is meant). Define maps

c0 : K
1{8
0 pSq Ñ K0pAq, rp,ms ÞÑ rκppqs ´ r1ms

c1 : K
1{8
1 pSq Ñ K1pAq, rus ÞÑ rκpuqs

c :“ c0 ‘ c1 : K1{8
˚ pSq Ñ K˚pAq.

We call c0, c1, and c the comparison maps.

Standard arguments in C˚-algebra K-theory show that c0, c1 and

c are well-defined unital semigroup homomorphisms. The map c is

‘almost isomorphic’ in the following sense.
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Proposition 4.9. Let A be a C˚-algebra. Let pSiqiPI be a collection of

self-adjoint subspaces of A such that the union
Ť

iPI Si is dense. Then

for any x P K˚pAq there exists Si and y P K
1{8
˚ pSiq such that cpyq “ x.

Assume moreover that the collection pSiqiPI is directed for the partial

order given by inclusion. Then if x, y P K
1{8
˚ pSiq are such that cpxq “

cpyq there exists Sj containing Si such that x and y become equal in

K
1{8
˚ pSjq in the sense of Remark 4.7.

In particular, if S is a dense self-adjoint subspace of A, then the

comparison map c : K
1{8
˚ pSq Ñ K˚pAq is an isomorphism.

Proof. We just look at the case of K1: the K0 case is similar. Let rus

be a class in K1pAq. As
Ť

i Si is dense in A, for any ε ą 0 there is an

i P I and v in a matrix algebra over the unitization of Si such that

}u´ v} ă ε. For ε suitably small, this implies that v is a quasi-unitary,

and moreover that }κpvq ´ u} ă 2, whence rκpvqs “ rus in K1pAq.

The injectivity statement follows on applying a similar argument

to homotopies. Indeed, it suffices to show that any homotopy h in

Cpr0, 1s,Mnp rAqq can be approximated by a homotopy in Cpr0, 1s,MnprSiqq

for some i. For this, note that density gives us elements a0, ..., am with

ak in some MnpĂSikq such that the map g : r0, 1s Ñ A which sends k{m

to ak and linearly interpolates between these points is a good approxi-

mant to h. The directedness assumption implies there is some Sj that

contains all of Si0 , ...., Sim , so g is in Cpr0, 1s,Mnp rSjqq. �

The most important examples of subspaces we will use (particularly

in the context of Proposition 4.9) come from filtrations as in Defini-

tion 3.8 (see Definition 3.9 and Lemma 3.10 for examples). It will

be convenient to have some additional notation in the case when A is

filtered.

Definition 4.10. Let A be a non-unital filtered C˚-algebra, and S be

a self-adjoint subspace of A. For each r ě 0 and i P t0, 1, ˚u, define

K
r,1{8
i pSq :“ K

1{8
i pS X Arq.

Note that in the case that S “ A, our notation agrees with that of [19,

Section 1.3].
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5. Strategy of proof of Theorem 2.11

In this short section, we set out our strategy for the proof of Theorem

2.11. Our goal is to reduce the proof to two technical propositions and

show how finite dynamical complexity can be used as an input for these.

The two propositions will be proved in the next two sections.

Throughout this section, Γ ü X is an action as usual, and we use the

shorthand notations of Definition 3.9 for the obstruction C˚-algebras

and their groupoid versions.

Here are the two technical propositions, which should be thought of

as the base case and inductive step in the proof. The names ‘homotopy

invariance’ and ‘Mayer-Vietoris’ will be explained in later sections.

Proposition 5.1 (Homotopy invariance argument). Let G be an open

subgroupoid of Γ˙X, and assume s ě 0 is such that

G Ď tpgx, g, xq P Γ˙X | |g| ď su.

Then K˚pA
spGqq “ 0.

Proposition 5.2 (Mayer-Vietoris). Let G be an open subgroupoid of

Γ ˙ X that is in the class D of Definition 3.14, and let r0, s0 ě 0.

Then there is s ě maxtr0, s0u depending on r0, s0 and G such that the

subspace-inclusion map (cf. Remark 4.7)

Kr0,1{8
˚ pAs0pGqq Ñ Ks,1{8

˚ pAspGqq

is the zero map.

Proof of Theorem 2.11. We need to show that for any s0 ě 0 and any

class x P K˚pA
s0q there is s ě s0 such that the subspace-inclusion map

K˚pA
s0q Ñ K˚pA

s
q

sends x to zero. Proposition 4.9 implies that there is r0 ě 0 such that

x is in the image of the comparison map c : K
r0,1{8
˚ pAs0q Ñ K˚pA

s0q

from Definition 4.8. Proposition 5.2 applied to G “ Γ˙X implies that

there is s ě maxtr0, s0u such that the subspace-inclusion map

Kr0,1{8
˚ pAs0q Ñ Ks,1{8

˚ pAsq
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is zero. Consider the diagram

K˚pA
s0q // K˚pA

sq

K
r0,1{8
˚ pAs0q //

c

OO

K
s,1{8
˚ pAsq ,

c

OO

where the two horizontal arrows are induced by subspace inclusions,

and the two vertical arrows are comparison maps; it is clear from the

definition of the comparison maps that it commutes. We have that the

element x P K˚pA
s0q is in the image of the left comparison map c, and

that the bottom horizontal map is zero. Hence the image of x under

the top horizontal map is zero as claimed. �

6. Homotopy invariance

In this section, we prove Proposition 5.1, which we repeat below for

the reader’s convenience.

Proposition 5.1. Let G be an open subgroupoid of Γ˙X, and assume

s ě 0 is such that

G Ď tpgx, g, xq P Γ˙X | |g| ď su.

Then K˚pA
spGqq “ 0.

The proof is based on a technique of the third author: see for ex-

ample [38, Lemma 4.8]. The K-theory of the localization algebra is an

(equivariant) generalized homology theory in an appropriate sense, and

the point of the proof is to show that this homology theory is homo-

topy invariant. Having done this, the condition on s in the statement

implies that if tpg1x, g, xq, ..., pgnx, gn, xqu are elements of G for some

x P X, then tg1, ..., gnu spans a simplex in PspΓq; hence the relevant

space becomes contractible in an appropriate sense, and so the result

follows from homotopy invariance.

To try to make the proof more palatable, we will separate it into two

parts. The first is purely K-theoretic: it gives a sufficient condition

for two ˚-homomorphisms to induce the same map on K-theory. The

second part uses the underlying dynamics to build an input to this

K-theoretic machine, and completes the proof.
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K-theoretic part. We start the K-theoretic part with three basic K-

theory lemmas; they are well-known, but we include proofs where we

could not find a good reference. Recall first that if A is a C˚-algebra,

represented faithfully and non-degenerately on a Hilbert space H, then

the multiplier algebra of A is

MpAq :“ tb P BpHq | ba, ab P A for all a P Au;

it is a C˚-algebra. The strict topology on MpAq is the topology gener-

ated by the seminorms

b ÞÑ }ba}, b ÞÑ }ab}

as a ranges over A. The multiplier algebra and strict topology do

not depend on the choice of H up to canonical isomorphism: see for

example [21, Section 3.12].

Lemma 6.1. Let α : AÑ C be a ˚-homomorphism of C˚-algebras, and

v a partial isometry in the multiplier algebra of C such that αpaqv˚v “

αpaq for all a P A. Then the map

a ÞÑ vαpaqv˚

is a ˚-homomorphism from A to C, and induces the same map as α on

the level of K-theory.

Proof. See for example [14, Lemma 2 in Section 3]. �

Lemma 6.2. Let I be an ideal in a unital C˚-algebra C, and define

the double of C along I to be the C˚-algebra

D :“ tpc1, c2q P C ‘ C | c1 ´ c2 P Iu.

Assume that C has trivial K-theory. Then the inclusion ι : I Ñ D

defined by c ÞÑ pc, 0q induces an isomorphism on K-theory, and the

inclusion κ : I Ñ D defined by c ÞÑ pc, cq induces the zero map on

K-theory.

Proof. Note that ιpIq is an ideal in D, and D{ιpIq is isomorphic to C

via the second coordinate projection. Hence ι is an isomorphism by

the six-term exact sequence. On the other hand, κ factors through the

inclusion C Ñ D defined by the same formula c ÞÑ pc, cq, and thus

κ˚ “ 0 on K-theory as K˚pCq “ 0. �
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Lemma 6.3. Say α, β : C Ñ D are ˚-homomorphisms between C˚-

algebras with orthogonal images (this means that αpc1qβpc2q “ 0 for all

c1, c2 P C).

Then α ` β is a ˚-homomorphism from C to D, and as maps on

K-theory α˚ ` β˚ “ pα ` βq˚.

Proof. Orthogonality of the images of α and β directly implies that

α ` β is a ˚-homomorphism. For t P r0, π{2s, consider the map γt :

C ÑM2pDq defined by

c ÞÑ

ˆ

αpcq 0

0 0

˙

`

ˆ

cosptq sinptq

´ sinptq cosptq

˙ˆ

0 0

0 βpcq

˙ˆ

cosptq ´ sinptq

sinptq cosptq

˙

.

One directly checks that this is a homotopy of ˚-homomorphisms.

Moreover, identifying K˚pDq with K˚pM2pDqq in the canonical way

via the top-left-corner inclusion D Ñ M2pDq, it is straightforward to

check that pγ0q˚ “ α˚ ` β˚ and pγ1q˚ “ pα ` βq˚. �

Before getting to the main result, we need one more preliminary.

First, a definition.

Definition 6.4. Let A be a C˚-algebra. A stability structure for A

consists of a sequence of isometries punq
8
n“0 in MpAq and a topology

τ on MpAq such that multiplication is continuous on norm-bounded

sets4 with the properties that:

(i) u˚num “ 0 for n ‰ m;

(ii) for all a P A,
8
ÿ

n“0

unau
˚
n

τ -converges to an element of MpAq;

(iii) there is an isometry v PMpAq such that

v
´

8
ÿ

n“0

unau
˚
n

¯

v˚ “
8
ÿ

n“1

unau
˚
n

Note that a stable C˚-algebra has a stability structure in a natural

way: indeed, if H is a separable infinite-dimensional Hilbert space, fix

4For example, the strict topology could be used here, but we will need something

a little different.
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isometries un : H Ñ H with mutually orthogonal ranges such that
ř

n un converges strongly to the identity; then un naturally defines

a multiplier of A b KpHq, which acts by unpa b kq “ a b unk on

elementary tensors (and similarly for multiplication on the right); then

the isometries punq together with the strict topology τ define a stability

structure. This is the motivation for the terminology.

Lemma 6.5. Let A have a stability structure as in Definition 6.4.

Then K˚pMpAqq “ 0.

Proof. Using continuity of multiplication on bounded sets for the τ

topology,

µ : MpAq ÑMpAq, a ÞÑ
8
ÿ

n“0

unau
˚
n

is a ˚-homomorphism. Let v be the isometry appearing in Definition

6.4. Using Lemma 6.1, µ induces the same map on K-theory as the

map a ÞÑ vµpaqv˚, i.e. as

µ`1
paq :“

8
ÿ

n“1

unau
˚
n.

Let µ0paq “ u0au
˚
0 . Then the images of µ0 and µ`1 are orthogonal, and

clearly µ0 ` µ`1 “ µ, whence by Lemma 6.3

µ˚ “ µ0
˚ ` µ

`1
˚ “ µ0

˚ ` µ˚

as maps on K-theory. Hence µ0
˚ “ 0. However, by Lemma 6.1 again,

µ0
˚ is the identity map on K˚pMpAqq. �

Definition 6.6. Let A be a C˚-algebra which is faithfully and non-

degenerately represented on a Hilbert space H, and which is equipped

with a stability structure punq
8
n“1 and τ as in Definition 6.4.

Let v0 and v8 be isometries on H that conjugate A to itself. We say

that v0 and v8 are stably equivalent if there are in addition isometries

pvnq
8
n“1 on H that conjugate A into itself and that satisfy:

(i) for any a P A, the sum

8
ÿ

n“0

unvnav
˚
nu
˚
n

τ -converges to an element of MpAq;
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(ii) for all 0 ď n ď 8, vn`1v
˚
n is in MpAq (where 8` 1 “ 8) and the

sums
8
ÿ

n“0

unvn`1v
˚
nu
˚
n and

8
ÿ

n“0

unv8v
˚
8u

˚
n

τ -converge to elements of MpAq;

(iii) for any a in A, the difference

8
ÿ

n“0

unvnav
˚
nu
˚
n ´

8
ÿ

n“0

unv8av
˚
8u

˚
n

of elements of MpAq is in A;

(iv) for all a P A

8
ÿ

n“0

unapv8v
˚
8 ´ vn`1v

˚
nqu

˚
n and

8
ÿ

n“0

unpv8v
˚
8 ´ vn`1v

˚
nqau

˚
n

are in A.

For readers who know the terminology, compare condition (iii) above

to the definition of a quasi-morphism in the sense of Cuntz [5, Section

17.6].

Here is the main K-theoretic ingredient we need.

Proposition 6.7. Let A be C˚-algebra faithfully represented on a Hilbert

space H equipped with a stability structure punq and τ . Let v0 and v8
be stably equivalent isometries for this representation. Then the homo-

morphisms

φ0, φ8 : AÑ A

induced by conjugation by v0 and v8 induce the same map on K-theory.

Proof. Let

D :“ tpa, bq PMpAq ‘MpAq | a´ b P Au

be the double of MpAq along A as in Lemma 6.2. Note that Lemma

6.5 implies that K˚pMpAqq “ 0, so we may apply the conclusions of

Lemma 6.2 to D. Let

C “
!

pc, dq P D | d “
8
ÿ

n“0

unv8av
˚
8u

˚
n for some a P A

)

,
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which is a C˚-subalgebra of D. Define also

w1 :“
8
ÿ

n“0

unvn`1v
˚
nu
˚
n, w2 :“

8
ÿ

n“0

unv8v
˚
8u

˚
n

(which are elements of MpAq by condition (ii) in Definition 6.6) and

set w :“ pw1, w2q PMpAq ‘MpAq. We claim that w is actually in the

multiplier algebra of C.

Indeed, if pc, dq is in C, then dw2 “ w2d “ d, so it suffices to show

that cw1 ´ d and w1c´ d are in A; we focus on w1c´ d, the other case

being similar. We have

w1c´ d “ w1pc´ dq ` pw1d´ dq,

whence as c ´ d P A and w1 P MpAq, it suffices to show that w1d ´ d

is in A. There exists a P A with

w1d´ d “
8
ÿ

n“0

unpvn`1v
˚
nv8av

˚
8 ´ v8av

˚
8qu

˚
n

“

8
ÿ

n“0

unpvn`1v
˚
n ´ v8v

˚
8qv8av

˚
8u

˚
n,

and this is in A by condition (iv) of Definition 6.6, completing the proof

of the claim.

Now, provisionally define ˚-homomorphisms

α, β : AÑ C

by the formulas

αpaq :“

˜

8
ÿ

n“0

unvnav
˚
nu
˚
n ,

8
ÿ

n“0

unv8av
˚
8u

˚
n

¸

and

βpaq :“

˜

8
ÿ

n“0

unvn`1av
˚
n`1u

˚
n ,

8
ÿ

n“0

unv8av
˚
8u

˚
n

¸

.

It is clear from our assumptions that α : A Ñ C is a homomorphism.

That β is a homomorphism and has image in C follows as w is in the

multiplier algebra of C, and as wαpaqw˚ “ βpaq for all a P A. Moreover,

a direct computation gives that αpaqw˚w “ αpaq, whence α and β

induce the same map K˚pAq Ñ K˚pCq by Lemma 6.1. Post-composing



34 ERIK GUENTNER, RUFUS WILLETT, AND GUOLIANG YU

with the map K˚pCq Ñ K˚pDq induced by the inclusion of C into D,

it follows that α and β induce the same map K˚pAq Ñ K˚pDq.

Let now v P MpAq be the isometry with the property in Definition

6.4. Then pv, vq is a multiplier of D; conjugating by pv, vq and applying

Lemma 6.1 shows that β induces the same map K˚pAq Ñ K˚pDq as

the ˚-homomorphism γ : AÑ D defined by

γpaq :“

˜

8
ÿ

n“1

unvnav
˚
nu
˚
n ,

8
ÿ

n“1

unv8av
˚
8u

˚
n

¸

.

On the other hand, the ˚-homomorphism δ : AÑ D defined by

δ : a ÞÑ pu0v8av
˚
8u

˚
0 , u0v8av

˚
8u

˚
0q

induces the zero map on K-theory (by Lemma 6.2) and has orthogonal

image to γ. Hence from Lemma 6.3 the sum ε :“ γ`δ is a well-defined

˚-homomorphism that induces the same map on K-theory as β.

Compiling our discussion so far, we have

(6.1) α˚ “ β˚ “ γ˚ “ γ˚ ` δ˚ “ ε˚

as mapsK˚pAq Ñ K˚pDq. Let ψ0, ψ8 : AÑ D be the ˚-homomorphisms

defined by

ψ0 : a ÞÑ pu0v0av
˚
0u
˚
0 , 0q, and ψ8 : a ÞÑ pu0v8av

˚
8u

˚
0 , 0q,

and define ζ : AÑ D by

ζpaq :“

˜

8
ÿ

n“1

unvnav
˚
nu
˚
n ,

8
ÿ

n“0

unv8av
˚
8u

˚
n

¸

.

Note that ζ has orthogonal image to ψ0 and ψ8, and that

ψ0 ` ζ “ α and ψ8 ` ζ “ ε;

hence from Lemma 6.3 and line (6.1),

pψ0q˚ ` ζ˚ “ α˚ “ ε˚ “ pψ8q˚ ` ζ˚.

Cancelling ζ˚ thus gives that ψ0 and ψ8 induce the same maps on

K-theory.

Finally, note that if ι : AÑ D is the map of Lemma 6.2, then

ψipaq “ u0ιpφipaqqu
˚
0
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for all a P A and i P t0,8u. This implies the desired result as Lemmas

6.1 and 6.2 show that conjugation of D by pu0, u0q and ι : AÑ D both

induce isomorphisms on K-theory. �

Dynamical part. We now provide the dynamical input for Proposi-

tion 6.7 needed to complete the proof of Proposition 5.1. Recall that we

want to show that K˚pA
spGqq is zero whenever the open subgroupoid

G of Γ˙X and number s ě 0 satisfy

(6.2) G Ď tpgx, g, xq P Γ˙X | |g| ď su.

