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Abstract

In the 1980’s Pierre Julg and Alain Valette, and also Tadeusz Pytlik and
Ryszard Szwarc, constructed and studied a certain Fredholm operator associ-
ated to a simplicial tree. The operator can be defined in at least two ways:
from a combinatorial flow on the tree, similar to the flows in Forman’s discrete
Morse theory, or from the theory of unitary operator-valued cocycles. There are
applications of the theory surrounding the operator to C∗-algebra K-theory, to
the theory of completely bounded representations of groups that act on trees,
and to the Selberg principle in the representation theory of p-adic groups. The
main aim of this paper is to extend the constructions of Julg and Valette, and
Pytlik and Szwarc, to CAT(0) cubical spaces. A secondary aim is to illustrate
the utility of the extended construction by developing an application to oper-
ator K-theory and giving a new proof of K-amenability for groups that act
properly on finite dimensional CAT(0)-cubical spaces.

1. Introduction

CAT(0) cubical spaces are geometric spaces that are assembled from cubes of various
dimensions in much the same way that simplicial trees are assembled from edges.
They play an important role in group theory that is more or less analogous to the
roles that trees play in the theory of amalgamated free products and HNN extensions,
and they have been especially prominent in recent work in group theory related to
3-manifold topology [Ago14].

The goal of this paper and its sequel is to provide a geometric proof of the Baum-
Connes conjecture (with coefficients) for groups acting on CAT(0)-cubical spaces.
While the Baum-Connes isomorphism for these groups is a consequence of the Higson-
Kasparov theorem [HK01], the approach taken here provides an explicit connection
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between the beautiful geometry of CAT(0) spaces and the KK-theoretic machinery
needed for the proof of the conjecture. As a step towards this goal, we demonstrate
how our constructions can be used to prove that groups acting on CAT(0)-spaces are
K-amenable.

The first purpose of this paper is to associate to every base-pointed, finite-dimensional
CAT(0) cubical space X a Fredholm complex of Hilbert spaces

`2(X0) dÐ→ `2(X1) dÐ→ ⋯ dÐ→ `2(Xn−1) dÐ→ `2(Xn)

that is a combinatorial analogue of the Witten complex in Morse theory [Wit82] as-
sociated to a symmetric space of noncompact type and the distance-squared function
from a basepoint (this is a Morse function on the symmetric space, with a single
critical point of index zero).

The second purpose is to construct a homotopy, in the topological sense, from the
complex above to a base-point-independent Fredholm complex that is fully equivariant
for any group acting isometrically on X. The Euler characteristic of the base-point-
independent complex is the trivial representation.

The homotopy has an important interpretation in operator K-theory: it connects the
γ-element to the identity in Kasparov’s representation ring [Kas88, Section 2], and so
leads to a new, geometric proof of the Baum-Connes conjecture (with coefficients) for
locally compact groups acting cocompactly and isometrically on a finite-dimensional
CAT(0)-cubical space.

The main step in the Baum-Connes argument is the construction of the homotopy
presented here. The remaining details involve arguments in operator K-theory rather
than the geometry of cubical spaces, and will be presented elsewhere [BGHN18]. Here
we shall focus on issues closely related to the geometry of CAT(0) cubical spaces. But
even without going far into K-theoretic matters, we shall be able to use the homotopy
alone to prove in Section 10 that any group that acts properly and isometrically on
a CAT(0) cube complex is K-amenable [JV83, JV84, HK01].

Our complexes extend constructions of Julg and Valette [JV83, JV84], and of Pytlik
and Szwarc [PS86], from simplicial tress to CAT(0) cubical spaces (a one-dimensional
CAT(0) cubical space is the same thing as a simplicial tree). In the 1980’s these au-
thors constructed and studied a certain Fredholm operator associated to a simplicial
tree, with applications to C∗-algebra K-theory [JV83, JV84], to the theory of com-
pletely bounded representations of groups that act on trees [PS86], and to the Selberg
principle in the representation theory of p-adic groups [JV86, JV87].

Let us describe the construction of Julg and Valette, which is closer to the outlook
of this paper than the construction of Pytlik and Szwarc. Fix a base vertex P0 in a
tree, and define a operator from the `2-space of vertices in the tree to the `2-space
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of edges by mapping each vertex v to the first edge E on the edge-path to the base
vertex, except for the base vertex itself, which is mapped to zero. See Figure 1. (The
connection with Witten’s complex may not be immediately apparent, but it can be
made completely explicit with the help of Forman’s Morse theory for cell complexes
[For98a, For98b].)

P0

E

v

Figure 1: Julg-Valette operator on a tree.

The Julg-Valette operator is a bounded Fredholm operator of index one. It depends
on the base vertex, but in a sense made precise by Kasparov’s theory it is nearly
equivariant. Moreover as Julg and Valette demonstrated the operator may be de-
formed through Fredholm operators, themselves nearly equivariant, to a Fredholm
operator that is exactly equivariant. This is the key point in the applications above,
as it is for us.

The analogous construction for general CAT(0) cubical spaces is as follows. Whereas
for trees there is a canonical “gradient flow” towards a base vertex, in higher dimen-
sions this is not so. For example a vertex is typically connected to the base vertex by
a large number of edge-paths. We address this issue by having our Julg-Valette dif-
ferential use all routes to the base vertex (the absence of a definite flow separates our
work from actual Morse-theoretic constructions). In addition, in order to obtain the
condition d2 = 0, we need to assign orientations to cubes in a way that is unnecessary
for trees. But after taking these considerations into account we obtain our complex,
at least in its basic form. See Section 3 for details.

A greater challenge is the construction of the homotopy. Let us first describe the final,
base-vertex-independent complex in the homotopy, which is built using the theory of
hyperplanes in CAT(0) cubical spaces [NR98]. Hyperplanes are maximal, connected
unions of midplanes of cubes that meet compatibly at faces (the precise definition
is reviewed in Section 2). Hyperplanes determine a relation of parallelism on the
cubes of X: two cubes are parallel if they are bisected by precisely the same set of
hyperplanes; see Section 4.