For the remainder of the section, fix s and G satisfying these hypothe-

ses.

We will start by building a convenient representation of the C˚-

algebra AspGq. For z P PspΓq, recall from Definition 3.2 that supppzq

consists of those g P Γ spanning the minimal simplex containing z, and

define

PspGq :“ tpz, xq P PspΓq ˆX | pgx, g, xq P G for all g P supppzqu.

Recall from Definition 2.3 that Zs is our fixed dense subset of PspΓq.

Define ZG :“ pZs ˆXq X PspGq and

HG :“ `2
pZG, H b `

2
pΓqq “ `2

pZGq bH b `
2
pΓq

which is a subspace of Hs “ `2pZs ˆ X,H b `2pΓqq as described in

line (2.2) above. We have the following lemma; the proof involves

essentially the same computations as Lemma 3.3 above, and is thus

omitted.

Lemma 6.8. The faithful representation of C˚pG; sq on Hs restricts

to a faithful representation on HG. �

For the remainder of this section, we will consider C˚pG; sq as faith-

fully represented on HG, and AspGq :“ C˚L,0pG; sq as faithfully repre-

sented on L2pr0,8q, HGq in the obvious way.

Now, the assumption in line (6.2) implies that if pz, xq P PspGq and

supppzq “ tg1, ..., gnu, then te, g1, ..., gnu also spans a simplex ∆ in

PspΓq such that ∆ ˆ txu is contained in PspGq. Hence the family of

functions

Fr : PspGq Ñ PspGq, pz, xq ÞÑ pp1´ rqz ` re, xq, 0 ď r ď 1
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defines a homotopy between the identity map on PspGq and the obvious

projection onto the subset tpz, xq P PspGq | z “ eu, which is just a copy

of the unit space Gp0q.

Let π : ZG Ñ Zs denote the projection onto the first coordinate, and

let Z denote the image of π. Note that Z is countable, whence as H

is infinite dimensional we may find a family twz,0uzPZ of isometries on

H such that
ř

zPZ wz,0w
˚
z,0 converges strongly to the identity. For each

z P Z, let wz : H b `2pΓq Ñ H b `2pΓq be the isometry defined by

wz :“ wz,0 b 1`2pΓq.

Now, for each r P QX r0, 1s define

wprq : `2
pZGq bH b `

2
pΓq Ñ `2

pZGq bH b `
2
pΓq

δz,x b η ÞÑ δFrpz,xq b wzη

which is a well-defined isometry by definition of Zs (Definition 2.3

above) and of ZG; note that the different wprq have mutually orthogonal

ranges as r ranges over QX r0, 1s. For each t P r0,8q and n P NYt8u
(we assume N includes zero), define an isometry

vnptq : `2
pZGq bH b `

2
pΓq Ñ `2

pZGq bH b `
2
pΓq

by the following prescription. First, we define for m P N

vnpmq “

$

&

%

wp0q m ď n

wp 1
n
pm´ nqq m P pn, 2nq X N

wp1q m ě 2n

.

Schematically, we thus have

vnpmq “ wp0q, ¨ ¨ ¨ , wp0q
loooooooomoooooooon

mPr0,ns

, wp 1
n
q, wp 2

n
q, ¨ ¨ ¨ , wpn´1

n
q

loooooooooooooomoooooooooooooon

mPpn,2nq

, wp1q, wp1q, ¨ ¨ ¨
loooooooomoooooooon

mPr2n,8q

.

Now we interpolate between these values by defining for t “ m`s with

s P p0, 1q,

vnptq “ cosp
π

2
sqvnpmq ` sinp

π

2
sqvnpm` 1q.

It is not difficult to check that the map

r0,8q Ñ Bp`2
pZGq bH b `

2
pΓqq, t ÞÑ vnptq

is norm continuous for each n (and in fact, the family is equicontinuous

as n varies), and that the image consists entirely of isometries. The

following schematic may help to visualize the operators vnptq.
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Here vnptq is constantly equal to wp0q in the left triangular region, and

constantly equal to wp1q in the right triangular region. Along each

of the horizontal arrows in the intermediate region, vnptq interpolates

between wp0q and wp1q, taking longer and longer to do so as n increases.

We are now ready to construct isometries as demanded by the defi-

nition of stable equivalence. Define an isometry

vn : L2
pr0,8q, HGq Ñ L2

pr0,8q, HGq

for each n by defining for each ξ P L2pr0,8q, HGq

pvnξqptq :“ vnptqpξptqq.

On the other hand, choose a unitary isomorphism

H –

8
à

n“0

H

and use this to define isometries un,0 : H Ñ H with mutually or-

thogonal ranges such that the sum
ř

un,0u
˚
n,0 converges strongly to the

identity operator. Define

(6.3) un : L2
pr0,8q, HGq Ñ L2

pr0,8q, HGq

to be the isometry on

L2
pr0,8q, HGq “ L2

r0,8q b `2
pZGq bH b `

2
pΓq

induced by tensoring un,0 with the identity on the other factors. We

may think of elements ofMpAspGqq as functions from r0,8q toMpC˚pG; sqq

(subject to various additional conditions, but those are not important

here). Thought of like this, let τ be the topology of pointwise strict

convergence on MpAspGqq, i.e. a net pmiq converges to m if and only



38 ERIK GUENTNER, RUFUS WILLETT, AND GUOLIANG YU

if pmiptqq converges to mptq strictly for all t P r0,8q. It is then not

difficult to see that punq and τ together define a stability structure,

where we take the isometry v needed by the definition to be

v :“
8
ÿ

n“0

un`1u
˚
n,

noting that the sum τ -converges to an element of MpAspGqq.

Lemma 6.9. With notation and stability structure as above, the isome-

tries v0 and v8 are stably equivalent (in the sense of Definition 6.6) with

respect to the C˚-algebra AspGq.

Proof. Let a be an element of CL,0rG; ss, and let T “ aptq for some fixed

t P r0,8q. The matrix entries pvnptqTvnptq
˚qy,zpxq of vnptqTvnptq

˚ will

then be a linear combination of at most four terms of the form

w˚zTFr1 pyq,Fr2 pzqpxqw
˚
y

where r1 and r2 are in QXr0, 1s, and |r1´r2| ă 1{m whenever t ą 2m.

From this description, it is straightforward to check that the Rips-

propagation of vnptqaptqvnptq
˚ is at most the Rips-propagation of aptq

plus mint1, 2{pt ´ 1qu; and therefore in particular that vnav
˚
n is in

CL,0rG; ss. Condition (i) follows from this estimate on Rips propa-

gation and equicontinuity of the sequence of maps pt ÞÑ vnptqq.

To see that vn`1v
˚
n is a multiplier of AspGq, note that the operators

St :“ vn`1ptqvnptq
˚ on `2pZGq b H b `2pΓq have matrix entries pStqy,z

that act as constant functions X Ñ BpH b `2pΓqq; that their Rips-

propagation tends to zero as t tends to infinity uniformly in n; and

that they have Γ-propagation at most s for all t. Condition (ii) follows

from this.

Finally, the fact that the operators
8
ÿ

n“0

unvnav
˚
nu
˚
n ´

8
ÿ

n“0

unv8av
˚
8u

˚
n,

as well as
8
ÿ

n“0

unapv8v
˚
8 ´ vn`1v

˚
nqu

˚
n and

8
ÿ

n“0

unpv8v
˚
8 ´ vn`1v

˚
nqau

˚
n

are in AspGq for all a P AspGq follows from the above discussion and

as for any fixed t and all n ą t, vnptq “ v8ptq. �
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Let now

φ0, φ8 : K˚pA
s
pGqq Ñ K˚pA

s
pGqq

be the maps induced on K-theory by conjugation by v0 and by v8.

Proposition 6.7 and Lemma 6.9 imply that these are the same map. The

following two lemmas will now complete the proof of Proposition 5.1.

Lemma 6.10. The map

φ8 : K˚pA
s
pGqq Ñ K˚pA

s
pGqq

constructed above is the identity map.

Proof. The map φ8 is given by conjugation by the isometry wp0q (con-

stantly in the ‘localization variable’ t), which is in the multiplier algebra

of AspGq. Hence it induces the identity on K-theory by Lemma 6.1. �

Lemma 6.11. The map

φ0 : K˚pA
s
pGqq Ñ K˚pA

s
pGqq

constructed above is the zero map.

Proof. Let Gp0q be the unit space of G, which is an open subgroupoid

of Γ˙X, and thus AspGp0qq makes sense. It is straightforward to check

that φ0 fits into a commutative diagram

K˚pA
spGqq

''

φ0 // K˚pA
spGqq

K˚pA
spGp0qqq

77
,

whence it suffices to show that K˚pA
spGp0qqq “ 0.

Say now that a is an element of AspGp0qq and t P r0,8q, y, z P PspΓq,

and x P X are such that aptqy,zpxq ‰ 0. Then by the condition that

the support of aptq is contained in Gp0q (compare Definitions 3.2 and

3.6 above), we must have that for all g P supppyq and all h P supppzq,

pgx, gh´1, hxq is in Gp0q. This forces gh´1 to be the identity element of

Γ and thus g “ h. As this happens for all g P supppyq and h P supppzq,

this forces supppyq and supppzq to both reduce to a single element

of Γ, and moreover that these elements are necessarily the same. In

particular, aptq has zero Rips-propagation for all t.
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Now, let un : L2pr0,8q, HGq Ñ L2pr0,8q, HGq be the isometries

constructed in line (6.3) above. For each n P N and element a of

AspGp0qq, define apnq to be the function

apnqptq “

"

apt´ nq t ě n

0 t ă n

in AspGp0qq. Define

α : AspGp0qq Ñ AspGp0qq, a ÞÑ
8
ÿ

n“0

una
pnqu˚n.

As every element of AspGp0qq has zero Rips-propagation and satisfies

ap0q “ 0, α is a well-defined ˚-homomorphism. It thus induces a map

on K-theory

α˚ : K˚pA
s
pGp0qqq Ñ K˚pA

s
pGp0qqq.

However, if ι : AspGp0qq Ñ AspGp0qq is the identity map, then a straight-

forward homotopy using uniform continuity of each element of AspGp0qq

shows that α˚ ` ι˚ “ α˚ and we are done. �

7. Mayer-Vietoris

In this section, we prove Proposition 5.2, which we repeat below for

the reader’s convenience.

Proposition 5.2. Let G be an open subgroupoid of Γ ˙ X that is

in the class D of Definition 3.14, and let r0, s0 ě 0. Then there is

s ě maxtr0, s0u (depending on r0, s0 and G) such that the subspace-

inclusion map (cf. Remark 4.7)

Kr0,1{8
˚ pAs0pGqq Ñ Ks,1{8

˚ pAspGqq

is the zero map.

As in Section 6, we first build an abstract K-theoretic machine, and

then use the dynamical assumptions to produce ingredients for that

machine.
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K-theoretic part. We start with a technical lemma about when ele-

ments of controlled K-groups are zero: compare [19, Section 1.6]. The

proof is in large part the same as that of [19, Proposition 1.31], but

as our set up and precise statement are a little different, and to keep

things self-contained, we give a complete proof here.

Before stating the lemma, we recall some notation from Section 4,

and introduce some more. Let A be a non-unital C˚-algebra and S Ď A

a self-adjoint subspace. Let rA be the unitization of A, and let rS be the

subspace of rA spanned by S and the unit. Then

κ : P 1{8
n prSq Ñ Pnp rAq, p ÞÑ χp1{2,8sppq

is the map from quasi-projections in MnprSq to projections in Mnp rAq of

Definition 4.1. Similarly,

κ : U1{8
n prSq Ñ Unp rAq, u ÞÑ upu˚uq´1{2

is the map from quasi-unitaries in MnprSq to unitaries in Mnp rAq of

Definition 4.4. For each m P N, define

rSm :“ spanta1 ¨ ¨ ¨ am P A | ai P rS for all i P t1, ...,muu.

We will also need some notation for standard matrices. Given m P N,

we will write ‘1m’ for the mˆm identity matrix and ‘0m’ for the mˆm

zero matrix. We will adopt the shorthand ‘diagp¨ ¨ ¨ q’ for a diagonal

matrix with given entries: for example

diagpa, b, 0q “

¨

˝

a 0 0

0 b 0

0 0 0

˛

‚.

Lemma 7.1. For any ε ą 0 there are constants L “ Lpεq ě 0 and

M “ Mpεq P N with the following properties. Let A be a non-unital

C˚-algebra and S Ď A a self-adjoint subspace.

(i) Say l P N and pp, nq P P
1{8
l prSq ˆ N is such that the class rp, ns

is zero in K
1{8
0 pSq. Then there exist k1, k2 P N and a homotopy

h : r0, 1s Ñ Pl`k1`k2p
rAq with

hp0q “ diagp0k1 , κppq, 1k2q and hp1q “ diagp0k1 , 0l´n, 1n`k2q,

such that there is an L-Lipschitz map hε : r0, 1s ÑMl`k1`k2p
rSMq

with

sup
tPr0,1s

}hεptq ´ hptq} ă ε.
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(ii) Say l P N, and u P U
1{8
l prSq is such that the class rus is zero in

K
1{8
1 pSq. Then there is k P N and a homotopy h : r0, 1s Ñ Ul`kp rAq

with

hp0q “ diagpκpuq, 1kq and hp1q “ p1l, 1kq

such that there is an L-Lipschitz map hε : r0, 1s Ñ Ml`kprS
Mq

such that

sup
tPr0,1s

}hεptq ´ hptq} ă ε.

To summarize the idea, if a cycle for K
1{8
˚ pSq represents the zero

class, then this can be witnessed by a homotopy that is well-controlled,

both with respect to how fast it goes, and with respect to the subspace

of M8p rAq it passes through.

Proof. We look first at the case of K0. Let pp, nq P P
1{8
l prSq ˆN satisfy

the hypotheses of the lemma. Unwrapping the definitions, this is equiv-

alent to saying that there exist j1, j2, j3 P N and an element tptutPr0,1s

of P
1{8
l`j1`n`j2`j3

pCpr0, 1s, rSqq such that

p0 “ diagpp, 0j1 , 0n, 1j2 , 0j3q and p1 “ diagp0l, 0j1 , 1n, 1j2 , 0j3q.

As r0, 1s is compact, there are 0 “ t0 ă ¨ ¨ ¨ ă tN “ 1 such that

(7.1) }pti ´ pti´1
} ă 1{12 for all i P t1, ..., Nu.

Set m “ j1 ` j2 ` j3 ` n` l. We will first define a Lipschitz homotopy

between

diagpp0, 1mN , 0mNq and diagp0mN , p1, 1mNq

by concatenating the steps below.

(i) Perform a rotation homotopy between

diagpp0, 1mN , 0mNq and diagpp0, 1m, 0m, ..., 1m, 0m
looooooooomooooooooon

N copies of p1m,0mq

q;

(ii) Let

rptq “

ˆ

cospπt{2q ´ sinpπt{2q

sinpπt{2q cospπt{2q

˙

PM2mpCq,
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where each entry represents the corresponding scalar times 1m.

For i P t1, ..., Nu, in the ith ‘block’ diagp1m, 0mq appearing in the

above apply the homotopy

t ÞÑ

ˆ

1m ´ pti 0

0 0

˙

` rptq

ˆ

pti 0

0 0

˙

rptq˚

between diagp1m, 0mq and diagp1´ pti , ptiq to get a homotopy be-

tween

diagpp0, 1m, 0m, ..., 1m, 0mq

and diagpp0, 1m ´ pt1 , pt1 , 1m ´ pt2 , pt2 , ..., 1´ ptN , ptN q.

(iii) For each i P t1, ..., Nu, use a straight line homotopy between 1m´

pti and 1m ´ pti´1
in each appropriate entry to build a homotopy

between

diagpp0, 1m ´ pt1 , pt1 , 1m ´ pt2 , pt2 , ..., 1´ ptN , ptN q

and diagpp0, 1m ´ pt0 , pt1 , 1m ´ pt1 , pt2 , ..., 1´ ptN´1
, ptN q.

(iv) Using a similar homotopy to step (ii), and that p0 “ pt0 , build a

homotopy between

diagpp0, 1m ´ pt0 , pt1 , 1m ´ pt1 , pt2 , ..., 1´ ptN´1
, ptN q

and diagp0m, 1m, ...., 0m, 1m, ptN q.

(v) Finally, recall that ptN “ p1 and use another rotation homotopy

between

diagp0m, 1m, ...., 0m, 1m, p1q and diagp0mN , p1, 1mNq

to complete the proof of the claim.

Write tqtutPr0,1s for the homotopy arrived at by concatenating the

steps above; it is straightforward to check that this homotopy is Lip-

schitz for some universal Lipschitz constant. Note also that all of the

matrices from steps (i)-(v) above have entries from rS, so this homotopy

has image in Mmp2N`1qp
rSq.

We claim that }q2
t ´ qt} ă 5{24 for all t. Indeed, for all t associated

to steps (i), (ii), (iv), and (v) we clearly have that }q2
t ´ qt} ă 1{8, so

the only thing to be checked is the straight line homotopy in step (iii).
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For this, using the bound in line (7.1) it suffices to show that if p, q are

two quasi-projections with }p´ q} ă 1{12, then for any t P r0, 1s,

}pp1´ tqp` tqq2 ´ pp1´ tqp` tqq} ă 5{24.

Computing,

pp1´ tqp` tqq2 ´ pp1´ tqp` tqq

“ p1´ tqpp2
´ pq ´ p1´ tqtppp´ qq ´ p1´ tqtqpq ´ pq ` tpq2

´ qq.

As }p} and }q} are both bounded above by 2, this gives

}pp1´ tqp` tqq2 ´ pp1´ tqp` tqq}

ă p1´ tqp1{8q ` tp1´ tqp1{6q ` tp1´ tqp1{6q ` tp1{8q

ď 1{8` 2{24 “ 5{24

as claimed.

Hence the spectrum of every qt is bounded away from 1{2, and thus

defining hptq :“ κpqtq makes sense. Fix a sequence of real-valued poly-

nomials pfiq converging uniformly to χp1{2,8s on the spectrum of every

qt. As fi is a polynomial and t ÞÑ qt is Lipschitz and bounded, t ÞÑ fipqtq

is Lipschitz for each i, with some Lipschitz constant depending only on

the fixed choice of fi, and on the Lipschitz constant of t ÞÑ qt. It

moreover takes image in Mmp2N`1qp
rSMiq, where Mi is the degree of fi.

It follows from all of this that we may take hεptq :“ fipqtq for some

suitably large i, and this will have all the right properties.

We now turn to the case of K1. Let rus satisfy the hypotheses, so

there exist j P N and a homotopy tututPr0,1s in U
1{8
l`jpCpr0, 1s,

rSqq such

that

u0 “ diagpu, 1jq and u1 “ diagp1l, 1jq.

Set m “ l ` j. Let 0 “ t0 ă ¨ ¨ ¨ ă tN “ 1 be such that

(7.2) }uti ´ uti´1
} ă 1{32 for all i P t1, ..., Nu.

We will define a Lipschitz homotopy between

diagpu0, 12mNq and diagpu1, 12mNq.

by concatenating the homotopies below.
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(i) Connect

diagpu0, 12mNq “ diagpu0, 1m, ..., 1m
loooomoooon

N

, 1mNq

and diagpu0, u
˚
t1
ut1 , ...., u

˚
tN
utN , 1mNq

by the straight line homotopy between the ith copy of 1m and

u˚tiuti .

(ii) Use a rotation homotopy between

diagp1m, u
˚
t1
, ...., u˚tN , 1mNq and diagpu˚t1 , ...., u

˚
tN
, 1m, 1mNq,

to produce a homotopy between

diagpu0, u
˚
t1
ut1 , ...., u

˚
tN
utN , 1mNq

“ diagp1m, u
˚
t1
, ...., u˚tN , 1mNqdiagpu0, ut1 , ...., utN , 1mNq

and

diagpu˚t1u0, u
˚
t2
ut1 , ...., u

˚
tN
utN´1

, utN1mNq

“ diagpu˚t1 , ...., u
˚
tN
, 1m, 1mNqdiagpu0, ut1 , ...., utN , 1mNq.

(iii) Use another straight line homotopy between each u˚tiuti´1
and 1m

to build a homotopy between

diagpu˚t1u0, u
˚
t2
ut1 , ....,u

˚
tN
utN´1

, utN , 1mNq

and diagp1m, ...., 1m
loooomoooon

N

, utN , 1mNq

(iv) Finally, one more rotation homotopy connects

diagp1m, ...., 1m
loooomoooon

N

, utN , 1mNq and diagpu1, 12mNq,

where we used that utN “ u1.

Write tvtutPr0,1s for the homotopy resulting from concatenating the

above homotopies; it is straightforward to check that this homotopy is

Lipschitz for some universal Lipschitz constant, and that each vt is a

matrix in Mmp2N`1qp
rS2q.

We claim that for each t,

(7.3) }v˚t vt ´ 1} ă 7{8 and }vtv
˚
t ´ 1} ă 7{8.
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For t associated to step (iv), this is immediate. For t associated to step

(ii), this follows from the fact that if v and w are quasi-unitaries, then

their product satisfies

}pvwqpvwq˚ ´ 1} ď }vpww˚ ´ 1qv˚} ` }vv˚ ´ 1}

ă p1` 1{8qp1{8q ` p1{8q

ă 7{8

and similarly }pvwq˚pvwq ´ 1} ă 7{8. For t associated to steps (i) and

(iii), we first claim that if δ, ε P p0, 1q and }u´v} ă ε, and }uu˚´1} ă δ

and }u˚u´ 1} ă δ, then

(7.4) }vv˚ ´ 1} ă δ ` 4ε and }v˚v ´ 1} ă δ ` 4ε.

Indeed, using that }u} ă
?

1` δ,

}vv˚ ´ 1} ă }vv˚ ´ uu˚} ` δ ď }v}}v˚ ´ u˚} ` }v ´ u}}u˚} ` δ

ă p
?

1` δ ` εqε` p
?

1` δqε` δ ă δ ` 4ε,

and the other estimate is similar. Now, looking at step (i),, we have that

all elements appearing in the homotopy are within 1{8 of diagpu0, 12mNq,

so applying the estimate in line (7.4) with δ “ ε “ 1{8 establishes the

estimate in line (7.3). On the other hand, looking at step (iii), we first

note that for any i P t1, ..., Nu,

}u˚tiuti´1
´ 1} ď }u˚ti}}uti ´ uti´1

} ` }u˚tiuti ´ 1}

ď
a

1` 1{8p1{32q ` 1{8 ă 3{16.

Hence every element in the homotopy in step (iii) is within 3{16 of

diagp1mN , utN , 1mNq.

Applying the estimate in line (7.4) with δ “ 1{8 and ε “ 3{16 then

again gives the estimate in line (7.3), and we are done with the claim.

It follows in particular that pv˚t vtq
´1{2 makes sense for all t, and thus

we may define hptq :“ κpvtq. Moreover, there is a sequence pfiq of real-

valued polynomials that converges uniformly to the function t ÞÑ t´1{2

on the spectrum of each v˚t vt. Analogously to the case of K0, we may

now take hεptq :“ vtfipv
˚
t vtq for some suitably large i (depending on ε);

this has all the right properties. �
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Our main K-theoretic goal is a sort of controlled Mayer-Vietoris

sequence. Let us first recall the relevant classical Mayer-Vietoris se-

quence in operator K-theory: see for example [14, Section 3] or [35,

Proposition 2.7.15] for more details.

Proposition 7.2. Let A be a C˚-algebra, and let I and J be ideals

in A such that A “ I ` J . Then there is a functorial six-term exact

sequence

K0pI X Jq // K0pIq ‘K0pJq // K0pAq

B

��
K1pAq

B

OO

K1pIq ‘K1pJqoo K1pI X Jqoo

.

The maps

KipI X Jq Ñ KipIq ‘KipJq

are of the form x ÞÑ px,´xq (where we abuse notation by writing x both

for an element of KipI X Jq, and its image in KipIq and KipJq), and

the maps

KipIq ‘KipJq Ñ KipAq

are of the form px, yq ÞÑ x` y (with a similar abuse of notation). �

The maps above labeled ‘B’ can also be described explicitly (they

are connected to the index and exponential maps of the usual six-term

exact sequence), but we will not need this.

We will need some notation and an appropriate excisiveness condi-

tion for our controlled Mayer-Vietoris sequence.

Definition 7.3. Let K “ Kp`2pNqq, and A be a C˚-algebra. Let AbK
denote the spatial tensor product of A and K; using the canonical

orthonormal basis on `2pNq, we think of elements of AbK as N-by-N
matrices with entries from A. For a subspace S of A, let S bK denote

the subspace of AbK consisting of matrices with all entries in S.

In particular, if A is filtered as in Definition 3.8, then we may define

pAbKqr :“ Ar bK. It is straightforward to check that this definition

induces a filtration on AbK.
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Definition 7.4. Let A be a filtered C˚-algebra, and I be a C˚-ideal in

A equipped with its own filtration. We say that I is a filtered ideal5of A

if for any r ě 0, Ir Ď Ar, and if for any r, s ě 0, As ¨ Ir Y Ir ¨As Ď Is`r.

Remark 7.5. For our applications, the special case where I “ A as a

C˚-algebra, but where I and A do not have the same filtration, turns

out to be particularly important.

Definition 7.6. Let pIω, Jω;AωqωPΩ be an indexed set of triples, where

each Aω is a filtered C˚-algebra, and each Iω and Jω is a filtered ideal

in Aω. Give each stabilization AωbK, IωbK and JωbK the filtration

from Definition 7.3 (note that IωbK and JωbK are also filtered ideals

in Aω bK with these definitions).

The collection pIω, Jω;AωqωPΩ of pairs of ideals and C˚-algebras con-

taining them is uniformly excisive if for any r0,m0 ě 0 and ε ą 0, there

are r ě r0, m ě 0, and δ ą 0 such that:

(i) for any ω P Ω and any a P pAω bKqr0 of norm at most m0, there

exist elements b P pIω b Kqr and c P pJω b Kqr of norm at most

m such that }a´ pb` cq} ă ε;

(ii) for any ω P Ω and any a P Iω bK X Jω bK such that

dpa, pIω bKqr0q ă δ and dpa, pJω bKqr0q ă δ

there exists b P Iωr bK X Jωr bK such that }a´ b} ă ε.

Note that condition (ii) implies that for any ω, the family of subspaces

pIωr bKX Jωr bKqrě0 defines a filtration of Iω bKX Jω bK; we equip

each Iω bK X Jω bK with this filtration.

Note that condition (i) above is a controlled analogue of the condition

‘A “ I ` J ’ from Proposition 7.2, while condition (ii) is a controlled

analogue of the fact that if a P A is close to both I and J , then there

is an element of I X J that is close to a (this can be shown using

approximate units).

We are now ready for our controlled Mayer-Vietoris theorem. See

[20, Sections 2 and 3] for related ‘controlled Mayer-Vietoris sequences’,

approached in a somewhat different way.

5This is a more general notion than the filtrations on ideals used by Oyono-Oyono

and the third author in [19, Subsection 3.1].
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Proposition 7.7. Let pIω, Jω;AωqωPΩ be a uniformly excisive collec-

tion, where the algebras and ideals are all non-unital. Then for any

r0 ě 0 there are r1, r2 ě r0 with the following property. For each ω and

each x P K
r0,1{8
˚ pAωq there is an element

Bcpxq P K
r1,1{8
˚ pIω X Jωq

such that if Bcpxq “ 0 then there exist

y P Kr2,1{8
˚ pIωq and z P Kr2,1{8

˚ pJωq

such that

x “ y ` z in Kr2,1{8
˚ pAωq

(where as usual we abuse notation by omitting explicit notation for

subspace-inclusion maps).

Moreover, the ‘boundary map’ Bc has the following naturality prop-

erty. Let pKθ, Lθ;BθqθPΘ be another uniformly excisive collection, where

the algebras and ideals are non-unital. Assume moreover that there is

a map π : Θ Ñ Ω and for each θ P Θ an inclusion Aπpθq Ď Bθ such that

for each r ě 0 we have that A
πpθq
r Ď Bθ

r , I
πpθq
r Ď Kθ

r , J
πpθq
r Ď Lθr. Let

r0 be given, and let r1 be as in the statement above for both uniformly

excisive families6. Then the diagram

K
r0,1{8
˚ pAπpθqq

Bc //

��

K
r1,1{8
˚ pIπpθq X Jπpθqq

��

K
r0,1{8
˚ pBθq

Bc // K
r1,1{8
˚ pKθ X Jθq ,

where the vertical maps are subspace inclusions, commutes.

The subscript in ‘Bc’ stands for ‘controlled’: Bc is a controlled ana-

logue of the usual Mayer-Vietoris boundary map in K-theory. It will

be crucial for our applications that the numbers r0, r1, r2 appearing in

the above are all independent of the index ω.

Proof. Let Λ be a set equipped with a map π : Λ Ñ Ω. Let K denote

the compact operators on `2pNq and let
ś

λPΛA
πpλqbK denote the C˚-

algebra of bounded, Λ-indexed sequences where the λth element comes

6We may assume the same r1 works for both families at once by combining them

into a single family and applying the first part.
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from Aπpλq bK. With notation as in Definition 7.3, define

AΛ :“

#

paλq P
ź

λPΛ

AπpλqbK
ˇ

ˇ

ˇ
there is r ě 0 with aλ P A

πpλq
r bK for all λ

+

,

which is a ˚-subalgebra of
ś

λPΛA
πpλqbK, and let AΛ be its C˚-algebraic

closure. Define also IΛ to be
!

paλq P AΛ

ˇ

ˇ

ˇ
there is r ě 0 with aλ P I

πpλq
r bK for all λ

)

and similarly for JΛ. The definition of a filtered ideal (see Definition 7.4

above) implies that IΛ and JΛ are ˚-ideals in AΛ, whence their closures

IΛ and JΛ are C˚-ideals in AΛ. Moreover, the uniform excisiveness

assumption implies that AΛ “ IΛ ` JΛ. Hence (see for example [14,

Section 3]) there is a six-term exact Mayer-Vietoris sequence

(7.5) K0pIΛ X JΛq // K0pIΛq ‘K0pJΛq // K0pAΛq

B

��
K1pAΛq

B

OO

K1pIΛq ‘K1pJΛqoo K1pIΛ X JΛq.oo

From now on, we will focus on the case of K0; the case of K1 is

essentially the same. Define

Λ :“ tpω, xq | ω P Ω, x P K
r0,1{8
0 pAωqu

equipped with the map π : Λ Ñ Ω that sends an element to its first

coordinate. For each λ “ pω, xq P Λ choose a pair

ppλ, nλq P P
1{8
mλ
pAωr0q ˆ N

for some mλ P N (see Definition 4.1 for notation) such that x “ rpλ, nλs.

Identifying MmλpA
ωq with the C˚-subalgebra of Aω b K consisting of

N ˆ N matrices that are only non-zero in the first mλ ˆmλ square in

the top left corner, we get a well-defined element ~p :“ ppλqλPΛ of AΛ.

With κ as in Definition 4.1, the formal difference

~x :“ rpκppλqqλPΛs ´ rp1nλqλPΛs

defines an element of K0pAΛq, and so the Mayer-Vietoris sequence of

line (7.5) gives an element Bp~xq in K1pIΛ X JΛq. We may represent

Bp~xq as a Λ-indexed collection puλqλPΛ, where each uλ is a unitary in a

matrix algebra over the unitization of IπpλqXJπpλq. On the other hand,

by definition of IΛ and JΛ and by the uniform excisiveness condition

there is r1 ě 0 (which we may assume is at least r0) and a Λ-tuple
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pvλqλPΛ with each vλ in some matrix algebra over the space spanned

by I
πpλq
r1 X J

πpλq
r1 and the unit, and so that }uλ ´ vλ} ă 1{20. From this

estimate, one checks that each vλ is a quasi-unitary as in Definition

4.4 and thus defines a class rvλs P K
r1,1{8
1 pIπpλq X Jπpλqq. For each

λ “ pω, xq P J , define

Bcpxq :“ rvλs P K
r1,1{8
1 pIω X Jωq.

We now look at what happens when Bcpxq “ 0. Let Λ1 Ď Λ be the

subset of all pω, xq P Λ such that Bcpxq “ 0 in K
r1,1{8
1 pIπpλq X Jπpλqq.

Define a new element ~x 1 P K0pAΛq by setting the λth component equal

to rκppλqs ´ r1nλs if λ P Λ1, and equal to 0 otherwise.

For each λ “ pω, xq P Λ1 let vλ be a quasi-unitary such that Bcpxq “

rvλs. The fact that rvλs is zero in K
r1,1{8
1 pIπpλq X Jπpλqq for each λ P Λ1

and Lemma 7.1 together give a homotopy between a stabilized version

of the sequence pκpvλqqλPΛ1 and zero in K1pIΛ X JΛq. With B the stan-

dard boundary map as in diagram (7.5) we thus have that Bp~x 1q “ 0 in

K1pIΛX JΛq. Hence by exactness of the Mayer-Vietoris sequence there

are elements ~y P K0pIΛq and ~z P K0pJΛq such that ~x 1 “ ~y`~z in K0pAΛq

(as usual, we have suppressed notation for subspace-inclusion maps).

Suitably approximating representatives of ~y and ~z in each component

and applying the injectivity part of Proposition 4.9 gives the desired

conclusion.

The naturality property in the second paragraph of the statement

follows directly from the corresponding naturality property for the clas-

sical Mayer-Vietoris sequence: we leave the details to the reader. �

Dynamical part. We now use the dynamical assumptions to produce

ingredients for the K-theoretic machine just built, and thus complete

the proof of Proposition 5.2.

First, we define the algebras we will be using. These are subalgebras

of our usual obstruction C˚-algebras As from Definition 3.9, but we

will also need to allow ourselves to change the filtrations involved in

order to ‘relax control’ in some sense. This will give us two different

uniformly excisive families in the sense of Definition 7.6: our first task

in this section will be to define these families and establish that they

are indeed uniformly excisive.
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Definition 7.8. Fix an open subgroupoid G of Γ˙X and a constant

s0 ě 1. Let Ω be the set of all pairs ω “ pG0, G1q where G0 and G1

are open subgroupoids of G such that Gp0q “ G
p0q
0 YG

p0q
1 . Throughout

this definition, we work relative to the subgroupoid G when defining

expansions as in Definition 3.11.

For our first family, let ω “ pG0, G1q P Ω and r ě 0, and define

Bω
r :“ As0pG`r0 qr ` A

s0pG`r1 qr ` A
s0pG`r0 XG`r1 qr

and define also

Bω :“
ď

rě0

Bω
r

to be the closure of the union of the family tBω
r urě0 in the norm topol-

ogy of As0 .

Remark 7.9. We note that the filtration pBω
r qrě0 depends on the pair

ω “ pG0, G1q, and not only on the ambient groupoid G. In the main

proof, we will choose an appropriate pair pG0, G1q based on a given scale

r for the original filtration on As that was introduced in Definition 3.9.

Thus the filtration on As will be adapted depending on the scale at

which we are working, and the decomposition of G that is appropriate

to that scale.

Define subspaces of Bω
r by

Iωr :“ As0pG`r0 qr ` A
s0pG`r0 XG`r1 qr

and

Jωr :“ As0pG`r1 qr ` A
s0pG`r0 XG`r1 qr

and define

Iω :“
ď

rě0

Iωr , Jω :“
ď

rě0

Jωr .

We now come to our second family. Let Ω ˆ rs0,8q be the set of

all triples pω, sq “ pG0, G1, sq, where G0 and G1 are open subgroupoids

of G and s ě s0. For pG0, G1, sq P Ω ˆ rs0,8q and r ě 0, define a

subspace Bω,s
r of As by

Bω,s
r :“ As0pG`r0 qr ` A

s0pG`r1 qr ` A
s
pG`r0 XG`r1 qsr

and define also

Bω,s :“
ď

rě0

Bω,s
r
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to be the closure of the union of the family tBω,s
r urě0 in the norm

topology of As. Define subspaces of Bω,s
r by

Iω,sr :“ As0pG`r0 qr ` A
s
pG`r0 XG`r1 qsr

and

Jω,sr :“ As0pG`r1 qr ` A
s
pG`r0 XG`r1 qsr

and finally define

Iω,s :“
ď

rě0

Iω,sr , Jω :“
ď

rě0

Jω,sr .