More generally, we define a (p, q)-cube pair to be a (p+q)-cube together with a distin-
guished q-dimensional face, and we say that two (p, q)-cube pairs are parallel if the
outer cubes are parallel, as are their distinguished q-dimensional faces. The q-cochain
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Figure 2: The Julg-Valette differentials on the vertices (0-cubes) and
edges (1-cubes) in a CAT(0) cubical space. Each cube is mapped to
all adjacent cubes that are closer to the base vertex. If orientations are
taken into account, then d2 = 0.

H H

Figure 3: A hyperplane (left) and an associated parallelism class of edges
(right) in a CAT(0) cubical space.

group in the final complex in the homotopy is the direct sum, over all p, of the `2-
spaces of the sets of parallelism classes of (p, q)-cube pairs. The full construction is
described in Section 5.

Let us examine the case of a tree. The hyperplanes are simply the midpoints of
edges, and the only nontrivial parallelisms are among vertices, where two vertices are
parallel if and only if they span an edge. There is one parallelism class of (0,0)-cube
pairs (because any two 0-cubes are parallel), and there is one parallelism class of
(0,1)-cube pairs for each edge. Meanwhile in degree 1 each edge constitutes its own
parallelism class of (1,0)-cube pairs. So in the case of a tree the final complex, which
we shall call the Pytlik-Szwarc complex, has the form

C⊕ `2(E)Ð→ `2(E)

where E is the set of edges. The differential is the obvious one. This is precisely the
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final complex obtained by Julg and Valette in their work on trees.

The construction of the Pyltik-Szwarc complex in higher dimensions is more intricate,
largely because the structure of hyperplanes is more intricate (they are CAT(0)-
cubical spaces in their own right). The same can be said of the homotopy that we
construct, but again it reduces in the case of trees to the homotopy constructed by
Julg and Valette, and uses the same essential idea, that if d(x, y) is the edge-path
distance function on vertices, then exp(−td(x, y)) is a positive-definite kernel function
for every t > 0, which may therefore be used to construct a family of inner products
on the space of functions on the vertices. Roughly speaking, the associated family
Hilbert spaces converges to the `2-space of the vertices as t → ∞ and to the Pytlik-
Szwarc space as t→ 0. This idea is made precise using the concept of continuous field
of Hilbert space in Sections 6 and 7.

The differentials in the complexes along the homotopy are constructed in Section 8.
Their construction essentially completes the proof that γ = 1 for groups acting prop-
erly and isometrically on CAT(0) cubical spaces. Some remaining functional-analytic
details, and the application to K-amenability, are given in Sections 9 and 10.

We conclude by noting that our homotopy is interesting even in the case of a finite
complex, where the cochain groups constitute the fibers of vector bundles over [0,∞].
Examining the dimensions of the fibers in degree q = 0 we obtain the following result:

Theorem. If X is finite CAT(0) cubical space, then the number of vertices of X is
equal to the number of parallelism classes of cubes of all dimensions.

This is the analogue for cubical spaces of the fact that the number of vertices in
a finite tree is one plus the number of edges. There are similar fomulas involving
parallelism classes of (p, q)-cubes for all q > 0, and they lead us to expect that aspects
of our constructions will be of interest and value elsewhere in the theory of CAT(0)
cube complexes.

Acknowledgement. The authors would like to thank the Isaac Newton Institute
for Mathematical Sciences for support and hospitality during the programme ‘Non-
positive curvature, group actions and cohomology’ when part of the work on this
paper was undertaken, supported by EPSRC Grant EP/K032208/1.

2. Cubes and Hyperplanes

We shall begin by fixing some basic notation concerning the cubes and hyperplanes
in a CAT(0) cubical space. We shall follow the exposition of Niblo and Reeves in
[NR98], with some adaptations.

Throughout the paper X will denote a CAT(0) cubical space as in [NR98, Section
2.2]. Though not everywhere necessary, we shall assume throughout that X is finite-
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dimensional. Every q-cube in X contains exactly 2q codimension-one faces. Each
such face is disjoint from precisely one other, which we shall call the opposite face.

We shall use the standard terms vertex and edge for 0-dimensional and 1-dimensional
cubes.

The concept of a midplane of a cube is introduced in [NR98, Section 2.3]. If we identify
a q-cube with the standard cube [−1

2 ,
1
2]q in Rq, then the midplanes are precisely the

intersections of the cube with the coordinate hyperplanes in Rq (thus the midplanes
of a cube C are in particular closed subsets of C). A q-cube contains precisely q
midplanes (and in particular a vertex contains no midplanes)

Niblo and Reeves describe an equivalence relation on the set of all midplanes in a
cubical space: two midplanes are (hyperplane) equivalent if they can be arranged as
the first and last members of a finite sequence of midplanes for which the intersection
of any two consecutive midplanes is again a midplane.

2.1 Definition. (See [NR98, Definition 2.5].) A hyperplane in X is the union of the
set of all midplanes in an equivalence class of midplanes. A hyperplane cuts a cube
if it contains a midplane of that cube. When a hyperplane cuts an edge, we say that
the edge crosses the hyperplane. A hyperplane and a vertex are adjacent if the vertex
is included in an edge that crosses the hyperplane.

2.2 Examples. If X is a tree, then the hyperplanes are precisely the midpoints of
edges. If X is the plane, divided into cubes by the integer coordinate lines, then
hyperplanes are the half-integer coordinate lines.

Hyperplanes are particularly relevant in the context of CAT(0) cubical spaces (such
as the previous two examples) for the following reason:

2.3 Lemma. (See [Sag95, Theorem 4.10] or [NR98, Lemma 2.7].) If X is a CAT(0)
cubical space, then every hyperplane is a totally geodesic subspace of X that separates
X into two connected components.

The components of the complement of a hyperplane are the two half-spaces associated
to the hyperplane. The half-spaces are open, totally geodesic subsets of X. Moreover
the union of all cubes contained in a given half-space is a CAT(0) cubical space in
its own right, and a totally geodesic subcomplex of X.

2.4 Lemma. If two hyperplanes H and K in a CAT(0) cubical space X are disjoint,
then one of the half-spaces of H is contained in one of the half-spaces of K.

Proof. See [GH10, Lemma 2.10].

2.5 Lemma. If k hyperplanes in a CAT(0) cubical space intersect pairwise, then all
k intersect within some k-cube.
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Proof. See [Sag95, Theorem 4.14].

2.6 Lemma. Assume that k distinct hyperplanes in a CAT(0) cubical space have a
non-empty intersection. If are they are all adjacent to a vertex, then they intersect
in a k-cube that contains that vertex.

Proof. See [NR98, Lemma 2.14 and Proposition 2.15].

3. The Julg-Valette Complex

Let X be a CAT(0) cubical space of dimension n. The aim of this section is to define
a differential complex

C[X0] dÐ→ C[X1] dÐ→ ⋯ dÐ→ C[Xn−1] dÐ→ C[Xn],

where Xq denotes the set of q-cubes of X. Our complex generalizes the one introduced
by Julg and Valette in the case of a tree [JV83, JV84], and to motivate the subsequent
discussion we recall their construction. Let T be a tree with vertex set T 0 and edge
set T 1. Fix a base vertex P0. The Julg-Valette differential

d ∶ C[T 0]Ð→ C[T 1]

is defined by mapping a vertex P ≠ P0 to the first edge E on the unique geodesic path
from P to P0; P0 itself is mapped to zero. There is an adjoint differential

δ ∶ C[T 1]Ð→ C[T 0]

that maps each edge to its furtherest vertex from P0. The composite dδ is the identity
on C[T 1], whereas 1−δd is the natural rank-one projection onto the subspace of C[T 0]
spanned by the base vertex. It follows easily that the cohomology of the Julg-Valette
complex is C in degree zero and 0 otherwise.

For the higher-dimensional construction we shall need a concept of orientation for the
cubes in X, and we begin there.

3.1 Definition. A presentation of a cube consists of a vertex in the cube, together
with a linear ordering of the hyperplanes that cut the cube. Two presentations are
equivalent if the edge-path distance between the two vertices has the same parity
as the permutation between the two orderings. An orientation of a cube of positive
dimension is a choice of equivalence class of presentations; an orientation of a vertex
is a choice of sign + or −.

3.2 Remark. Every cube has precisely two orientations, and if C is an oriented cube
we shall write C∗ for the same underlying unoriented cube equiped with the opposite
orientation.
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3.3 Definition. The space C[Xq] of oriented q-cochains on X is the vector space
comprising the finitely-supported, anti-symmetric, complex-valued functions on the
set of oriented q-cubes Xq. Here, a function f is anti-symmetric if f(C) + f(C∗) = 0
for every oriented cube C.

3.4 Remark. The space C[Xq] is a subspace of the vector space of of all finitely
supported functions on Xq, which we shall call the full space of q-cochains. The
formula

f∗(C) = f(C∗)

defines an involution on the full space of q-cochains. We shall write C for both the
Dirac function at the oriented q-cube C and for the cube itself; in this way C belongs
to the full space of q-cochains. We shall write ⟨C⟩ for the oriented q-cochain

⟨C⟩ = C −C∗ ∈ C[Xq],

which is the difference of the Dirac functions at C and C∗ (the two possible meanings
of the symbol C∗ agree).

Next, we introduce some geometric ideas that will allow us to define the Julg-Valette
differential in higher dimensions. The first is the following generalization of the notion
of adjacency introduced in Definition 2.1.

3.5 Definition. A q-cube C is adjacent to a hyperplane H if it is disjoint from H
and if there exists a (q+1)-cube containing C as a codimension-one face that is cut
by H.

3.6 Lemma. A q-cube C is adjacent to a hyperplane H if and only if it is not cut by
H and all of its vertices are adjacent to H.

Proof. Clearly, if the cube C is adjacent to H then so are all of its vertices. For the
converse, assume that all of the vertices of C are adjacent to H. By Lemma 2.5 it
suffices to show that every hyperplane K that cuts C must also cross H. For this,
let P and Q be vertices of C separated only by K, and denote by P op and Qop the
vertices separated from P and Q only by H, respectively. These four vertices belong
to the four distinct half-space intersections associated with the hyperplanes H and
K, so that by Lemma 2.4 these hyperplanes intersect.

We shall now fix a base vertex P0 in the complex X.

3.7 Definition. Let H be a hyperplane in X. Define an operator

H ∧ ∶C[Xq]Ð→ C[Xq+1]

as follows. Let C be an oriented q-cube in X.
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(a) We put H ∧C = 0 if C is not adjacent to H.

(b) In addition, we put H ∧ C = 0 if C is adjacent to H, but C lies in the same
H-half-space as the base point P0.

(c) If C is adjacent to H, and is separated by H from the base point, then we define
H ∧C to be the unique cube containing C as a codimension-one face that is cut
by H.

As for the orientations in (c), if C has positive dimension and is oriented by the vertex
P , and by the listing on hyperplanes H1, . . . ,Hq, then we orient H ∧C by the vertex
that is separated from P by the hyperplane H alone, and by the listing of hyperplanes
H,H1, . . . ,Hq. If C is a vertex with orientation + then H ∧C is oriented as above; if
C has orientation − then H ∧C receives the opposite orientation.

3.8 Remark. The linear operator H ∧ of the previous definition is initially defined
on the full space of q-cochains by specifying its values on the oriented q-cubes C,
which form a basis of this space. We omit the elementary check that for an oriented
q-cube C we have

(3.1) H ∧C∗ = (H ∧C)∗,

which allows us to restrict H ∧ to an operator on the spaces of oriented q-cochains.
We shall employ similar conventions consistently throughout, so that all linear oper-
ators will be defined initially on the full space of cochains and then restricted to the
space of oriented cochains. Some formulas will hold only for the restricted operators
and we shall point these few instances out.

3.9 Definition. The Julg-Valette differential is the linear map

d∶C[Xq]Ð→ C[Xq+1]

given by the formula
dC =∑

H

H ∧C,

where the sum is taken over all hyperplanes in X. Note that only finitely many terms
in this sum are nonzero; even if X is not locally finite, only finitely many hyperplanes
H are adjacent to C and separate C from the base point.

3.10 Example. In the case of a tree, if P is any vertex distinct from the base point
P0, then H ∧ P is the first edge on the geodesic edge-path from P to P0 and our
operator d agrees the one defined by Julg and Valette. Once a base point is chosen
every edge (in any CAT(0) cubical space) is canonically oriented by selecting the
vertex nearest to the base point; vertices are canonically oriented by the orientation
+. Thus, because the original construction of Julg and Valette involves only vertices
and edges and assumes a base point, orientations do not appear explicitly.
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3.11 Lemma. If H1 and H2 are any two hyperplanes, and if C is any oriented cube,
then

(a) H1 ∧ H2 ∧ C is nonzero if and only if H1 and H2 are distinct, they are both
adjacent to C, and they both separate C from P0.