Remark 7.10. (This remark may be safely ignored by readers who do

not know the earlier work). Comparing our work in this paper to [8],

the second filtration above plays an analogous role to the relative Rips

complex of [8, Appendix A].

Our aim is to show that the definitions above give us two uniformly

excisive families in the sense of Definition 7.6. This requires some

preliminaries on ‘partition of unity’ type constructions.

The next definition and lemma will be given in slightly more gener-

ality than we need as this does not complicate the proof, and maybe

makes the statements slightly cleaner.

Definition 7.11. Let K be a compact subset of X, let tU0, ..., Unu be

a finite collection of open subsets of X that cover K, and let tφ0, ..., φnu

be a subordinate partition of unity on K: precisely, each φi is a con-

tinuous function X Ñ r0, 1s with support contained in Ui, and for each

x P K we have φ0pxq ` ¨ ¨ ¨ ` φnpxq “ 1.

Let s ě 0 and recall the definitions of the Rips complex PspΓq,

barycentric coordinates tg : PspΓq Ñ r0, 1s, and Hilbert space Hs :“

`2pZs ˆX,H b `2pΓqq from Section 2. For i P t0, ..., nu, let Mi be the

multiplication operator on Hs associated to the function

Zs ˆX Ñ r0, 1s, pz, xq ÞÑ
ÿ

gPΓ

tgpzqφipgxq.

For the next lemma, recall the notion of the support of an operator

in C˚pΓ ü X; sq from Definition 3.2 above.

Lemma 7.12. With notation as in Definition 7.11, the operators Mi

have the following properties.
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(i) Each Mi has norm at most one.

(ii) If T P C˚pΓ ü X; sq satisfies

tx P X | pgx, g, xq P supppT q for some g P Γu Ď K,

then T “ T pM0 ` ¨ ¨ ¨ `Mnq.

(iii) For any T P C˚pΓ ü X; sq and i P t0, ..., nu,

supppTMiq Ď

#

pgx, g, xq P Γ˙X
ˇ

ˇ

ˇ
x P

ď

|h|ďs

h ¨ Ui

+

X supppT q.

Proof. Part (i) follows as each Mi is a multiplication operator associ-

ated to a function with range contained in r0, 1s. For use in the re-

mainder of the proof, note that for i P t0, ..., nu, any T P C˚pΓ ü X; sq

and any y, z P Zs and x P X,

(7.6) pTMiqy,zpxq “ Ty,zpxq ¨
ÿ

hPΓ

thpzqφiphxq.

Hence

(7.7) T pM0`¨ ¨ ¨`Mnqy,zpxq “ Ty,zpxq¨
ÿ

hPΓ

thpzqpφ0phxq`¨ ¨ ¨`φnphxqq.

Assume now T satisfies the support condition in part (ii). If Ty,zpxq “

0, then clearly the above is zero. Otherwise, if Ty,zpxq ‰ 0, then

pgx, gh´1, hxq P supppT q for all g P supppyq and h P supppzq. In

particular, hx P K for all h P supppzq, and so
ÿ

hPΓ

thpzqpφ0phxq ` ¨ ¨ ¨ ` φnphxqq “
ÿ

hPΓ

thpzq “ 1,

using that tφ0, ..., φnu is a partition of unity on K; combined with line

(7.7), this gives part (ii).

For part (iii), say pgx, gk´1, kxq P supppTMiq for some T P C˚pΓ ü

X; sq. Hence there are y, z P Zs with g P supppyq, k P supppzq and

pTMiqy,zpxq ‰ 0. From line (7.6), this implies that Ty,zpxq ‰ 0, whence

pgx, gk´1, kxq P supppT q. On the other hand, we must also have
ÿ

hPΓ

thpzqφiphxq ‰ 0,

whence there is h P supppzq with φiphxq ‰ 0, and thus hx is in Ui. As

h and k are both in supppzq and z is in Zs, this forces |kh´1| ď s. On

the other hand, kx “ pkh´1qhx is in pkh´1qUi, which completes the

proof. �
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We are now ready to show that the families from Definition 7.8 are

uniformly excisive.

Lemma 7.13. Fix an open subgroupoid G of Γ ˙ X, and s0 ě 1.

Let Ω be the set of all pairs pG0, G1q of open subgroupoids of G as in

Definition 7.8. Then with notation as in that definition, the collections

pIω, Jω;Bω
qωPΩ and pIω,s, Jω,s;Bω,s

qpω,sqPΩˆrs0,8q

are uniformly excisive.

Proof. Each subspaceBω
r of As0 is self-adjoint as it is a sum of subspaces

that are themselves self-adjoint by Lemma 3.3. It is clear thatBω
r0
Ď Bω

r

for r0 ď r, and the union
Ť

rě0B
ω
r is dense in Bω by definition. These

observations apply similarly for Bω,s
r , and for Iωr , Jωr , Iω,sr , and Jω,sr .

To complete the proof that Bω is filtered and Iω, Jω are filtered ideals

(and similarly for the s-decorated versions) we must look at products.

Let r1, r2 ě 0. First, note that the inclusions

As0pG`r1i qr1 ¨ A
s0pG`r2i qr2 Ď As0pG

`pr1`r2q
i qr1`r2 , where i P t0, 1u,

As0pG`r10 XG`r11 qr1 ¨A
s0pG`r20 XG`r21 qr2 Ď AspG

`pr1`r2q
0 XG

`pr1`r2q
1 qr1`r2 ,

and

AspG`r10 XG`r11 qr1s¨A
s
pG`r20 XG`r21 qr2s Ď AspG

`pr1`r2q
0 XG

`pr1`r2q
1 qpr1`r2qs

follow directly from Lemmas 3.3 and 3.12. Similarly,

As0pG`r10 qr1 ¨ A
s0pG`r21 qr2 Ď As0pG

`pr1`r2q
0 qr1`r2 X A

s0pG
`pr1`r2q
1 qr1`r2

and finally, using that As0pGqr Ď AspGqr for any open G and r ě 0

and that s ě s0 ě 1,

As0pG`r1i qr1 ¨ A
s
pG`r20 XG`r21 qr2s Ď AsppG`r20 XG`r21 q

`r1qr2s`r1

Ď AsppG`r20 XG`r21 q
`r1qpr2`r1qs

Ď AsppG`r20 q
`r1 X pG`r21 q

`r1qpr1`r2qs

Ď AspG
`pr1`r2q
0 XG

`pr1`r2q
1 qpr1`r2qs

for i P t0, 1u, where the last step uses Lemma 3.13. Combining the

last four displayed lines completes the check that both Bω and Bω,s

are filtered. Moreover, they show that Iω and Jω are filtered C˚-ideals

in Bω, and similarly for the s-decorated versions.
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We now have to check that the collection pIω, Jω;BωqωPΩ is uniformly

excisive as in Definition 7.6, and similarly for the s-decorated versions.

For notational simplicity, we will ignore the copy of the compact oper-

ators appearing in Definition 7.6: the reader can check this makes no

real difference to the proof.

Look first at part (i) of the definition. Let Ui be the unit space of

G`r0i for i P t0, 1u. Say a is an element of Bω
r0

whence

K :“ tx P X | pgx, g, xq P supppaptqq for some t P r0,8q, g P Γu,

is a compact subset of U0 Y U1 (see Definitions 3.6 and 3.9 above).

Let M0, M1 be as in Definition 7.11 with respect to the Rips complex

PspΓq, the compact set K, the open sets U0 and U1, and some choice

of partition of unity tφ0, φ1u. From Lemma 7.12 part (i) we have that

}M0} ď 1 and }M1} ď 1, and from part (ii) that aptqpM0 `M1q “ aptq

for all t. Hence to complete the proof that our algebras satisfy part (i)

of Definition 7.6, it suffices to show that there exists r ě 0 (which is

allowed to depend on r0 and s0, but not on any of the other data) such

that for each ω, t ÞÑ aptqM0 is in Iωr and t ÞÑ aptqM1 is in Jωr . We focus

on the case of M0 and Iω; the other case is similar. We claim that in

fact r “ 2r0 ` s0 works.

Write a “ b0 ` b1 ` c, where bi P A
s0pG`r0i qr0 and c P As0pG`r00 X

G`r01 qr0 . Part (iii) of Lemma 7.12 implies that for each t P r0,8q

supppb0ptqM0q Ď supppb0ptqq and supppcptqM0q Ď supppcptqq,

from which it follows straightforwardly that t ÞÑ b0ptqM0 and t ÞÑ

cptqM0 are in As0pG`r00 qr0 and As0pG`r00 X G`r01 qr0 respectively; more-

over, these are subspaces of Iωr . To complete the proof, we check that

t ÞÑ b1ptqM0 is in Iωr .

Assume that pgx, gh´1, hxq is in the support of b1ptqM0 for some t,

and write T “ b1ptq for ease of notation. Then there exist y, z P Ps0pΓq

with g P supppyq, h P supppzq and pTM0qy,zpxq ‰ 0. Hence from line

(7.6) we must have that Ty,zpxq ‰ 0 and so y, z are actually in Ps0pΓq

and |gh´1| ď r0 ď r. Moreover,

ÿ

kPΓ

tkpzqφ0pkxq ‰ 0,
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whence there is k P supppzq such that φ0pkxq ‰ 0, and in particular,

kx is in the unit space of G`r00 . On the other hand,

pgx, gh´1, hxq “ pgx, gk´1, kxqpkx, kh´1, hxq.

The first factor in the product is in pG`r00 q`r0 Ď G`2r0
0 using that

|gk´1| ď r0, that kx is in the unit space of G`r00 , and Lemma 3.13. The

second factor is in pG`r00 q`s0 Ď G
`pr0`s0q
0 using that |kh´1| ď s0, that kx

is in the unit space of G`r00 , and Lemma 3.13. Hence pgx, gh´1, hxq is

in G
`p2r0`s0q
0 . To summarize, we have shown at this point that b1ptqM0

has support in G
`p2r0`s0q
0 for all t, and thus t ÞÑ b1ptqM0 is in Bs0pG`r0 qr

as claimed. The s-decorated case can be handled precisely analogously.

We now look at part (ii) of Definition 7.6. Say a is in both Iω and

Jω, and that a is within δ :“ ε{3 of both Iωr0 and Jωr0 . Let a0 and a1 be

elements of Iωr0 and Jωr0 respectively which are at most δ away from a.

Define

K :“ tx P X | pgx, g, xq P supppa0ptqq for some t P r0,8q, g P Γu,

a compact subset of the unit space U0 of G`r00 . Let M0 be as in Defini-

tion 7.11 with respect to the Rips complex Ps0pΓq, the compact set K,

and the open cover tU0u of K. From Lemma 7.12 parts (i) and (ii) we

have that }M0} ď 1 and that a0ptqM0 “ a0ptq for all t. Hence for any

t P r0,8q

}aptq ´ a1ptqM0}

ď }aptq ´ a0ptq} ` }a0ptq ´ aptqM0} ` }aptqM0 ´ a1ptqM0}

ă ε.

On the other hand, an argument precisely analogous to the one used

above to establish part (i) of Definition 7.6 shows that a1ptqM0 is con-

tained in Iωr XJ
ω
r , where r “ 2r0`s0, and we are done. The s-decorated

case can again be handled analogously. �

We need one more preliminary lemma before the proof of Proposition

5.2. The proof is similar to (and simpler than) the part of the proof

of Lemma 7.13 above that establishes part (i) of Definition 7.6, and is

therefore omitted.
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Lemma 7.14. Fix an open subgroupoid G of Γ ˙ X and s0 ě 0. Let

r0 ě 0. Let Gp0q “ U0YU1 be an open cover of Gp0q, and for i P t0, 1u,

let Gi be the subgroupoid of G generated by

tpgx, g, xq P G | x P Ui, |g| ď r0u.

Then As0pGqr0 Ď As0pG
`p2r0`s0q
0 q2r0`s0 ` A

s0pG
`p2r0`s0q
1 q2r0`s0. �

Finally, we are ready for the proof of Proposition 5.2, the last step

we need in the proof of Theorem 2.11.

Proof of Proposition 5.2. Let B be the class of open subgroupoids G of

Γ ˙ X such that the conclusion of Proposition 5.2 holds for all open

subgroupoids of G, in such a way that the resulting constant s depends

only on G and not on the particular open subgroupoid under consid-

eration. It will suffice to show that B contains D. For this it suffices

to show that B contains all relatively compact open subgroupoids of

Γ˙X, and that it is closed under decomposability.

Let then G be an open subgroupoid of Γ˙X with compact closure,

and let r0 and s0 be given. As G has compact closure, the number

s1 “ maxt|g| | pgx, g, xq P Gu,

is finite. Let s “ maxtr0, s0, s1u; we claim this s has the right property.

We have that AspGqs “ AspGq and so

Ks,1{8
˚ pAspGqq “ K˚pA

s
pGqq

by Proposition 4.9. Moreover, the group on the right hand side is zero

by Proposition 5.1, and so in particular the map

Kr0,1{8
˚ pAs0pGqq Ñ Ks,1{8

˚ pAspGqq “ K˚pA
s
pGqq

is certainly zero. Moreover, the same s clearly works for any open

subgroupoid of G. Hence G is in B as required.

Now let G be an open subgroupoid of Γ ˙X that decomposes over

B, and let r0, s0 ě 0 be given; we may assume that s0 ě 1. Let

r1 “ r1p2r0 ` s0, s0q ě r0 be the constant given by Proposition 7.7

with respect to the uniformly excisive families pIω, Jω;BωqωPΩ and

pIω,s, Jω,s;Bω,sqpω,sqPΩˆrs0,8q from Definition 7.8; we may assume that

r1 ě 1. Let r2 “ r2pr1, s0q ě r1 be the constant given by Proposition

7.7 for the uniformly excisive collection pIω,s, Jω,s;Bω,sqpω,sqPΩˆrs0,8q.
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Let Gp0q “ U0YU1 be an open cover with the property that if Gi is the

subgroupoid of G generated by

tpgx, g, xq P G | x P Ui, |g| ď r0u,

then G`r2i is in the class B (and therefore that G`r10 XG`r11 is in B too,

as B is closed under taking open subgroupoids). Let the constant s1 “

s1pr0, s0, G
`r1
0 XG`r11 q ě maxtr0, s0u be as in the inductive hypothesis

for the groupoid G`r10 XG`r11 . Finally, let s “ spr2` s1, s1, G
`r2
0 , G`r21 q

be as in the inductive hypothesis for both of the groupoids G`r2i si-

multaneously (this is possible, as if s has the right property for some

groupoid, then clearly any s1 ě s works too). We claim that this s has

the right properties.

Let then x be an element of K
r0,1{8
˚ pAs0pGqq. Using Lemma 7.14 we

have a subspace inclusion map

Kr0,1{8
˚ pAs0pGqq Ñ K2r0`s0,1{8

˚ pBω
pGqq,

where we have used the notation of Definition 7.8 and written ω “

pG0, G1q P Ω. Hence we may consider x as an element ofK
2r0`s0,1{8
˚ pBωpGqq.

Using Proposition 7.7, we have a commutative diagram of controlled

boundary maps

K
2r0`s0,1{8
˚ pBωq

��

Bc // Kr1
˚ pI

ω X Jωq

��
K

2r0`s0,1{8
˚ pBω,s1q

Bc // Kr1
˚ pI

ω,s1 X Jω,s1q

.

The definition of the algebras involved implies that the right hand

vertical map identifies with the forget control map

Kr1
˚ pA

s0pG`r10 XG`r11 qq Ñ Ks1r1
˚ pAs1pG`r10 XG`r11 qq,

which is zero by hypothesis and the fact that r1 ě 1. Hence the image

of x in Kr1
˚ pI

ω,s1 X Jω,s1q is zero.

We now apply Proposition 7.7 to get

y P Kr2,1{8pIω,s1q, z P Kr2,1{8pJω,s1q



60 ERIK GUENTNER, RUFUS WILLETT, AND GUOLIANG YU

such that x “ y ` z inside K
r2,1{8
˚ pBω,s1q. Consider the commutative

diagram

x P K
2r0`s0,1{8
˚ pBωq

��

Kr2,1{8pIω,s1q ‘Kr2,1{8pJω,s1q //

��

K
r2,1{8
˚ pBω,s1q

��

Kr2`s1,1{8pAs1pG`r20 qq ‘Kr2`s1,1{8pAs1pG`r21 qq

��

// Kr2`s1,1{8pAs1pGqq

��

Ks,1{8pAspG`r20 qq ‘Ks,1{8pAs1pG`r21 qq // Ks,1{8pAspGqq

where the horizontal maps are defined by taking sums, and the vertical

maps by inclusion of the various subspaces involved. Note that y and

z both go to zero under the lower vertical map on the left hand side by

inductive hypothesis and the choice of s. Hence x goes to zero in the

bottom right group as it is equal to y` z there, and we are done for G

itself. A precisely analogous argument works for any open subgroupoid

of G, completing the proof. �

Appendix A. Finite dynamical complexity for étale

groupoids

Our goals in this appendix are: to relate finite dynamical complexity

to finite decomposition complexity in the sense of Guentner, Tessera,

and Yu [8, 9]; to show that finite dynamical complexity implies topolog-

ical amenability of the underlying action; and to collect together several

open questions. This material is not necessary to read the main body

of the paper, but provides some useful context, and also shows that

many examples of groupoids with finite dynamical complexity exist.

Finite decomposition complexity. We will give a convenient defi-

nition of finite decomposition complexity in A.2, adapted slightly from

[9, Definition 2.1.3]. This needs some preliminaries. We will write

‘A “ B
Ů

C’ to mean that a set A is the disjoint union of subsets B

and C, and similarly for unions of more than two subsets. As in [9,
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Section 2], if Z and tZiuiPI are subspaces of a metric space X, then the

notation

Z “
ğ

i, r-disjoint

Zi

means that Z is the disjoint union of the Zi, and that dpZi, Zjq ą r for

i ‰ j.