(b) H1 ∧H2 ∧C = (H2 ∧H1 ∧C)∗.

3.12 Remark. Here, H1 ∧H2 ∧C means H1 ∧ (H2 ∧C), and so on.

Proof. Item (a) follows from Lemmas 2.6 and 2.4. To prove (b), note first that as
a result of (a) the left hand side is nonzero if and only if the right hand side is
nonzero. In this case, both have the same underlying unoriented (q+2)-cube, namely
the unique cube containing C as a codimension-two face and cut by H1 and H2. As
for orientation, suppose C is presented by the ordering K1, . . . ,Kq and the vertex
P . The cube H1 ∧H2 ∧ C is then presented by the ordering H1,H2,K1, . . . ,Kq and
the vertex Q, the vertex immediately opposite both H1 and H2 from P ; the cube
H2∧H1∧C is presented by the ordering H2,H1,K1, . . . ,Kq and the same vertex. The
same argument applies when C is a vertex with the orientation +, and the remaining
case follows from this and the identity (3.1).

3.13 Lemma. The Julg-Valette differential d, regarded as an operator on the space
of oriented cochains, satisfies d2 = 0.

Proof. Let C be any q-cube, so that

d2 ⟨C⟩ = ∑
H1,H2

H1 ∧H2 ∧ ⟨C⟩,

As a consequence of Lemma 3.11 we have H1 ∧H2 ∧ ⟨C ⟩+H2 ∧H1 ∧ ⟨C ⟩ = 0, and the
sum vanishes. It is important here that we work on C[Xq] and not on the larger full
space of q-cochains, where the result is not true. See Remarks 3.4 and 3.8.

3.14 Definition. Let H be a hyperplane and let q ≥ 1. Define an operator

H ⌟ ∶C[Xq]Ð→ C[Xq−1]

as follows. Let C be an oriented q-cube in X.

(a) If H does not cut C, then H ⌟C = 0.

(b) If H does cut C then we define H ⌟C to be the codimension-one face of C that
lies entirely in the half-space of H that is separated from the base point by H.

As for orientations in (b), if C is presented by the ordered list H,H1, . . . ,Hq−1 and the
vertex P , and P is not separated from the base point by H, then H ⌟C is presented
by the ordered list H1, . . . ,Hq−1 and the vertex separated from P by H alone. If C
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is an edge presented by the vertex P not separated from the base point by H then
H ⌟C = P op, the vertex of C opposite to P , with the orientation +; if C is presented
by the vertex P and P is separated from the base point by H then H ⌟C = P with
the orientation −.

3.15 Remark. For convenience we shall define the operator H ⌟ to be zero on
vertices.

3.16 Example. Let us again consider a tree T with a selected base vertex P0. If E
is any edge then H ⌟E is zero unless H cuts E. In this case H ⌟E = P , where P is
the vertex of E which is farthest away from P0; we choose the orientation − if E was
oriented by the vertex P , and the orientation + otherwise.

3.17 Definition. Let q ≥ 0. Define an operator

δ∶C[Xq+1]Ð→ C[Xq]

by
δ C =∑

H

H ⌟C,

again noting that only finitely many terms in this sum are nonzero.

3.18 Definition. The oriented q-cubes are a vector space basis for the full space of
q-cochains. We equip this space with an inner product by declaring this to be an
orthogonal basis and each oriented q-cube to have length 1/

√
2. The subspace C[Xq]

of oriented q-cochains inherits an inner product in which

⟨⟨C1⟩, ⟨C2⟩⟩ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if C1 = C2

−1, if C1 = C∗
2

0, otherwise.

Thus, selecting for each unoriented q-cube one of its possible orientations gives a
collection of oriented q-cubes for which the corresponding ⟨C⟩ form an orthonormal
basis of the space of oriented q-cochains; this basis is canonical up to signs coming
from the relations −⟨C⟩ = ⟨C∗⟩.

3.19 Proposition. The operators d and δ of Definitions 3.9 and 3.17 are formally
adjoint and bounded with respect to the inner products in Definition 3.18.

Proof. The fact that the operators are bounded follows from our assumption that the
complex X is finite dimensional. The fact that they are formally adjoint follows from
the following assertion: for a hyperplane H, an oriented q-cube C and an oriented
(q + 1)-cube D we have that H ∧C =D if and only if H ⌟D = C. See Definitions 3.7
and 3.14.
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To conclude the section, let us compute the cohomology of the Julg-Valette complex.
We form the Julg-Valette Laplacian

(3.2) ∆ = (d + δ)2 = dδ + δd,

where all operators are defined on the space of oriented cochains (and not on the
larger full space of cochains), where we have available the formula d2 = 0 and hence
also δ2 = 0.

3.20 Proposition. If C is an oriented q-cube then

∆⟨C⟩ = (q + p(C)) ⟨C⟩,

where p(C) is the number of hyperplanes that are adjacent to C and separate C from
P0. In particular, the ⟨C⟩ form an orthonormal basis of eigenvectors of ∆, which is
invertible on the orthogonal complement of ⟨P0⟩ (and so also on the space of oriented
q-cochains for q > 0).

Proof. Each oriented vertex P is an eigenvector of dδ + δd (acting on the space of
full space of cochains) with eigenvalue p(P ); indeed, dδP = 0 for dimension reasons
while δdP = p(P )P , no matter the orientation. While the analogous statement is
not true for an oriented q-cube C of dimension q ≥ 1, the oriented cochain ⟨C⟩ is an
eigenvector with eigenvalue as in the statement. To see this, let C be such a cube
and observe that

δdC = ∑
H1,H2

H1 ⌟H2 ∧C,

and similarly
dδC = ∑

H1,H2

H1 ∧H2 ⌟C.

Adding these, and separating the sum into terms where H1 = H2 and terms where
H1 ≠H2 we obtain

(3.3) (dδ+δd)C =∑
H

(H ⌟H ∧C +H ∧H ⌟C)+ ∑
H1≠H2

(H1 ⌟H2 ∧C +H2 ∧H1 ⌟C) .

According to Lemma 3.21 below, when dδ + δd is applied to an oriented cochain ⟨C⟩
the terms coming from the second sum in (3.3) cancel. To understand the first sum
in (3.3), observe that if H is any hyperplane and C is any oriented cube, then

H ∧ (H ⌟C) =
⎧⎪⎪⎨⎪⎪⎩

C, if H cuts C

0, otherwise,

and also

H ⌟ (H ∧C) =
⎧⎪⎪⎨⎪⎪⎩

C, if C is adjacent to H and is separated by H from P0

0, otherwise.

Applying this to both C and its opposite cube, the proposition follows.
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3.21 Lemma. If H1 and H2 are distinct hyperplanes, then

H1 ⌟H2 ∧C =H2 ∧H1 ⌟C∗

for every oriented cube C. In particular, H1 ⌟H2 ∧ ⟨C⟩ = −H2 ∧H1 ⌟ ⟨C⟩.

Proof. If C is a vertex then both sides of the formula are zero. More generally, if C is
a q-cube and one of the following two conditions fails then both sides of the formula
are zero:

(a) H2 is adjacent to C, and separates it from the base point;

(b) H1 cuts C and crosses H2.

Assume both of these conditions, and suppose that C may be presented by the listing
of hyperplanes H1,K2, . . . ,Kq and vertex P , and that H1 separates P from the base
point ; if C is not an edge this is always possible. We shall leave the exceptional case
in which C is an edge oriented by its vertex closest to the base point to the reader.

Now, let Q be the vertex of C separated from P by H1 alone, and let P op and Qop

be the vertices directly opposite H2 from P and Q, respectively. The cube H2 ∧C is
presented by the listing H2,H1,K2, . . . ,Kq together with the vertex P op, hence also
by the listing H1,H2,K2, . . . ,Kq and the vertex Qop. It follows that H1 ⌟H2 ∧ C is
presented by the listing H2,K2, . . . ,Kq and the vertex P op. As for the right hand
side, C∗ is presented by the same listing as C but with the vertex Q, so that H1 ⌟C∗

is presented by the listing K2, . . . ,Kq and the vertex P . It follows that H2 ∧H1 ⌟C∗

is presented by the listing H2,K2, . . . ,Kq and the vertex P op, as required.

3.22 Corollary. The cohomology of the Julg-Valette complex is C in degree zero and
0 otherwise.

Proof. In degree q = 0 the kernel of d is one dimensional and is spanned by ⟨P0⟩. In
degrees q ≥ 1 proceed as follows. From d2 = 0 it follows that d∆ = dδd = ∆d, so that
also d∆−1 = ∆−1d. Now the calculation

f = ∆∆−1f = (dδ + δd)∆−1f = d(δ∆−1)f

shows that an oriented q-cocycle f is also an oriented q-coboundary.

We conclude the section with a slight generalization that will be needed later.

3.23 Definition. A weight function for X is a positive-real-valued function w on the
set of hyperplanes in X. The weighted Julg-Valette differential is the linear map

dw∶C[Xq]Ð→ C[Xq+1]
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given by the formula
dwC =∑

H

w(H)H ∧C.

In addition the adjoint operator

δw∶C[Xq+1]Ð→ C[Xq]

is defined by
δwC =∑

H

w(H)H ⌟C.

3.24 Remark. We are mainly interested in the following examples, or small varia-
tions on them:

(a) w(H) ≡ 1.

(b) w(H) = the minimal edge-path distance to the base point P0 from a vertex
adjacent to H.

The calculations in this section are easily repeated in the weighted context: the oper-
ators dw and δw are formally adjoint, although unbounded in the case of an unbounded
weight function as, for example, in (b); both are differentials when restricted to the
spaces of oriented cochains; and the cohomology of either complex is C in degree zero
and 0 otherwise. We record here the formula for the weighted Julg-Valette Laplacian.
Compare Proposition 3.20.

3.25 Proposition. If C is an oriented q-cube then

∆w⟨C⟩ = (qw(C) + pw(C))⟨C⟩,

where qw(C) is the sum of the squares of the weights of the hyperplanes that cut C and
pw(C) is the sum of the squares of the weights of the hyperplanes that are adjacent to
C and separate C from the base vertex.

4. Parallelism Classes of Cubes

The remaining aspects of our generalization of the Julg-Valette and Pytlik-Szwarc
theory to CAT(0) cubical spaces all rest on the following geometric concept:

4.1 Definition. Two cubes D1 and D2 in a CAT(0) cubical space X are parallel if
they have the same dimension, and if every hyperplane that cuts D1 also cuts D2.

Every parallelism class of q-cubes in X is determined by, and determines, a set of q
pairwise intersecting hyperplanes, namely the hyperplanes that cut all the cubes in
the parallelism class. Call these the determining hyperplanes for the parallelism class.
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4.2 Proposition. The intersection of the determining hyperplanes associated to a
parallelism class of q-cubes carries the structure of a CAT(0) cube complex in which
the p-cubes are the intersections of this space with the (p+q)-cubes in X that are
cut by every determining hyperplane, and in which the hyperplanes are the nonempty
intersections of this space with the non-determining hyperplanes in X.

Proof. The case when q = 0 is the assertion that X itself is a CAT(0) cubical space.
The case when q = 1 is the assertion that a hyperplane in a CAT(0) cubical space X
is itself a CAT(0) cubical space in the manner described above, and this is proved by
Sageev in [Sag95, Thm. 4.11].

For the general result, we proceed inductively as follows. Suppose given k distinct
hyperplanes K1, . . . ,Kk in X. The intersection Z = K2 ∩ ⋅ ⋅ ⋅ ∩Kk is then a CAT(0)
cube complex as described in the statement, and the result will follow from another
application of [Sag95, Thm. 4.11] once we verify that K1∩Z is a hyperplane in Z. Now
the cubes, and so also the midplanes of Z are exactly the non-empty intersections
of the cubes and midplanes of X with Z. So, we must show that if two midplanes
belonging to the hyperplane K1 of X intersect Z non-trivially then their intersections
are hyperplane equivalent in Z. But this follows from the fact that Z is a totally
geodesic subspace of X.