Definition A.1. Let X be a metric spac (with finite-valued metric).

A collection of subsets Y is a disjoint family if no two elements of Y
intersect. Given a disjoint family Y , we associate a metric space XY
by taking the underlying set to be

XY :“
ğ

Y PY
Y,

and equipping XY with the (possibly infinite-valued) metric

dYpx, yq :“

"

dY px, yq x, y P Y for some Y P Y
8 otherwise

(in words, the metric agrees with that from Y on each ‘component’

subset Y P Y , and sets the distance between distinct ‘components’ to

be infinity).

Finally, for r ą 0 the Y-neighbourhood of a subset Z of XY is defined

to be

Nr,YpZq :“ ty P XY | dYpy, zq ă r for some z P Zu

Definition A.2. Let X be a metric space (with finite-valued met-

ric). A disjoint family Y of subspaces of X is uniformly bounded if

supY PYdiampY q is finite.

Let C be a collection of disjoint families of subspaces of X. A disjoint

family of subspaces Y is decomposable over C if for all r ě 0 there exist

disjoint families Z0,Z1 P C such that for all Y P Y there exists a

decomposition

Y “ Y0 Y Y1

and further decompositions

Yi “
ğ

jPJY,i, 2r´disjoint

Yij

such that for each P t0, 1u and j P JY,i, Nr,YpYijq is in Zi.
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Define Dm to be the smallest collection of disjoint families of sub-

spaces of X that: contains the uniformly bounded disjoint families;

and is closed under decomposability. The metric space X has finite

decomposition complexity if the singleton family tXu is contained in

Dm.

Using the discussion in [9, 3.1.3], it is not too difficult to see that

the above definition is equivalent to [9, Definition 2.1.3].

Here is the first main goal of this appendix.

Theorem A.3. Let Γ be a countable discrete group, equipped as usual

with a metric arising from a proper length function. Then the following

are equivalent:

(i) Γ has finite decomposition complexity;

(ii) the canonical action of Γ on its Stone-Čech compactification has

finite dynamical complexity in the sense of Definition 3.14.

We will actually prove this in a little more generality, more because

this makes the proof more conceptual than because we want the gen-

erality for its own sake. Throughout the rest of this section, then,

we will work in the context of étale7 groupoids: our conventions here

match those of [6, Section 5.6], so in particular we will write G for

an étale groupoid, Gp0q for its unit space, s, r : G Ñ Gp0q for the

source and range maps, and for x P Gp0q, Gx and Gx denote s´1pxq and

r´1pxq respectively. A pair of elements pg, hq P GˆG is composable if

spgq “ rphq, and their product or composition is then written gh.

Here is the definition of finite dynamical complexity for general étale

groupoids.

Definition A.4. Let G be an étale groupoid, let H be an open sub-

groupoid of G, and let C be a set of open subgroupoids of G. We say

that H is decomposable over C if for any open, relatively compact sub-

set K of H there exists an open cover Hp0q “ U0YU1 of the unit space

of H such that for each i P t0, 1u the subgroupoid of H generated by

th P K | sphq P Uiu

7We will always assume our groupoids are locally compact and Hausdorff, and

do not repeat these assumptions.
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is in C.

An open subgroupoid of G (for example, G itself) has finite dynam-

ical complexity if it is contained in the smallest set Dg of open sub-

groupoids ofG that: contains all relatively compact open subgroupoids;

and is closed under decomposability.

We leave the elementary check that this reduces to Definition 3.14

in the case that G “ Γ ˙ X for some action Γ ü X to the reader:

compare [10, Lemma 5.4].

The following basic lemma will also be left to the reader: compare

part (i) of Lemma 3.16 above for the part about groupoids and [9, 3.1.3]

for the part about spaces.

Lemma A.5. (i) Let G be an étale groupoid, and H an open sub-

groupoid in the class Dg of Definition A.4. Then all open sub-

groupoids of H are also contained in Dg.

(ii) Let X be a metric space, and let Y be a family of subspaces of

X in the class Dm of Definition A.2. Let Z be another family of

subspaces of X such that each Z P Z is contained in some element

of Y. Then Z is also in Dm. �

We will look at a particular class of groupoids arising from discrete

metric spaces: we will assume such metric spaces have bounded geom-

etry meaning that for all r P r0,8q, the cardinality of all r-balls in the

space is uniformly bounded. Recall that we allow our metrics to be

infinite valued.

The following groupoids were introduced by Skandalis, Tu, and Yu

[29]; see also [26, Chapter 10].

Definition A.6. Let X be a bounded geometry metric space (possibly

with infinite-valued metric), and let βX be its Stone-Čech compactifi-

cation. For each r P r0,8q, let

Er “ tpx, yq P X ˆX | dpx, yq ď ru.

As X is a subspace of βX we may identify Er with a subspace of

βX ˆ βX, and take its closure Er. The coarse groupoid of X is the

union

GpXq :“
ď

rPr0,8q

Er
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equipped with the restriction of the pair groupoid operations it inherits

as a subset of βX ˆ βX, and with the weak topology it inherits from

the union above8, when each Er is given the subspace topology from

βX ˆ βX.

The groupoids GpXq are locally compact, Hausdorff, étale and σ-

compact: see [29, Section 3.2] or [26, Chapter 10]. Moreover, if X “ Γ

is a discrete group equipped with a metric as in Definition 2.1 above,

then GpXq is canonically isomorphic to Γ ˙ βΓ: see [29, Proposition

3.4]. Note that if Y is a disjoint family of subspaces of X and XY is

the associated metric space as in Definition A.1, then GpXYq identifies

naturally with a (closed and open) subgroupoid of GpXq; we will always

make this identification in what follows.

Here then is the theorem we will actually prove. From the comments

in the paragraph above, it implies Theorem A.3.

Theorem A.7. Let X be a bounded geometry metric space (with finite-

valued metric). Then the following are equivalent:

(i) X has finite decomposition complexity;

(ii) the coarse groupoid GpXq has finite dynamical complexity.

Proof. To show that (i) implies (ii), it will suffice to show that if Y
is in Dm, then GpXYq is in Dg. For this, it suffices to show that the

collection

(A.1) tY | GpXYq P Dgu

of disjoint families of subspaces of X contains the uniformly bounded

families, and is closed under decomposability of metric families: indeed,

this implies that the family in line (A.1) contains Dm by definition of

Dm, and thus that it contains tXu by assumption (i); hence GpXq is

in Dg, which is the required conclusion.

Say first then that Y is a disjoint family of uniformly bounded sub-

spaces of X, say all with diameters at most s. Then GpXYq is contained

8This means that a subset U of GpXq is defined to be open exactly when U XEr

is open for each r P r0,8q; this is not the same as the subspace topology from

βX ˆ βX.
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in the compact set Es Ď GpXq from Definition A.6, whence GpXYq has

compact closure and is thus in Dg.

To complete the proof of (i) implies (ii), it remains to show that

the collection in line (A.1) is closed under decomposability of disjoint

families. Say then that Y is a disjoint family of subspaces of X that

decomposes over the collection of disjoint families in line (A.1). We

will show that GpXYq decomposes over Dg, which will suffice to show

that Y is in the collection of families in line (A.1). Let then K be an

open, relatively compact subset of GpXYq. As GpXq is the union of

the (compact) open subsets tErurě0, there is r ě 0 with K contained

in Er. As in Definition A.2, there are families Z0,Z1 in the set in line

(A.1) such that every Y P Y admits a decomposition Y “ Y0YY1 such

that each Yi further decomposes as

Yi “
ğ

jPJY,i, 2r-disjoint

Yij

with each r-neighbourhood Nr,YpYijq in Zi. Now, let Yi be the family

of subspaces tNr,YpYijq | j P JY,i, Y P Yu. Let Ui be the closure of the

set
ď

Y PY,jPJY,i

Yij

in GpXYq
p0q, which is a (closed and) open set. Then tU0, U1u is an

open cover of GpXYq
p0q and it is not too difficult to check that the

subgroupoid Hi of GpXYq generated by

tg P GpXYq | spgq P Ui, g P Ku

is contained in GpXYiq. As Zi is in the collection in line (A.1), we have

that GpXZiq is in Dg; moreover, each GpXYiq is contained in GpXZiq

and so GpXYiq is in Dg by Lemma A.5, and so each Hi is also in Dg by

the same lemma again. This completes the proof that GpXYq decom-

poses over Dg, and thus the proof of (i) implies (ii).

We now show (ii) implies (i). It will be helpful to first introduce

some notation. If H is an open subgroupoid of GpXq, let „ be the

equivalence relation on XXHp0q defined by x „ y if px, yq is an element

of H, and let XH be the disjoint family of equivalence classes for this

equivalence relation.
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Now, to prove (ii) implies (i), it will suffice to show that if GpXYq is

in Dg, then Y is in Dm. For this it suffices to show that the collection

(A.2) tH | XH P Dmu

of open subgroupoids of GpXq contains the relatively compact open

subgroupoids, and is closed under decomposability of groupoids: in-

deed, given this, the collection in line (A.2) contains Dg, whence in

particular it contains GpXq by assumption (ii); however, XGpXq “ tXu

so this gives that tXu is in Dm, and so we are done at that point.

Say first then that H is a relatively compact open subgroupoid of

GpXq. Then as the collection tErurě0 of (compact) open subsets covers

GpXq, there must exist s ě 0 with H Ď Es. This implies that every

Y P XH has diameter at most s, and thus XH is in Dm and so H is

contained in the collection in line (A.2).

It remains to show that the collection in line (A.2) is closed under

decomposability of groupoids. Let then H be an open subgroupoid of

GpXq that decomposes over the collection in line (A.2). We will aim

to show that XH decomposes over Dm, and thus that XH is in Dm,

and so H is in the collection in line (A.2). Let then r P r0,8q be

given, and let K be the compact subset E2r of GpXq. The definition

of decomposability of H gives us an open cover Hp0q “ U0 Y U1 of the

unit space of H such that the subgroupoids Hi of G generated by

(A.3) tg P G | spgq P Ui, g P Ku

are in the family in line (A.2). Let XHi “ tXijujPJi be the disjoint

family of equivalence classes corresponding to Hi. Let Y be an element

of XH , and for j P J0 define

Y0j :“ Y X U0 XX0j

and for j P J1, define

Y1j :“ pY XX1jqzU0.

Then we have

Y “
´

ğ

jPJ0

Y0j

¯

loooomoooon

“:Y0

\

´

ğ

jPJ1

Y1j

¯

loooomoooon

“:Y1

.
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As Hi is generated by the set in line (A.3) with E2r “ K, we have that

Yi “
ğ

jPJi, 2r-disjoint

Yij,

and that each Nr,YpYijq is contained in Xij, and thus that each Nr,YpYijq

is contained in an element of the disjoint family XHi . Setting Zi “ XHi ,

we now have that XH decomposes over Dm, and we are done. �

Amenability. Our second goal in this appendix is to discuss the re-

lationship of finite dynamical complexity to amenability. See [1] for a

comprehensive discussion of amenable groupoids, and [6, Section 5.6]

for a self-contained discussion of the étale case (which is all we will

need). In particular, the next definition is a slight variant of [6, Defi-

nition 5.6.13] and [1, Proposition 2.2.13]. The only difference between

our definition and that of [6, Definition 5.6.13] is that our assumption

(i) is not present in [6, Definition 5.6.13]. It follows, however, from the

argument that ‘condition (a) is irrelevant’ in the proof of [1, Proposition

2.2.13] that this leads to an equivalent definition.

Definition A.8. A locally compact, Hausdorff, étale groupoid G is

amenable if for all compact K Ď G and all ε ą 0 there exists a contin-

uous, compactly supported function µ : GÑ r0, 1s such that:

(i) for all x P Gp0q, we have
ř

gPGx
µpgq ď 1;

(ii) for all k P K, we have |1´
ř

gPGrpkq
µpgq| ă ε;

(iii) for all k P K, we have
ř

gPGrpkq
|µpgq ´ µpgkq| ă ε.

Our next goal is to prove the following theorem.

Theorem A.9. Let G be a locally compact, Hausdorff, étale groupoid

with finite dynamical complexity. Then G is amenable.

This result is inspired by [9, Theorem 4.6], part of which states that

finite decomposition complexity for a bounded geometry metric space

implies property A in the sense of [39, Definition 2.1]. As finite decom-

position complexity for a bounded geometry metric space is equivalent

to finite dynamical complexity for the corresponding coarse groupoid

(Theorem A.7 above), and as property A for a bounded geometry

metric space is equivalent to amenability of the corresponding coarse
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groupoid ([29, Theorem 5.3]), Theorem A.9 above is a generalization

of the result of [9, Theorem 4.6].

We now turn to the proof of Theorem A.9. It suffices (as usual!)

to show that the class A of amenable open subgroupoids of any étale

groupoid G contains the relatively compact open subgroupoids, and is

closed under decomposability. The following lemma (which is presum-

ably well-known to experts) starts this off.

Lemma A.10. Let G be an étale groupoid, and let H be an open

subgroupoid of G with compact closure. Then H is amenable.

Remark A.11. In the case H as in Lemma A.10 is σ-compact, there

is a direct proof of the lemma using [23, Theorem 2.14]. Indeed, in

this theorem Renault shows that for a σ-compact, locally compact,

Hausdorff, étale groupoid G (and indeed more generally), amenability

is equivalent to the existence of a sequence pµn : GÑ r0,8qq of Borel

functions such that

(i) for all x P Gp0q, we have
ř

gPGx
µnpgq ď 1;

(ii) for all x P Gp0q, we have
ř

gPGx
µnpgq Ñ 1;

(iii) for all k P G, we have
ř

gPGrpkq
|µnpgq ´ µnpgkq| Ñ 0.

Now, let H be as in Lemma A.10 and also be σ-compact. Define

µ : Hp0q
Ñ r0, 1s, x ÞÑ |Hx|

´1.

It is not difficult to check that the (constant) sequence pµn “ µq satisfies

the properties above exactly, so we are done.

Below we give a general proof of Lemma A.10 as some examples that

are important to us (specifically, the coarse groupoids of Definition A.6)

have open, relatively compact subgroupoids that are not σ-compact.

Proof of Lemma A.11. Let N “ supt|r´1pxq X H| | x P Hp0qu. Com-

pactness of H implies that this is finite. We will proceed by induction

on N . In the base case N “ 1, H is just a space and is thus clearly

amenable. Assume now that we have proven all cases up to N ´ 1,

and assume that H has some range fibers with cardinality N , but none

higher. Let U “ tx P Hp0q | |r´1pxq| “ Nu, which is open as H is étale,

and clearly it is invariant for the H acton. Let F “ Hp0qzU , which is

closed, and let HU and HF be the respective restrictions of H to U and
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F . Note that HF is amenable by inductive hypothesis. We first claim

that HU is amenable.

Indeed, to see this, let K Ď HU be a compact set, and ε ą 0.

Let φ : H
p0q
U Ñ r0, 1s be any compactly supported function that is

equal to 1 on rpKq Y spKq, and define µphq “ 1
N
φpsphqq for all h P

HU ; we claim that this has the right properties. We first claim that

µ is compactly supported. To see this, note that µ is supported in

s´1psupppφqq, whence it suffices to show that s´1pEq is compact for

any compact subset E of H
p0q
U . For each x P Hp0q, choose an open set

Vx with compact closure, and such that s´1pVxq can be written as a

disjoint union

s´1
pVxq “

N
ğ

j“1

V pjqx ,

where s restricts to a homeomorphism s : V
pjq
x Ñ Vx, and each V

pjq
x

has compact closure; using local compactness, the fact that s is a local

homeomorphism and the fact that each source fiber contains exactly

N elements, it is not too difficult to see that such sets exist. Now, let

x1, ..., xn be a finite collection of points of H
p0q
U such that E Ď

Ťn
i“1 Vxi .

Then

s´1
pEq Ď

n
ď

i“1

N
ď

j“1

V pjqxi

the set on the right is a finite union of sets with compact closure, so

has compact closure, and the set s´1pEq is closed. It is thus compact,

and we have completed the proof that µ is compactly supported.

To complete the proof that µ has the properties needed to show

amenability, for each x P H
p0q
U , note now that

ÿ

hPpHU qx

µphq “
1

N

ÿ

hPHx

φpxq “ φpxq,

which is at most one for a general x, and exactly one if x “ rpkq for

some k P K. On the other hand, we have that for each k P K,
ÿ

hPpHU qrpkq

|µphq ´ µphkq| “
1

N

ÿ

hPpHU qrpkq

|φprpkqq ´ φpspkqq|,

which is exactly zero as φ is identically one on rpKq Y spKq. This

completes the proof that HU is amenable.
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Now, consider the commutative diagram of C˚-algebras

0 // C˚maxpHUq //

��

C˚maxpHq //

��

C˚maxpHF q //

��

0

0 // C˚r pHUq // C˚r pHq // C˚r pHF q // 0 .

The top row is exact as this always holds for the maximal groupoid

C˚-algebra (see [1, Lemma 6.3.2] – the second countability assumption

there is unnecessary in the étale case). The bottom row might not be

exact, although all that can go wrong is that the kernel of the map out

of C˚r pHq might not equal the image of the map going in. However,

as HU and HF are amenable, the left and right hand vertical arrows

are the identity map ([6, Corollary 5.6.17]); it follows from this and a

diagram chase that the bottom row is in fact exact in this case. Now,

as HU and HF are amenable, their reduced C˚-algebras are nuclear

[6, Theorem 5.6.18]. Finally, an extension of nuclear C˚-algebras is

nuclear [6, Proposition 10.1.3], so this implies that C˚r pHq is nuclear

and thus that H is amenable by [6, Theorem 5.6.18] again. �

We will need the following lemma about the existence of almost

invariant partitions of unity, which can be proved in the same way as

[10, Proposition 7.1].

Lemma A.12. Let G be an étale groupoid, C a collection of open sub-

groupoids of G, and let H be an open subgroupoid of G that decom-

poses over C. Then for any open, relatively compact subset K of H

and any ε ą 0 there exists an open cover tU0, U1u of Hp0q and continu-

ous compactly supported functions φi : Hp0q Ñ r0, 1s with the following

properties.

(i) For each i P t0, 1u, the set

tk P K | spkq P Uiu

generates an open subgroupoid Hi of H (whence also of G) in the

class C.

(ii) Each φi is supported in Ui.

(iii) For all x P Hp0q, φ0pxq`φ1pxq ď 1, and for all k P K, φ0prpkqq`

φ1prpkqq “ 1.

(iv) For any k P K, and i P t0, 1u, |φipspkqq ´ φiprpkqq| ă ε. �
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We are now ready to complete the proof of the Theorem A.9 by

showing that the collection A of amenable open subgroupoids of G is

closed under decomposability.

Proof of Theorem A.9. Let H be an open subgroupoid of G that de-

composes over A, and let K Ď H be compact, and ε ą 0. Using local

compactness, expanding K slightly we may assume that K is in fact

open and relatively compact. Let U0, U1, H0, H1, and φ0, φ1 be as in

Lemma A.12 for the relatively compact set K and error estimate ε{3.

An elementary argument shows that K can be written as K0 Y K1,

where each Ki is open, and has compact closure inside Hi. For each

i, let µi : Hi Ñ r0, 1s be a function as in the definition of amenability,

with respect to the compact which is the closure Ki of Ki, and error

estimate ε{3. Extending by zero outside (the open set) Hi, we may

assume that µi is defined on all of H. Define

µ : H Ñ r0, 1s, h ÞÑ φ0psphqqµ0phq ` φ1psphqqµ1phq,

which we claim has the right properties.

Indeed, note first for any x P Hp0q,

ÿ

hPHx

µphq “
ÿ

hPHx

φ0psphqqµ0phq ` φ1psphqqµ1pgq

“ φ0pxq
ÿ

hPpH0qx

µ0phq ` φ1pxq
ÿ

hPpH1qx

µ1phq

ď φ0pxq ` φ1pxq ď 1.

On the other hand, for any k P K,

ˇ

ˇ

ˇ
1´

ÿ

hPHrpkq

µphq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
1´

ÿ

hPHrpkq

φ0psphqqµ0phq ` φ1psphqqµ1phq
ˇ

ˇ

ˇ

“ φ0prpkqq
ˇ

ˇ

ˇ
1´

ÿ

hPpH0qrpkq

µ0phq
ˇ

ˇ

ˇ
` φ1prpkqq

ˇ

ˇ

ˇ
1´

ÿ

hPpH1qrpkq

µ1phq
ˇ

ˇ

ˇ

ă φ0prpkqqε` φ1prpkqqε “ ε.
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Finally, we note that for any k P K,
ÿ

hPHrpkq

|µphq ´ µphkq|

ď

1
ÿ

i“0

ÿ

hPHrpkq

φipsphqq|µiphq ´ µiphkq| ` µiphkq|φipsphqq ´ φipsphkqq|

“

1
ÿ

i“0

ÿ

hPpHiqrpkq

φiprpkqq|µiphq ´ µiphkq| ` µiphkq|φiprpkqq ´ φipspkqq|

“

1
ÿ

i“0

φiprpkqq
ÿ

hPpHiqrpkq

|µiphq ´ µiphkq|

`

1
ÿ

i“0

|φiprpkqq ´ φipspkqq|
ÿ

hPpHiqrpkq

µiphkq

ă

´

1
ÿ

i“0

φiprpkqq
¯ ε

3
`

2ε

3
¨ 1 “ ε.

This completes the proof. �

Open questions. To state the following lemma, we recall that if G is

an étale groupoid and x P Gp0q, then the isotropy group of G at x is

tg P G | rpgq “ spgq “ xu.

We then have the following, which provides an easy obstruction to finite

dynamical complexity.

Lemma A.13. Let G be an étale groupoid with finite dynamical com-

plexity. Then all isotropy groups of G are locally finite9.

Proof. Let LF be the collection of all open subgroupoids of G whose

isotropy groups are locally finite. It suffices to show that LF con-

tains the relatively compact open subgroupoids, and is closed under

decomposability. We leave the details to the reader. �

At this point, we know two obstructions to a groupoid having fi-

nite dynamical complexity: having infinite isotropy, and being non-

amenable. The following question seems particularly interesting. It is

9Recall that a group Γ is locally finite of any finite subset of Γ generates a finite

group.
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closely related to [9, Question 5.1.3], and is a more general version of

the well-known question as to whether finite decomposition complexity

and Yu’s property A are equivalent.

Question A.14. Say G is a principal10, amenable, étale groupoid. Must

G have finite dynamical complexity?

The connection to finite decomposition complexity of groups is not

completely clear. The following questions are thus natural.

Question A.15. If Γ ˙ X is a transformation groupoid with finite dy-

namical complexity (andX compact), must Γ have finite decomposition

complexity?

By analogy with the case of finite dynamic asymptotic dimension

[10, Section 6], we suspect the answer to the above question is ‘yes’,

but did not seriously pursue this.

Question A.16. If Γ has finite decomposition complexity, must it admit

an action on the Cantor set with finite dynamical complexity?

Much more ambitiously, we do not see any obvious obstructions to a

positive answer to the following question. While we would be surprised

if it has a positive answer in general, it is also interesting to ask about

special classes of groups Γ such as nilpotent groups (compare [30]), free

groups, general word hyperbolic groups, or even linear groups (compare

[8, Section 3]).

Question A.17. If Γ has finite decomposition complexity, must any free

amenable action of Γ have finite dynamical complexity?

Another interesting question, related to our earlier work [10] is as

follows.

Question A.18. Say G is an étale groupoid with finite dynamic asymp-

totic dimension. Must G have finite dynamical complexity?

We suspect the answer is ‘yes’, but it is currently not clear. Note

that the answer is clearly yes if the dynamic asymptotic dimension of

G is zero or one.

10This means that all isotropy groups are trivial; one could also ask what happens

when the isotropy groups are just assumed locally finite.
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Question A.19. Say G is an étale groupoid with finite dynamical com-

plexity. What structural properties must the reduced C˚-algebra C˚r pGq

have?

Certainly C˚r pGq must be nuclear by Theorem A.9 and [6, Theorem

5.6.18]. However, we do not know much beyond this. For example, if

C˚r pGq is also assumed simple, one might ask about properties of in-

terest in the classification program such as comparison and Z-stability

(although to avoid examples like those in [7] and thus have some hope

of positive results, one should assume that Gp0q is ‘reasonable’, say for

example finite-dimensional, or just a Cantor set).

Appendix B. Comparison to the Baum-Connes assembly

map

The purpose of this appendix is to identify the standard picture

of the Baum-Connes assembly map for Γ with coefficients in CpXq as

discussed in say [4], with our picture defined using localization algebras

and the evaluation-at-zero map. As it is no more complicated and may

be useful for other work, we do this in more generality than necessary

for this paper in that we allow CpXq to be replaced by an arbitrary

(separable) Γ-C˚-algebra A.

Of necessity, we assume more of the reader than in the rest of the

paper: specifically, some working knowledge of Hilbert modules (see

[17] for background and conventions) and of equivariant KK-theory

(see [16, Section 2] for background and conventions). On the other

hand, it is certainly not necessary to read this appendix to understand

the rest of the paper.

Definition B.1. Let Γ be a countable discrete group, and A a (separa-

ble) Γ-C˚-algebra. Let Y be a locally compact metric space, equipped

with a proper, co-compact, and isometric Γ-action, and fix a compact

subset K Ď Y such that Γ ¨ K “ Y . Let HY be a non-degenerate,

covariant representation of C0pY q with the property that no non-zero

element of Y acts as a compact operator. Let H be a separable infinite-

dimensional Hilbert space equipped with the trivial Γ action.
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Define the Hilbert A-module Y EA to be the tensor product

Y EA :“ HY b AbH b `
2
pΓq

(here the tensor products are completed external tensor product of

Hilbert modules: see [17, Chapter 4]). We write elementary tensors in

Y EA as

ξ b ab η b ζ, ξ P HY , a P A, η P H, ζ P `
2
pΓq.

The actions of Γ on C0pY q and A are denoted γ and α respectively,

and the unitaries implementing the action of g P Γ on `2pΓq and HY

are denoted by λg and ug respectively. We define an action ε of Γ on

Y EA by

εgpξ b ab η b ζq :“ ugξ b αgpaq b η b λgζ.

We write rε for the Γ-action on the C˚-algebra LpY EAq of adjointable

operators on Y EA defined for e P Y EA by

prεgpT qqpeq :“ εgpT pεg´1peqqq;

note that even though the linear isometries εg : Y EA Ñ Y EA are not

adjointable operators, we nonetheless have that if T is adjointable, then

rεgpT q is too.

The A-valued inner product on Y EA is given on elementary tensors

by

xξ1 b a1 b η1 b ζ1 , ξ2 b a2 b η2 b ζ2y :“ xξ1, ξ2yxη1, η2yxζ1, ζ2ya
˚
1a2,

the right action of a1 P A by

pξ b ab η b ζq ¨ a1 :“ ξ b aa1 b η b ζ,

and the left action of f P C0pY q by

(B.1) f ¨ pξ b ab η b ζq “ fξ b ab η b ζ;

if we need notation for this representation, we will denote it by π :

C0pY q Ñ LpY EAq, but we will generally omit the π when no confusion

is likely to arise.

Denote by KpY EAq the compact operators on Y EA in the sense of

Hilbert module theory, so in this case KpY EAq is naturally isomorphic

to KpHY b H b `2pΓqq b A (see [17, pages 9-10]). We will need the

following properties of an adjointable operator T on Y EA.
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(i) T is locally compact if for any f P C0pY q, fT and Tf are in the

C˚-algebra KpY EAq.
(ii) The support of T , denoted supppT q, is the complement of the set
"

py, zq P Y ˆ Y there are f1, f2 P C0pY q with f1pyq ‰ 0, f2pyq ‰ 0

and f1Tf2 “ 0

*

.

The metric propagation of T is the extended real number

suptdpy, zq | py, zq P supppT qu.

(iii) The Γ-propagation of T is the extended real number

supt|g| | supppT q XK ˆ gK ‰ ∅u

(where we recall that K Ď Y is a fixed compact set satisfying

Γ ¨K “ Y ).

(iv) T is Γ-invariant if rεgpT q “ T for all g P Γ.

The Roe algebra, denoted C˚pY ;Aq, associated to Y EA is the C˚-algebra

closure of the ˚-algebra of all finite Γ-propagation, locally compact, Γ-

invariant adjointable operators on Y EA for the norm inherited from

LpY EAq. The localization algebra, denoted C˚LpY ;Aq, associated to Y EA
is the C˚-algebra completion of the ˚-algebra all bounded, uniformly

continuous functions

a : r0,8q Ñ C˚pY ;Aq

such that the Γ-propagation of aptq is bounded independently of t, such

that the metric propagation tends to zero as t tends to infinity, and

where the norm is given by supt }aptq}C˚pY ;Aq.

Remark B.2. (i) The exact numerical value of the Γ-propagation as

defined above depends on the choice of compact set K Ď Y with

Γ ¨ K “ Y . However, whether or not the Γ-propagation of a

family of operators is bounded does not depend on the choice

of K, whence the Roe algebras and localization algebras do not

depend on this choice.

(ii) Say Y “ PspΓq is a Rips complex of Γ and set HY “ `2pZsq as

in Definition 2.2. Say A “ CpXq. Considering `2pXq as a left A-

module, we may form the internal Hilbert module tensor product

of Y EA and `2pXq over A (see [17, Chapter 4]), and thus get an

isomorphism of Hilbert spaces

Y EA bA `2
pXq – HY b `

2
pXq bH b `2

pΓq.
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The map

LpY EAq Ñ Bp`2
pΓq bHY bH b `

2
pXqq, T ÞÑ T bA 1`2pXq

from the adjointable operators on Y EA to the bounded operators

on `2pΓqbHY bH b `
2pXq is then an isometric ˚-homomorphism

(see the discussion on [17, page 42]), and it is not difficult to

check that it takes the Roe algebra C˚pY ;Aq onto the Roe algebra

C˚pΓ ü X; sq as in Definition 2.4. Thus the two notions agree in

this special case.

(iii) Note that if Y “ PspΓq, then we may use HY “ `2pZsq (to avoid

silly degeneracies, we should assume here that s is large enough

that PspΓq is not zero-dimensional). It is clear then that if s ď t,

there are isometric inclusions C˚pPspΓq;Aq Ñ C˚pPtpΓq;Aq, and

similarly for the localization algebras.

Now, there is an evaluation-at-zero map

ε0 : K˚pC
˚
LpY ;Aqq Ñ K˚pC

˚
pY ;Aqq

induced by the obvious underlying ˚-homomorphism. Our goal here is

to relate this to the Baum-Connes assembly map for Γ with coefficients

in A as in [4, Section 9].

In order to make this precise, let us fix some terminology. A cut-off

function for Y is a non-negative valued function c P CcpY q such that
ÿ

gPΓ

cpgyq “ 1

for all y P Y ; using properness and cocompactness, it is not difficult

to see that such a c exists and we fix one from now on. If as usual γ

denotes the action of Γ on C0pY q, then the basic projection associated

to c is the element

pY P CcpΓ, C0pY qq Ď C0pY q ¸r Γ

defined by

(B.2) pY pgq :“ γgpcqc.

The associated class

rpY s P K0pC0pY q ¸r Γq “ KK0pC, C0pY q ¸r Γq
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does not depend on the choice of c. The assembly map

µ : KKΓ
˚ pC0pY q, Aq Ñ K˚pA¸r Γq

is defined as the composition

KKΓ
˚ pC0pY q, Aq

jΓr // KK˚pC0pY q ¸r Γ, A¸r Γq
rpY sb¨// KKpC, A¸r Γq

where the first map is Kasparov’s descent morphism (see [16, Theorem

3.11]), and the second is Kasparov product with rpY s P KKpC, C0pY q¸r
Γq.

The assembly maps as defined above are functorial under proper,

equivariant, continuous maps of the space Y appearing on the left hand

side. Let EΓ be a universal Γ-space for proper actions as in [4, Section

1] and define

KKΓ
˚ pEΓ, Aq :“ lim

YĎEΓ
KKΓ

˚ pC0pY q, Aq

where the limit is over all Γ-invariant cocompact subspaces of EΓ.

Finally, the Baum-Connes assembly map is the map

µ : KKΓ
˚ pEΓ, Aq Ñ K˚pA¸r Γq

defined as the direct limit of the individual assembly maps defined

above.

We will want to use the following concrete model for EΓ. Let

XΓ :“
Ť

sě0 PspΓq equipped with `1-metric; as discussed in [4, Sec-

tion 2], this is a model for the classifying space EΓ. Moreover, the

individual Rips complexes form a ‘homotopy-cofinal’ system inside the

collection of Γ-cocompact equivariant subsets (ordered by inclusion) of

XΓ: precisely, we mean that for any cocompact Y Ď XΓ, the inclusion

map is (equivariantly, properly) homotopic to a map with image in

some PspΓq. Hence the Baum-Connes assembly map is equivalent to

the direct limit of the assembly maps for the individual Rips complexes,

i.e. the Baum-Connes assembly map can be thought of as a map

µ : lim
sÑ8

KKΓ
˚ pC0pPspΓqq, Aq Ñ K˚pA¸r Γq.

We are now ready to state the main result of this section.

Theorem B.3. Let Γ be a countable discrete group, and A a Γ-C˚-

algebra. Let Y be a locally compact metric space, equipped with a proper,
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cocompact, and isometric Γ-action. Let

µ : KKΓ
˚ pC0pY q, Aq Ñ K˚pA¸r Γq

be the assembly map associated to this data. Then there is a commu-

tative diagram

KKΓ
˚ pC0pY q, Aq

��

µ // K˚pA¸r Γq

��
K˚pC

˚
LpY ;Aqq

ε0 // K˚pC
˚pY ;Aqq

where the vertical maps are isomorphisms.

Moreover, let s ď t be non-negative real numbers, and say PspΓq,
PtpΓq are the associated Rips complexes. Then with notation as above,
there is a commutative diagram

KKΓ
˚pC0pPspΓqq, Aq

��

))

µ // K˚pA¸r Γq

“

))

��

KKΓ
˚pC0pPtpΓqq, Aq

��

µ // K˚pA¸r Γq

��

K˚pC
˚
LpPspΓq;Aqq

ε0 //

))

K˚pC˚pPspΓq;Aqq

))
K˚pC

˚
LpPtpΓq;Aqq

ε0 // K˚pC˚pPtpΓq;Aqq .

Here the diagonal maps are induced by the inclusion PspΓq Ñ PtpΓq,

together with Remark B.2 for the Roe algebras and localization algebras.

Hence taking the direct limit as s Ñ 8 identifies the Baum-Connes

assembly map

µ : lim
sÑ8

KKΓ
˚ pPspΓq, Aq Ñ K˚pA¸r Γq

with the evaluation-at-zero map

ε0 : lim
sÑ8

K˚pC
˚
LpPspΓq;Aqq Ñ lim

sÑ8
K˚pC

˚
pPspΓq;Aqq

In order to explain the proof of Theorem B.3, we will need to de-

fine some auxiliary C˚-algebras. The statement in the second part of

Theorem B.3 on compatibility with increasing the Rips parameter is

straightforward from the proof of the first part, so we only give the
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proof of the first part. Say then that Y , HY , and A as above are all

fixed.

Definition B.4. Let Y EA be as above, and let C˚ and C˚L be shorthand

for the associated Roe algebra and localization algebra. An adjointable

operator T on Y EA is pseudolocal if for any f P C0pY q, the commutator

rf, T s is in KpY EAq. Let D˚ denote the C˚-algebra closure of the col-

lection of all finite Γ-propagation, pseudolocal, Γ-invariant adjointable

operators on Y EA inside LpY EAq. Let D˚L denote the C˚-algebra com-

pletion of all bounded, uniformly continuous functions

a : r0,8q Ñ D˚

such that the Γ-propagation of aptq is uniformly bounded for all t, such

that the metric propagation tends to zero as t tends to infinity, and

where the norm is given by supt }aptq}D˚ .

Note that C˚ and C˚L are ideals in D˚ and D˚L respectively.