4.3 Proposition. Let X be a CAT(0) cubical space and let P be a vertex in X.
In each parallelism class of q-cubes there is a unique cube that is closest to P , as
measured by the distance from closest point in the cube to P in the edge-path metric.

Before beginning the proof, we recall that the edge-path distance between two vertices
is equal to the number of hyperplanes separating the vertices; see for example [Sag95,
Theorem 4.13]. In addition, let us make note of the following simple fact:

4.4 Lemma. A hyperplane that separates two vertices of distinct cubes in the same
parallelism class must intersect every determining hyperplane.

Proof. This is obvious if the hyperplane is one of the determining hyperplanes. Oth-
erwise, the hyperplane must in fact separate two cubes in the parallelism class, and so
it must separate two midplanes from each determining hyperplane. Since hyperplanes
are connected the result follows.

Proof of Proposition 4.3. Choose a vertex R from among the cubes in the parallelism
class such that

(4.1) d(P,R) ≤ d(P,S)

for every other such vertex S. We shall prove the addition formula

(4.2) d(P,S) = d(P,R) + d(R,S),
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and this will certainly prove the uniqueness of R and hence of the nearest cube in the
parallelism class.

The addition formula (4.2) is a consequence of the following hyperplane property of
any R satisfying (4.1): every hyperplane that separates P from R is parallel to (that
is, it does not intersect) at least one determining hyperplane. Indeed, it follows from
Lemma 4.4 and the hyperplane property that no hyperplane can separate R from both
P and S, so that (4.2) follows from the characterization of the edge path distance
given above.

It remains to prove the hyperplane property for any R satisfying (4.1). For this we
shall use the notion of normal cube path from [NR98, Section 3]. There exists a
normal cube path from R to P with vertices

R = R1, . . . ,Rl = P.

This means that every pair of consecutive Ri are diagonally opposite a cube, called a
normal cube, all of whose hyperplanes separate R from P , and every such separating
hyperplane cuts exactly one normal cube. It also means that every hyperplane K
separating Ri from Ri+1 is parallel to at least one of the hyperplanes H separating
Ri−1 from Ri (so each normal cube is, in turn, as large as possible). Note that the
hyperplane K is contained completely in the half-space of H that contains P .

No hyperplane H separating R = R1 from R2 can intersect every determining hyper-
plane, for if it did, then it would follow from Lemma 2.6 that H and the determining
hyperplanes would intersect in a (q+1)-cube having R as a vertex. The vertex S
separated from R by H alone would then belong to a cube in the parallelism class,
and would be strictly closer to P than R.

Consider the second normal cube, with opposite vertices R3 and R2. Any hyperplane
K separating R3 from R2 is parallel to some hyperplane H separating R2 from R1,
and this is in turn parallel to some determining hyperplane. But K is contained
completely in the half-space of H that contains P , while the determining hyperplane
is contained completely in the half-space of H that contains R. So K does not meet
this determining hyperplane.

Continuing in this fashion with successive normal cubes, we find that every hyper-
plane that separates P from R is indeed parallel to some determining hyperplane, as
required.

We can now verify the combinatorial formula mentioned at the end of the introduction.
Fix, as usual, a base-vertex P in X. Associate to each vertex Q in X the first cube
C in the normal cube path (see [NR98, Section 3] again) connecting Q to P .

4.5 Proposition. The above correspondence induces a bijection from the set of ver-
tices in X to the set of parallelism classes of cubes in X.
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Proof. Let Q be a vertex in X and let C be the first cube in the normal cube path
from Q to P , as above. We claim that C is the nearest cube in its parallelism class to
P ; this fact will prove injectivity of our map. It follows from the addition formula in
the proof of Proposition 4.3 that if C was not nearest to P within its parallelism class,
then any hyperplane that separated Q from the nearest cube would also separate Q
from P . Choosing a hyperplane that is adjacent to Q but not does not cut C, we
would find that C is not the first cube in the normal cube path from Q to P .

Conversely, if C is the nearest cube to P in any given parallelism class, and if Q is
the vertex of C that is most remote from P , then all of the hyperplanes determining
the parallelism class of P separate Q from P . Moreover no other hyperplane that
is adjacent to Q can separate Q from P ; this is a consequence of the hyperplane
property proved in Proposition 4.3. So C is the first cube in the normal cube path
from Q to P . This proves surjectivity.

4.6 Proposition. Let X be a CAT(0) cubical space and let P and Q be vertices in X
that are separated by a single hyperplane H. The nearest q-cubes to P and Q within
a parallelism class are either the same, or are opposite faces, separated by H, of a
(q+1)-cube that is cut by H.

Proof. Denote by R and S the nearest vertices to P and Q, respectively, among the
vertices of cubes in the equivalence class, and suppose that a hyperplane K separates
R from S. Then it must separate P from S by the addition formula (4.2) applied
to the nearest point R, and also separate Q from R, by the addition formula applied
to the nearest point S. So it must separate P from Q, and hence must be H. So
either there is no hyperplane separating R from S, in which case of course R = S
and the nearest cubes to P and Q are the same, or R is opposite S across H. If
H is a determining hyperplane, then R and S are vertices of the same q-cube in
the parallelism class; if H is not a determining hyperplane, then R and S belong to
q-cubes that are opposite to one another across H, as required.

5. The Pytlik-Szwarc Complex

As described in the introduction, our ultimate goal involves deforming the Julg-
Valette complex into what we call the Pytlik-Szwarc complex , a complex with the same
cohomology but which is equivariant in the case of a group acting on the CAT(0) cube
complex. In this short section we describe the (algebraic) Pytlik-Szwarc complex.

As motivation for what follows we consider how to compare orientations on parallel
cubes. The key observation is that a vertex in a q-cube is uniquely determined by
its position relative to the cutting hyperplanes K1, . . . ,Kq. Thus, there is a natural
isometry between (the vertex sets of) any two parallel q-cubes. We shall say that
parallel q-cubes of positive dimension are compatibly oriented if their orientations are
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presented by vertices P1 and P2 which correspond under this isometry and a common
listing of the cutting hyperplanes K1, . . . ,Kq; vertices are compatibly oriented if they
are oriented by the same choice of sign.