We will prove the first part of Theorem B.3 by showing that there is

a commutative diagram

(B.3) KKΓ
i pC0pY q, Aq

µ //

piq

��

KipA¸r Γq

piiq

��
Ki`1pD

˚{C˚q
B // KipC

˚q

Ki`1pD
˚
L{C

˚
Lq

piiiq

OO

pivq
// KipC

˚
Lq

ε0

OO

such that the arrows labelled by roman numerals are all isomorphisms.

Remark B.5. The arrow labelled ‘B’ is the standard boundary map in

the K-theory six-term exact sequence associated to the short exact

sequence

0 // C˚ // D˚ // D˚{C˚ // 0 .

Note that we get for free from this proof that B gives another model

for the assembly map: this is a version with coefficients of the ‘Paschke

duality’ model for the (coarse) Baum-Connes assembly map that is

discussed for example in [25] and [12].
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We now explain the main steps of the proof, starting with the top

square in diagram (B.3). The arrow labelled (i) is a form of Paschke

duality, and is shown to be an isomorphism by building on arguments

in [13, Chapter 8]; the key technical points needed in addition are Fell’s

trick, Kasparov’s stabilization theorem, and Kasparov’s Hilbert module

version of Voiculescu’s theorem [15]. The arrow labelled (ii) is induced

by a Morita equivalence, which is canonical given the fixed choice of

cut-off function c. The argument that the top square commutes involves

a significant amount of computation, and is based on [25].

For the bottom square, the arrow labelled (iii) is induced by the

evaluation-at-zero map, and the arrow labelled (iv) is the boundary

map from the K-theory six-term exact sequence associated to the short

exact sequence

0 // C˚L
// D˚L

// D˚L{C
˚
L

// 0 .

As we have a commutative diagram

0 // C˚L
//

ε0

��

D˚L
//

ε0

��

D˚L{C
˚
L

//

ε0
��

0

0 // C˚ // D˚ // D˚{C˚ // 0

,

commutativity of the bottom square is immediate from naturality of

the six-term exact sequence and Remark B.5. Our proofs that (iii) and

(iv) are isomorphisms are closely based on arguments from [22] (which

were in turn inspired by work of the third author [37], although that

paper uses quite a different argument); in both cases, the proofs boil

down to clever uses of Eilenberg swindles.

In the next two subsections, we look at the top (‘Paschke duality’)

and bottom (‘Localization algebra’) squares in diagram B.3 separately.

Paschke duality square. Let us set up some conventions for equi-

variant KK-theory. We will work entirely in the odd KK and K

groups: the even case can be deduced from the odd case by replacing

A with AbC0pRq, where C0pRq has the trivial Γ-action (alternatively,

the even case can be handled directly by arguments analogous to those

used below for the odd case, but is notationally more complicated due

to the necessity of dragging gradings through all the proofs).
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Let B, C be (trivially graded) Γ-C˚-algebras. We will write cycles for

KKΓ
1 pB,Cq as quadruples pE , F, β, φq where E is a Hilbert C-module,

F is an adjointable operator on LpEq, β is a Γ-action on E by bounded

linear isometries (not necessarily by adjointable operators, however),

and φ : B Ñ LpEq is an equivariant ˚-homomorphism. Cycles for

KK1pB,Cq will analogously be written pE , F, φq. See [16, Section 2]

for the precise conditions needed to be satisfied by these cycles.

We will need the following Hilbert module version of Voiculescu’s

theorem, due to Kasparov [15, Theorem 5]; as the statement is a little

technical, we repeat the special case we need for the reader’s conve-

nience.

Theorem B.6. Let B be a unital, nuclear, separable C˚-algebra, and

C a σ-unital C˚-algebra. Assume that B is equipped with a unital

˚-representation B Ñ BpHq on some separable infinite dimensional

Hilbert space H whose image contains no compact operators. Let more-

over H bC be the standard Hilbert C-module, and note that there is a

unital inclusion

π : B Ñ BpHq Ñ LpH b Cq,
where the map from the bounded operators on H to the adjointable

operators on H b C is defined by amplification (see [17, page 35]).

Let φ : B Ñ LpHbCq be a unital ˚-homomorphism, and consider the

sum φ‘ π : B Ñ LppH bCq ‘ pH bCqq. Then there is an adjointable

isometry V : H b C Ñ pH b Cq ‘ pH b Cq such that the difference

V ˚πpbqV ´ φpbq

is in KpH b Cq for all b P B. �

While Kasparov’s theorem also applies in the presence of a compact

group action, there is unfortunately no general version for non-compact

groups. To get around this issue in the case of proper actions that is

relevant for us, we need a version of Fell’s trick for Hilbert modules

that we now discuss.

Let E be an equivariant HilbertA-module, with Γ-action β, and recall

that the Γ-action on A is denoted by α. We will denote by `2pΓq b E
the usual external tensor product of Hilbert modules (see [17, Chapter

4]), equipped with the Γ action λb β defined as the tensor product of
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the left regular representation and β, the right action of A defined by

pδg b eq ¨ a :“ δg b ea, and the inner product defined by

xδg1 d e1 , δg2 d e2y :“ xδg1 , δg2y`2pΓqxe1, e2yE .

With this structure, `2pΓqbE is again an equivariant Hilbert C-module.

On the other hand, let `2
0pΓq denote the elements of `2pΓq with finite

support, and let `2
0pΓqdE denote the algebraic tensor product (over C).

Let Γ act on `2
0pΓq d E by the tensor product λ d 1 of the left regular

representation and the trivial representation. Define a right action of

A on `2
0pΓq d E by the formula pδg d eq ¨ a :“ δg d eαg´1paq, and define

an A-valued inner product by the formula

xδg1 d e1 , δg2 d e2y :“ xδg1 , δg2y`2pΓqxβg´1
1
pe1q, βg´1

2
pe2qyE

on elementary tensors, and extending. One checks that this is an A-

valued inner product, so completion gives a Hilbert A-module, which

we denote by `2pΓ, Eq. The action of Γ moreover extends to an action on

`2pΓ, Eq, which we still denote by λb1, and the result is an equivariant

Hilbert A-module.

For δgbe P `
2pΓqbE , define Upδgbeq :“ δgbαgpaq. It is straightfor-

ward to check that U extends to an equivariant unitary isomorphism

U : `2
pΓq b E Ñ `2

pΓ, Eq,

of Hilbert A-modules. Using such a U to switch ‘on / off’ the second

component of a Γ-action of this form is called Fell’s trick.

Lemma B.7. Let pE , F, β, φq be a cycle representing some class x P

KKΓ
1 pC0pY q, Aq. Then there is a (non-canonical) way of associating a

new cycle representing x to pE , F, β, φq that has the following additional

properties.

(i) The new cycle has the form pY EA, F, ε, πq, where F is a self-adjoint

element of D˚ and π : C0pY q Ñ LpY EAq is as defined in line (B.1)

above.

(ii) The process takes: degenerate cycles to compact perturbations of

degenerate cycles; unitary equivalences of cycles to compact per-

turbations of unitary equivalences of cycles; operator homotopies

to operator homotopies; and direct sums of cycles to orthogonal

sums of operators.
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Proof. We just give the proof of part (i) above; part (ii) follows from

the proof we give and direct checks.

Recall that γ denotes the action of Γ on C0pY q, and that c is a fixed

choice of cut-off function for the action of Γ on Y . Let pE , F, β, φq be a

cycle for KKΓ
1 pC0pY q, Aq. Cutting down to C0pY q ¨ E , we may assume

that the action of C0pY q on E is nondegenerate (compare [16, Lemma

2.8]). Let Ec denote the equivariant subspace CcpY q ¨ E of E , which is

dense by non-degeneracy. Define V : Ec Ñ `2pΓq b E by the formula

V : e ÞÑ
ÿ

gPΓ

δg b γgpcqe;

the sum makes sense as properness of the Γ action combined with the

compact support conditions on c and e imply that only finitely many

terms are non-zero. Computing gives

xV e, V ey “
ÿ

g,hPΓ

xδg, δhyxγgpcqe, γhpcqey “
A

ÿ

gPΓ

γgpc
2
qe, e

E

“ xe, ey,

from which it follows that V extends to an isometric linear map V :

E Ñ `2pΓq b E . It is straightforward to check moreover that V is

equivariant, and has an adjoint defined by

V ˚ : δg b e ÞÑ γgpcqe.

In particular, there is an equivariant submodule E 1 of `2pΓq b E such

that V pEq ‘ E 1 – `2pΓq b E . Summing our cycle pE , F, β, φq with the

degenerate cycle pE 1, 1, βbλ|E 1 , 0q and applying a unitary isomorphism,

we may replace our original cycle by one of the form p`2pΓq b E , F, λb
β, φq (this F and φ are not the same as the original ones, but what

exactly they are does not matter at this point; we abuse notation as

the price to pay for not multiplying primes or subscripts).

Conjugating by the unitary appearing in Fell’s trick, we may replace

our cycle by one of the form p`2pΓ, Eq, F, λb1, φq. Now, ignoring the Γ

actions, Kasparov’s stabilization theorem (see for example [17, Chapter

6]) embeds E as a complemented submodule of HY b H b A. Hence

we may embed `2pΓ, Eq equivariantly as a complemented submodule of

`2pΓ, HY bH bAq. Adding a degenerate cycle equipped with the zero

action of C0pY q, we may thus assume that our class is represented by

a cycle of the form

p`2
pΓ, HY bH b Aq, F, λb 1HY bHbA, φq.
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Applying Fell’s trick again, this time ‘in reverse’ then shows that there

is a cycle of the form

(B.4) pY EA, F, ε, φq

representing the same class. Note from our construction so far that

while the action of C0pY q on Y EA need not be non-degenerate, we do

at least have that the submodule φpC0pY qq ¨ Y EA is complemented.

Now, let ČC0pY q denote the unitization of C0pY q; abusing notation

slightly, write

π : ČC0pY q Ñ BpHY q Ñ LpY EAq,

for the unital ˚-homomorphism extending our fixed π; here the first

arrow is the unital extension of our fixed representation, and the second

is amplification. The C˚-algebra ČC0pY q is nuclear, and we assumed

that no non-zero element acts as a compact operator on HY . Hence

(replacing φ with its unitization) Theorem B.6 gives an adjointable

isometry

V : Y EA Ñ Y EA
with the property that

V ˚πpfqV ´ φpfq P KpY EAq

for all f P C0pY q.

Unfortunately, V does not need to respect the action of Γ, but we

can rectify this as follows. Choose a family of equivariant isometries
`

vg : `2
pΓq bH Ñ `2

pΓq bH
˘

gPΓ

with the properties that
ř

g vgv
˚
g “ 1 (convergence in the strong op-

erator topology) and v˚hvg “ 0 for h ‰ g (such exist by the classi-

cal version of Fell’s trick), and abusing notation, also write vg for

the isometries on Y EA induced by these. Consider the submodule

Ec :“ φpCcpY qq ¨ Y EA of Y EA, which is dense in the complemented

submodule E :“ φpC0pY qq ¨ Y EA of Y EA. Define a map

W : Ec Ñ Y EA, e ÞÑ
ÿ

gPΓ

vgrεgpV qγgpcqe,

which makes sense as the compact support conditions on c and Ec
guarantee that the sum on the right is finite. Computing, for any
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e1, e2 P Ec,

xWe1,We2y “
ÿ

g,hPΓ

xvgrεgpV qγgpcqe1 , vhrεhpV qγhpcqe2y

“
ÿ

g,hPΓ

xv˚hvgrεgpV qγgpcqe1 , rεhpV qγhpcqe2y

“
ÿ

gPΓ

xrεgpV qγgpcqe1 , rεhpV qγhpcqe2y

“
ÿ

gPΓ

xεgpV
˚V qγgpcqe1, γgpcqe2y

“
ÿ

gPΓ

xγgpc
2
qe1, e2y “ xe1, e2y.

Hence W extends to an isometry E Ñ Y EA, which is clearly equivariant.

ExtendingW by zero on the complement of E , we may considerW as an

equivariant partial isometry W : Y EA Ñ Y EA, and it is straightforward

to check (using that WW ˚ is the projection onto E :“ φpC0pY qq ¨ Y EA)

that

W ˚πpfqW ´ φpfq P KpY EAq

for all f P C0pY q. This gives us that

pY EA,W ˚FW, ε, πq

(where F is in the cycle in line (B.4)) is a cycle for KKΓ
1 pC0pY q, Aq

that is equivalent to our original cycle.

We now have a cycle pY EA, F, ε, πq on the correct equivariant C0pY q-

A module Y EA. Replacing the operator F by
ÿ

g

γgpcqrεgpF qγgpcq

(the sum converges strictly, as one can see using elements of CcpY q¨Y EA
as we have a couple of times already), we get a new cycle which is just a

compact perturbation of the old one, and for which F is equivariant and

of finite Γ-propagation. Together with the other conditions defining a

Kasparov cycle, this gives that F is an element of D˚. Finally, replacing

F by 1
2
pF`F ˚q, we may assume that F is self-adjoint and are done. �

The above lemma now allows us to define the map labelled (i) in

Diagram (B.3), and show it to be an isomorphism.
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Definition B.8. Define a homomorphism

δ : KKΓ
1 pC0pY q, Aq Ñ K1pD

˚
{C˚q

by first representing a class x in KKΓ
1 pC0pY q, Aq as a cycle of the form

in Lemma B.7; then note the conditions on a Kasparov cycle imply that

the image of 1
2
p1`F q in D˚{C˚ is a projection p, and define δpxq :“ rps.

The following proof is based on [13, Theorem 8.4.3]: see the discus-

sion there for more details.

Corollary B.9. The map δ from Definition B.8 above is a well-defined

isomorphism.

Proof. We note first that the equivalence relation on cycles used to

define KKΓ
1 pC0pY q, Aq may be taken to be that generated by operator

homotopies, addition of degenerate cycles, and unitary equivalences.

Indeed, as already noted there is a canonical process

F  
ÿ

gPΓ

γgpcqrεgpF qγgpcq

for replacing operators by Γ-invariant ones. Using this, it is not too dif-

ficult to see that the proof that the equivalence relation on cycles used

to define KK1pB,Cq may be taken to be that generated by operator

homotopies, addition of degenerate cycles, and unitary equivalences in

the non-equivariant case [28, Theorem 19] extends to the equivariant

groups KKΓ
1 pC0pY q, Aq (it is important here that C0pY q is a proper

Γ-algebra). The fact that δ is well-defined follows from this: operator

homotopies give rise to homotopic projections, unitary equivalences

to Murray-von Neumann equivalent projections, and degenerate cycles

to projections vulnerable to an Eilenberg swindle. Moreover, δ is a

homomorphism as one can add orthogonal projections.

To see that δ is an isomorphism, note that it is surjective as every

element of K˚pD
˚{C˚q can be represented by a projection in D˚{C˚

(as opposed to a matrix algebra over it), and lifting to D˚ gives rise to

a cycle for KKΓpC0pY q, Aq. It is injective as the equivalence relations

on projections and unitaries defining K˚pD
˚{C˚q lift to equivalences of

Kasparov cycles. �
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We now recall some more details about the KK-theoretic assembly

map

µ : KKΓ
1 pC0pY q, Aq Ñ K1pA¸r Γq.

We start with a class on the left hand side represented by some cycle

pE , F, β, φq. Kasparov [16, 3.7 – 3.11] defines a descent homomorphism

jΓ
r : KKΓ

1 pC0pY q, Aq Ñ KK1pC0pY q ¸r Γ, A¸r Γq

from equivariant KK groups to the non-equivariant KK groups of

crossed products as follows. Define a scalar product on CcpΓ, Eq with

values in CcpΓ, Aq by for each pair for e1, e2 P CcpΓ, Eq defining the

function

xe1, e2y : Γ Ñ A

by the formula

xe1, e2ypgq :“
ÿ

hPΓ

αh´1

`

xe1phq, e2phgqyE
˘

.

Define a right action of CcpΓ, Aq on CcpΓ, Eq by the formula

pe ¨ aqpgq :“
ÿ

hPG

ephqαhpaph
´1gqq.

Kasparov shows that the inner product is positive, and thus it makes

sense to define E ¸Γ as the Hilbert A¸r Γ-module defined by simulta-

neous completion (see [17, pages 4-5]). The module E ¸ Γ is equipped

with a left action of C0pY q ¸r Γ defined as the integrated form of the

covariant representation defined by setting

prφpfq ¨ eqpgq :“ φpfq ¨ epgq, f P C0pY q, e P CcpΓ, Eq, g P Γ

and the unitary representation of Γ defined by

pug ¨ eqphq :“ εgpepg
´1hqq, g, h P Γ, e P CcpΓ, Eq.

Kasparov shows that this integrates to a representation of C0pY q¸r Γ,

also denoted rφ, so E¸Γ is a C0pY q¸r Γ-A¸r Γ bimodule. An operator
rF is defined on E by the formula

p rF ¨ eqpgq :“ F ¨ epgq.

The map jΓ
r is then defined by jrE , F, β, φs “ rE ¸ Γ, rF , rφs.

The second step in defining the assembly map is to choose a cut-off

function c for Y , and use it to construct a basic projection as in line
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(B.2) above and thus a class rpY s inK0pC0pY q¸rΓq – KK0pC, C0pY q¸r
Γq. The assembly map is now defined by

µrE , F, β, φs :“ rpY s
â

C0pY q¸rΓ

jΓ
r rE , F, β, φs P KK˚pC, A¸r Γq.

where ‘bC0pY q¸rΓ’ denotes Kasparov product over the C˚-algebra C0pY q¸r
Γ. More explicitly, one checks directly that this class is represented by

the Kasparov cycle

pĂpY pE ¸ Γq,ĂpY rFĂpY , ιq

for KK˚pC, A¸rΓq, where ι : CÑ LpE¸Γq is the unital representation

given by z ÞÑ zpY (in what follows will usually omit the ‘rφ’ where this

is unlikely to cause confusion). Hence

µrE , F, β, φs “ rpY pE ¸ Γq, pY rFpY , ιs.

In order to analyze this cycle, it will be extremely convenient to in-

troduce a new Hilbert A¸rΓ module as follows; the following discussion

is inspired by, but a little different from [25, Lemmas 2.1, 2.2, 2.3 and

3.4]. Let `2
0pΓq denote the subspace of finitely supported functions in

`2pΓq. Write ‘d’ for the uncompleted tensor product over C, and define

E0 :“ HY d AdH d `
2
0pΓq,

which is a dense subspace of Y EA. Equip E0 with the restriction of the

Γ-action ε on Y EA; symbolically, this is given by

εgpξ d ad η d δhq :“ ugξ d αgpaq d η d δgh.

Provisionally define a new inner product on E0 with values in CcpΓ, Aq Ď

A¸r Γ by the formula

xe1, e2yEA¸rΓ
pgq :“ xe1, εgpe2qyY EA ,

and a right action of CcpΓ, Aq by

e ¨ b :“
ÿ

gPΓ

εg´1pe ¨ bpgqq,

where the product ‘e¨bpgq’ on the right refers to the A-module structure

of Y EA. Define finally a linear map

(B.5) U : E0 Ñ Y EA ¸ Γ, pUeqpgq :“ c ¨ εgpeq.
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A direct computation that we leave to the reader shows that for any

e1, e2 P E0, we have

(B.6) xUe1, Ue2yY EA¸Γ “ xe1, e2yEA¸rΓ

and moreover for all e P E0 and b P CcpΓ, Aq we have pUeq ¨ b “ Upe ¨ bq.

It follows from this that the form x , yEA¸rΓ
is positive semi-definite,

and thus simultaneous completion as discussed in [17, pages 4-5] gives

rise to a Hilbert A¸r Γ-module EA¸rΓ. Moreover, the map in line (B.5)

above extends to an isometric inclusion

U : EA¸rΓ Ñ Y EA ¸ Γ.

Lemma B.10. The map U : EA¸rΓ Ñ Y EA¸Γ is an adjointable isom-

etry, with image exactly equal to pY ¨ pY EA ¸ Γq.

Proof. An elementary computation shows that the adjoint of U is given

for e P Y EA ¸ Γ by the formula

U˚e “
ÿ

gPΓ

εg´1pc ¨ epgqq;

combined with the formula in line (B.6), we now have that U is an

adjointable isometry. Computing, for any e P Y EA ¸ Γ and g P Γ

pUU˚eqpgq “ c ¨ εgpU
˚eq “ c ¨ εg

´

ÿ

hPΓ

εh´1pc ¨ ephqq
¯

“
ÿ

hPΓ

cγgh´1pcq ¨ ephq.

Making the change of variables k “ gh´1, this becomes

UU˚epgq “
ÿ

kPΓ

cγkpcqepk
´1gq “ ppY ¨ eqpgq.

In other words, the range projection of U is pY , which completes the

proof. �

Now, let E : A¸r Γ Ñ A denote the faithful conditional expectation

defined by b ÞÑ bpeq, where e here denotes the identity element of Γ.

Following the discussion in [17, pages 57-58], this conditional expec-

tation gives rise to a ‘localization’ Hilbert A-module EA¸rΓ,E defined

as the separated completion of EA¸rΓ for the A-valued inner product

defined by

xe1, e2yEA¸rΓ,E
:“ Epxe1, e2yEA¸rΓ

q.
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Moreover, there is a ˚-representation

πE : LpEA¸rΓq Ñ LpEA¸rΓ,Eq.

defined on the dense subspace of EA¸rΓ,E defined as the image of EA¸rΓ
by the formula πEpT q ¨ e “ T ¨ e; as in our case E is faithful, πE is

isometric.

Lemma B.11. The localization EA¸rΓ,E identifies naturally with Y EA:

more precisely, on the dense subspace of these A-modules defined by E0,

the inner products agree.

Moreover, having made this identification, the ˚-representation πE
takes KpEA¸rΓq onto C˚.

Proof. The first part is clear from the formulas involved. For the second

part, recall first that KpEA¸rΓq is generated by operators of the form

θe1,e2 : e ÞÑ e1xe2, eyEA¸rΓ
,

where e1, e2, e are in EA¸rΓ (or just in the dense subspace E0). Com-

puting,

θe1,e2peq “
ÿ

gPΓ

εg´1pe1xe2, e2yEA¸rΓ
pgqq “

ÿ

gPΓ

εg´1pe1xe2, εgpeqyY EAq.

Now, specialize to the case where ei “ ξi d ai d ηi d δhi for i P t1, 2u,

and e “ ξ d a d η d δh are all given by elementary tensors, which we

may regard equally as elements of Y EA. The first part combined with

the above computation then says that

πEpθe1,e2qe “
ÿ

gPΓ

εg´1pe1xe2, εgpeqyY EAq

“
ÿ

gPΓ

xη2, ηyxξ1, ugξ2yxδh1 , δghyug´1ξ1 b αg´1pa1a
˚
2qab η b δg´1h1

.

It is straightforward to check that the operator πEpθe1,e2q is in C˚, and

moreover that linear combinations of such operators are dense in C˚,

completing the proof. �

At this point, we have that EA¸rΓ is an A¸r Γ-module, and that the

compact operators on it identify naturally with C˚. To complete the

proof that A¸r Γ is Morita equivalent with C˚, it will suffice to show

that EA¸rΓ is full. For the sake of completeness, as well as to ease the

subsequent analysis, the next lemma gives a more precise statement.
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To state it, define an CcpΓ, Aq-valued inner product on E0 by the

formula

xξ1da1dη1dδh1 , ξ2da2dη2dδh2ypgq :“ xξ1, ξ2yxη1, η2yxδg, δh´1
1 h2

yαh´1
1
pa˚1a2q.

In other words, identifying `2
0pΓqdA with CcpΓ, Aq in the natural way,

this isHYdHdCcpΓ, Aq with its natural CcpΓ, Aq-valued inner product.

Thus it is positive definite, and completion gives rise to the standard

A¸r Γ-module HY bH b A¸r Γ.

Lemma B.12. The map

V : E0 Ñ E0, ξ d ad η d δh ÞÑ uh´1ξ d αh´1paq d η d δh´1

extends to an isometric isomorphism

V : EA¸rΓ Ñ HY bH b A¸r Γ.

In particular, conjugation by V induces an isomorphism

KpEA¸rΓq – KpHY bHq b A¸r Γ,

and combining with Lemma B.11, C˚ – K b A¸r Γ.

Proof. Computing,

xV pξ1 d a1 d η1 d δh1q , V pξ2 d a2 d η2 d δh2qyHY bHbA¸rΓpgq

“ xuh´1ξ, u´1
h2
ξ2yxη1, η2yxδg, δh1h

´1
2
yαh1pαh´1

1
pa˚1qαh2pa2qq

“ xξ, u´1
h1h2

ξ2yxη1, η2yxδg, δh1h
´1
2
ya˚1αh1h

´1
2
pa2q

“ xξ, u´1
g ξ2yxη1, η2yxδh1 , δgh2ya

˚
1αgpa2q

“ xξ1 d a1 d η1 d δh1 , ξ2 d a2 d η2 d δh2yEA¸rΓ
pgq.

Hence V extends to an isometry from EA¸rΓ into HY bH bA¸r Γ. A

standard computation shows that V is adjointable, with adjoint given

on E0 by the same formula as for V , i.e.

V ˚pξ d ad η d δhq “ uh´1ξ d αh´1paq d η d δh´1 .

Clearly from these formulas V has dense image, and thus extends to a

unitary isomorphism as claimed.

To complete the statement about the compact operators, note that

we now have

KpEA¸rΓq – KpHY bH b A¸r Γq – KpHY bHq bKpA¸r Γq

– KpHY bHq b A¸r Γ,
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where the first isomorphism is conjugation by V , the second is a stan-

dard general isomorphism for external tensor products of Hilbert mod-

ules discussed in [17, page 37], and the third is the standard identifi-

cation KpBq – B for any C˚-algebra considered as a Hilbert module

over itself as discussed in [17, page 10]. �

We now go back to commutativity of the top square of diagram (B.3).

Filling in some more details, the top square in Diagram (B.3) looks as

follows.

KKΓ
1 pC0pY q, Aq //

δ –

��

KK1pC, A¸r Γq
–

κ // K1pA¸r Γq

��
K1ppA¸r Γq bKq

��

– s

OO

K1pKpEA¸rΓqq

– adV

OO

– πE
��

K0pD
˚{C˚q

B

// K1pC
˚q ,

where in the above:

(i) the map labelled δ is the Paschke duality isomorphism of Corollary

B.9;

(ii) the map labelled B is the standard boundary map in K-theory;

(iii) the composition of the top two horizontal arrows is the the Baum-

Connes assembly map µ (we have explicitly included the isomor-

phism κ);

(iv) the map labelled πE is the map on K-theory induced by the iso-

morphism of Lemma B.11;

(v) the map labelled adV is the map on K-theory induced by conju-

gation by the unitary isomorphism of Lemma B.12;

(vi) the map labelled s is the stabilization isomorphism in K-theory.

Consider now what happens to a class in KKΓ
1 pC0pY q, Aq as it goes

around this diagram. Using Lemma B.7, we may assume our class is

of the form rY EA, F, ε, πs, where F is in D˚. As discussed above, the

assembly map µ along the top row of diagram (B.3) takes this class to

rpY ¨ pY EA ¸ Γq, pY rFpY , ιs P KK1pC, A¸r Γq
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where ι is the unit representation of C. Using Lemma B.10, this class

is the same as rEA¸rΓ, U˚ rFU, ιs. Lemma B.12 implies that EA¸rΓ is

actually a standard module over A¸r Γ, and thus one of the standard

formulations of the isomorphism between KK˚pC, Bq and K˚pBq (see

[5, 17.5.4 – 17.5.6]) says that this class corresponds to the image of the

projection 1
2
p1` U˚ rFUq under the composition

B : K0pLpEA¸rΓq{KpEA¸rΓqq Ñ K1pKpEA¸rΓqq Ñ K1pA¸r Γq,

of the K-theory boundary map and the combination of the isomor-

phism adV and the stabilization isomorphism. On the other hand,

going around the square to the bottom right corner in the other direc-

tion, our class rY EA, F, ε, πs goes to the image of the projection 1
2
p1`F q

in D˚{C˚ under the boundary map

B : K0pD
˚
{C˚q Ñ K1pC

˚
q.

Consider then the commutative diagram of boundary maps

K0pLpEA¸rΓq{KpEA¸rΓqq
B // K1pKpEA¸rΓqq

K0pD
˚{C˚q

B

//

π´1
E

OO

K1pC
˚q

π´1
E

OO
,

where the vertical maps are induced by the inverse of πE restricted to

its image. To complete the proof, the discussion above implies that it

will be enough to show that the projections

1

2
p1` U˚ rFUq and π´1

E p
1

2
p1` F qq

in LpEA¸rΓq{KpEA¸rΓq are the same. For this the following lemma

suffices, so it completes our analysis of the top sqaure.

Lemma B.13. For any F P D˚,

πEpU
˚
rFUq ´ F

is in C˚.
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Proof. We compute what the operator πEpU
˚
rFUq does on an element

e of E0 Ď Y EA.

πEpU
˚
rFUqe “ U˚ rFUe “

ÿ

gPΓ

εg´1pcp rFUeqpgqq “
ÿ

gPΓ

εg´1pcF pUeqpgqq

“
ÿ

gPΓ

εg´1pcFcεgpeqq “
ÿ

gPΓ

γg´1pcqFγg´1pcqe,

where the last inequality used Γ-invariance of F . Hence

πEpU
˚
rFUq ´ F “

ÿ

gPΓ

γg´1pcqFγg´1pcq ´ F.

To see that this operator is in C˚, we must show that it is Γ-invariant,

has finite Γ-propagation, and is A-locally compact. The first two of

these are clear, as they hold for each of the two terms individually.

To see that the operator is A locally compact, let f be an element of

CcpY q. Let S :“ tg P Γ | f ¨ γg´1pcq ‰ 0u, which is finite by properness

of the action, and compact support of f and c. Then we have

f ¨
´

ÿ

gPΓ

γg´1pcqFγg´1pcq ´ F
¯

“ f ¨
´

ÿ

gPS

γg´1pcqFγg´1pcq ´
ÿ

gPS

γg´1pc2
qF

¯

“ f ¨
´

ÿ

gPS

γg´1pcqrF, γg´1pcqs
¯

,

where the first equality uses that
ř

γg´1pc2q “ 1. The sum in paren-

theses is a finite sum of operators in KpY EAq, so we are done. �

Localization algebra square. In studying the bottom square, it will

help to introduce some auxiliary C˚-algebras. For a C˚-algebra B,

let TB denote the C˚-algebra of all bounded, uniformly continuous

functions from r0,8q to B. We then have a commutative diagram of

short exact sequences of C˚-algebras.

(B.7) 0 // C˚ // D˚ // D˚{C˚ // 0

0 // TC˚ //

OO

TD˚ //

OO

TD˚{TC˚ //

OO

0

0 // C˚L
//

OO

D˚L
//

OO

D˚L{C
˚
L

//

OO

0
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Here the upper three vertical arrows are all induced by evaluation-at-

zero maps, while the lower three vertical arrows are all induced by sim-

ply forgetting the condition on metric propagation in the definition of

D˚L and C˚L. As already mentioned, the bottom square in Diagram (B.3)

is induced by the boundary maps from the top and bottom sequences

in Diagram (B.7), and thus automatically commutes, so it remains to

show that the maps labelled (iii) and (iv) in Diagram (B.3) are iso-

morphisms. Indeed, that (iii) is an isomorphism follows from Lemmas

B.14 and B.15 below, while isomorphism of (iv) is Lemma B.16 below,

so these lemmas complete our analysis of the bottom square.

Lemma B.14. (Compare [22, Proposition 3.6]). The upper three ver-

tical maps in Diagram (B.7) induce isomorphisms on K-theory.

Proof. Using the six term exact sequence and the five lemma, it suffices

to show the two maps on the left induce isomorphisms on K-theory.

For this it suffices to show the following: if B is a C˚-algebra which has

a stability structure in the sense of Definition 6.4, then the evaluation-

at-zero map TB Ñ B induces an isomorphism on K-theory. Using

the six term exact sequence again, it suffices to show that if B is any

C˚-algebra with a stability structure, then

T0B :“ tf P TB | fp0q “ 0u

has trivial K-theory. This is what we will now do.

Let punq be the unitaries in the definition of a stability structure.

For an element b P T0pBq, extend b to a function b : RÑ B by setting

bptq “ 0 for all t ă 0. For each n, define an inclusion

µn : T0B Ñ T0B, pµnbqptq “ bpt´ nq.

Then each µn is a ˚-homomorphism. Moreover, the map

µ : T0B Ñ T0B, b ÞÑ
8
ÿ

n“0

unµnpbqu
˚
n

is a ˚-homomorphism, as for any fixed t, all but finitely many of the

functions µnpbq take the value zero at t. Conjugating by the isometry

v “
8
ÿ

n“0

un`1u
˚
n
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shows that µ induces the same map on K-theory as the map µ1 : T0B Ñ

T0B defined by

µ1pbq “
8
ÿ

n“1

unµn´1pbqu
˚
n,

and applying a shift homotopy at each ‘level’ indexed by n (plus using

uniform continuity of b) shows that µ1 induces the same map on K-

theory as µ`1 : T0B Ñ T0B defined by

µ`1
pbq :“

8
ÿ

n“1

unµnu
˚
n.

Then we clearly have that

µ “ adu0 ˝ µ0 ` µ
`1

as ˚-homomorphisms (the right hand side is a ˚-homomorphism as µ0

and µ`1 have orthogonal images: compare Lemma 6.3 above). Note

that adu0 is just conjugation by an isometry in the multiplier algebra of

T0B, and thus defines the identity on K-theory (see Lemma 6.1 above).

Hence passing to induced maps on K-theory gives

µ˚ “ padu0q˚ ˝ pµ0q˚ ` µ
`1
˚ “ id` µ˚,

and cancelling µ˚ gives that the identity map is zero, which gives

K˚pT0pBqq “ 0 as claimed. �

Lemma B.15. (Compare [22, Proposition 2.3]). With notation as in

Diagram (B.7) above, the map D˚L{C
˚
L Ñ TD˚{TC˚ is an isomorphism

of C˚-algebras.

Proof. We define an inverse map. As the action of Γ on Y is proper,

arguing as in [35, Corollary A.2.8] one sees that for each n, there exists

a partition of unity tφi,n : Y Ñ r0, 1suiPIn , which is Γ-invariant, such

that each φi,n has compact support of diameter at most 1{n, and such

that
ř

iPIn
φ2
i,npyq “ 1 for all y P Y . Define a map Φ : TD˚ Ñ D˚L by

stipulating that when t P rn, n` 1s,

Φpaqptq :“ pn`1´tq
ÿ

iPIn`1

φi,n`1aptqφi,n`1`pt´nq
ÿ

iPIn`2

φi,n`2aptqφi,n`2.

Then it is not too difficult to see that Φ is a well-defined complete

contraction, that Φ descends to a well-defined ˚-homomorphism on the

quotients, and that Φpaptqq ´ aptq P TC˚ for all a and all t (compare

[22, Lemma 2.2]). The result follows from this. �
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Lemma B.16. (Compare [22, Proposition 3.5]). The C˚-algebra D˚L
has trivial K-theory.

Proof. Again, we use the stability structure punq
8
n“0 on D˚L coming from

a decomposition of the ‘auxiliary Hilbert space’ H into countably many

infinite dimensional summands. For each n, define a ˚-homomorphism

µn : D˚L Ñ D˚L by the formula

pµnpaqqptq “ apt` nq.

Then we may define µ : D˚L ÑMpD˚Lq by the formula

µpaq :“
8
ÿ

n“0

unµnpaqu
˚
n.

Note however, that the image actually lands in D˚L, not its multiplier

algebra: the point is that rµnpaqptq, f s Ñ 0 in norm as nÑ 8 for any

f P C0pY q and t P r0,8s, using the propagation condition (compare the

proof of [24, Proposition 5.18]). A combination of conjugation by an

isometry and a homotopy quite analogous to the argument of Lemma

B.14 shows that µ induces the same map on K-theory as µ`1, where

the latter is defined by the same formula, except that the sum starts

at n “ 1. Finally, we have that as maps on K-theory

µ˚ “ padu0q˚ ˝ pµ0q˚ ` µ
`1
˚ “ id` µ˚,

whence the identity induces the zero map on K-theory, and we are

done. �
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