We shall now generalize these considerations to pairs comprising a cube and one of
its faces.

5.1 Definition. A cube pair is a pair (C,D) in which C is a cube containing D as
a face. Two cube pairs (C1,D1) and (C2,D2) are parallel if the cubes C1 and C2 are
parallel, and the cubes D1 and D2 are parallel too. When D is a q-cube, and C is a
(p + q)-cube, we shall call (C,D) a (p, q)-cube pair, always keeping in mind that in
this notation p is the codimension of D in C.

We may describe the parallelism class of a (p, q)-cube pair (C,D) by grouping the
determining hyperplanes of the parallelism class of C into a symbol

(5.1) {H1, . . . ,Hp ∣K1, . . . ,Kq } ,

in which the K1, . . . ,Kq determine the parallelism class of D. The hyperplanes
H1, . . . ,Hp which cut C but not D are the complementary hyperplanes of the cube
pair, or of the parallelism class.

An orientation of a cube pair (C,D) is an orientation of the face D. In order to
compare orientations of parallel cube pairs (Ci,Di) we can compare the orientations
on the faces Di, which are themselves parallel cubes, but must also take into account
the position of the faces within the ambient cubes Ci. For this we introduce the
following notion.

5.2 Definition. Two parallel cube pairs (C1,D1) and (C2,D2) have the same parity
if the number of complementary hyperplanes that separate D1 from D2, is even.
Otherwise they have the opposite parity.

5.3 Definition. Let (C1,D1) and (C2,D2) be parallel cube pairs, each with an ori-
entation. The orientations are aligned if one of the following conditions holds:

(a) (C1,D1) and (C2,D2) have the same parity, and D1 and D2 are compatibly
oriented; or

(b) (C1,D1) and (C2,D2) have the opposite parity, and D1 and D2 are not com-
patibly oriented.

In the symbol (5.1) describing the parallelism class of a cube pair (C,D), the hyper-
planes are not ordered; the only relevant data is which are to the left, and which to the
right of the vertical bar. If the cube pair (C,D) is oriented, then the symbol receives
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additional structure coming from the orientation of D. We group the determining
hyperplanes as before, and include a vertex R of D into a new symbol

(5.2) {H1, . . . ,Hp ∣K1, . . . ,Kq ∣R } .

Here, in the case q > 0, the hyperplanesK1, . . . ,Kq form an ordered list which, together
with the vertex R are a presentation of the oriented cube D. In the case q = 0 this
list is empty and we replace it by the sign representing the orientation of the vertex
D = R, obtaining a symbol of the form

(5.3) {H1, . . . ,Hp ∣ + ∣R } or {H1, . . . ,Hp ∣ − ∣R } .

In either case the hyperplanes H1, . . . ,Hp remain an unordered set. Conversely, a
formal expression as in (5.2) or (5.3) is the symbol of some oriented (p, q)-cube pair
precisely when the hyperplanes H1, . . . ,Kq are distinct and have nonempty (pairwise)
intersection, and the vertex R is adjacent to all of them.

The following definition captures the notion of alignment of orientations in terms of
the associated symbols.

5.4 Definition. Symbols

{H1, . . . ,Hp ∣K1, . . . ,Kq ∣R } and {H ′
1, . . . ,H

′
p ∣K ′

1, . . . ,K
′
q ∣R′ }

of the form (5.2) are equivalent if

(a) the sets {H1, . . . ,Hp } and {H ′
1, . . . ,H

′
p } are equal;

(b) the K1, . . . ,Kq are a permutation of the K ′
1, . . . ,K

′
q; and

(c) the number of hyperplanes among the H1, . . . ,Kq separating R and R′ has the
same parity as the permutation in (b).

In the case of symbols of the form (5.3) we omit (b) and replace (c) by

(c′) the number of hyperplanes among the H1, . . . ,Hp separating R and R′ is even
if the orientation signs agree, and odd otherwise.

An oriented (p, q)-symbol is an equivalence class of symbols. We shall denote the
equivalence class of the symbol (5.2) by

[H1, . . . ,Hp ∣K1, . . . ,Kq ∣R ],

or simply by [H ∣K ∣R ] when no confusion can arise, and we use similar notation
in the case of symbols of the form (5.3). We shall denote the set of oriented (p, q)-
symbols by Hpq , and the (disjoint) union H0

q ∪⋯ ∪Hn−qq by Hq.

5.5 Proposition. The oriented symbols associated to oriented (p, q)-cube pairs agree
precisely when the orientations of the cube pairs are aligned.
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Our generalization of the Pytlik-Szwarc complex will be a differential complex de-
signed to capture the combinatorics of oriented, aligned cube pairs:

(5.4) C[H0]
dÐ→ C[H1]

dÐ→ ⋯ dÐ→ C[Hn−1]
dÐ→ C[Hn].

5.6 Definition. The space of oriented q-cochains of type p in the Pytlik-Szwarc
complex is the space of finitely supported, anti-symmetric, complex-valued functions
on Hpq . Here, a function is anti-symmetric if

f([H ∣K ∣R ]) + f([H ∣K ∣R ]∗) = 0,

where we have used the involution on Hpq defined by reversing the orientation of the
symbol. We shall denote this space by C[Hpq]. The space of oriented q-cochains is
defined similarly using the oriented symbols of type (p, q) for all 0 ≤ p ≤ n−q. It splits
as the direct sum

C[Hq] = C[H0
q]⊕ ⋅ ⋅ ⋅ ⊕C[Hn−qq ].

5.7 Remark. As with the Julg-Valette cochains, the space of oriented Pytlik-Szwarc
q-cochains of type p is a subspace of the full space of Pytlik-Szwarc q-cochains of type
p, which is the vector space of all finitely supported functions on the set Hpq . We shall
follow conventions similar to those in Section 3: we write

[H1, . . . ,Hp ∣K1, . . . ,Kq ∣R ] or [H ∣K ∣R ]

for both the Dirac function at an oriented symbol and the symbol itself, and

⟨H ∣K ∣R ⟩ = [H ∣K ∣R ] − [H ∣K ∣R ]∗ ∈ C[Hpq]

for the difference of the Dirac functions. Further, linear operators will be defined on
the full space of cochains by specifying their values on the basis of Dirac functions at
the oriented symbols. We shall typically omit the elementary check that an operator
commutes with the involution and so restricts to an operator on the spaces of oriented
cochains.

We now define the differential in the Pytlik-Szwarc complex (5.4).

5.8 Definition. The Pytlik-Szwarc differential is the linear map d ∶ C[Hq]→ C[Hq+1]
which is 0 on oriented symbols of type (0, q) and which satisfies

d [H1, . . . ,Hp ∣K1, . . . ,Kq ∣R ] =
p

∑
i=1

[H1, . . . , Ĥi, . . . ,Hp ∣Hi,K1, . . . ,Kq ∣Ri ]

for oriented (p, q)-symbols with p, q ≥ 1. Here, Ri is the vertex separated from R by
Hi alone and, as usual, a ‘hat’ means that an entry is removed. When q = 0 the same
formula is used for symbols of the form [H ∣+∣R] which, together with the requirement
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that d commute with the involution, determines d on symbols of the form [H ∣− ∣R].
Since d maps an oriented symbol of type (p, q) to a linear combination of oriented
symbols of type (p − 1, q + 1) in all cases, it splits as the direct sum of linear maps

d ∶ C[Hpq]Ð→ C[Hp−1q+1]

for 0 < p ≤ n − q, and is 0 on the C[H0
q].

5.9 Lemma. The Pytlik-Szwarc differential d, regarded as an operator on the space
of oriented cochains, satisfies d2 = 0.

5.10 Example. Let T be a tree. The Pytlik-Szwarc complex has the form

d ∶ C⊕C[H1
0]Ð→ C[H0

1],

where d is 0 on C and, after identifying each of C[H1
0] and C[H0

1] with the space of
finitely supported functions on the set of edges of T , the identity C[H1

0]→ C[H0
1]. For

the identifications, note that both H0
1 and H1

0 are identified with the set of oriented
edges in T and that the involution acts by reversing the orientation. So the space
of anti-symmetric functions on each identifies with the space of finitely supported
functions on the set of edges.

Our goal for the remainder of this section is to analyze the Pytlik-Szwarc complex.
Emphasizing the similarities with the Julg-Valette complex we begin by providing a
formula for the formal adjoint of the Pytlik-Szwarc differential.

5.11 Definition. Let δ ∶ C[Hq] → C[Hq−1] be the linear map which is 0 on oriented
symbols of type (p,0) and which satisfies

δ [H1, . . . ,Hp ∣K1, . . . ,Kq ∣R ] =
q

∑
j=1

(−1)j [H1, . . . ,Hp,Kj ∣K1, . . . , K̂j, . . . ,Kq ∣R ] ,

for oriented symbols of type (p, q) with q ≥ 1. Again a ‘hat’ means that an entry is
removed. Since δ maps an oriented symbol of type (p, q) to a linear combination of
oriented symbols of type (p + 1, q − 1) it splits as a direct sum of linear maps

δ ∶ C[Hpq]→ C[Hp+1q−1]

for 0 < q ≤ n − p, and is 0 on the C[Hp0].

5.12 Definition. We define an inner product on the full space of Pytlik-Szwarc q-
cochains by declaring that the elements of Hq are orthogonal, and that each has
length 1/

√
2. The subspace C[Hq] of oriented Pytlik-Szwarc q-cochains inherits an

inner product in which

⟨⟨H ∣K ∣R ⟩ , ⟨H ′ ∣K ′ ∣R′ ⟩⟩ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, [H ∣K ∣R ] = [H ′ ∣K ′ ∣R′ ]
−1, [H ∣K ∣R ] = [H ′ ∣K ′ ∣R′ ]∗

0, otherwise
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5.13 Lemma. The operators d and δ of Definitions 5.8 and 5.11 are formally adjoint
and bounded with respect to the inner products in Definition 5.12.

5.14 Proposition. The Pytlik-Szwarc Laplacian

∆ = (d + δ)2 = dδ + δd ∶ C[Hq]Ð→ C[Hq]
acts on the summand C[Hpq] as scalar multiplication by p + q.

Proof. The proof is a direct calculation. The result of applying δd to an oriented
symbol [H1, . . . ,Hp ∣K1, . . . ,Kq ∣R ] of type (p, q) is the sum

(−1)
p

∑
i=1

[H1, . . . ,Hp ∣K1, . . . ,Kq ∣Ri ] +

+
p

∑
i=1

q

∑
j=1

(−1)j+1[H1, . . . , Ĥi, . . . ,Hp,Kj ∣Hi,K1, . . . , K̂j, . . . ,Kq ∣Ri ],

where Ri is the vertex separated from R only by Hi. And the result of applying dδ is
q

∑
j=1

(−1)j[H1, . . . ,Hp ∣Kj,K1, . . . , K̂j, . . . ,Kq ∣Qj ] +

+
q

∑
j=1

(−1)j
p

∑
i=1

[H1, . . . , Ĥi, . . . ,Hp,Kj ∣Hi,K1, . . . , K̂j, . . . ,Kq ∣Ri ],

where now Qj is separated from R only by Kj, and Ri is as before. When these are
added, the second summands cancel (even at the level of full cochains). The first
summands combine to give

−p[H ∣K ∣R ]∗ + ⌊ q
2
⌋ [H ∣K ∣R ] − ⌈ q

2
⌉ [H ∣K ∣R ]∗

where we have used that exchanging R for Ri, or for Qj reverses the orientation of a
symbol. Considering oriented cochains, it follows that ⟨H ∣K ∣R⟩ is an eigenvector of
dδ + δd with eigenvalue p + q, as required.

5.15 Corollary. The cohomology of the Pytlik-Szwarc complex is C in dimension
zero and 0 otherwise.

As a prelude to the next section, let us conclude by making note of a combinato-
rial result that generalizes the combinatorial theorem mentioned at the end of the
introduction and makes evident a close connection between the Pytlik-Szwarc and
Julg-Valette cochain spaces. The proof is the same as the proof of Proposition 4.5.

Fix a base-vertex P in X and associate to each q-cube D in X the (p, q)-cube pair
(C,D) where C is the first cube in the normal cube path connecting the furthest
vertex of D from P back to P .

5.16 Proposition. For every fixed q ≥ 0 the above correspondence induces a bijection
from the set of q-cubes in X to the set of parallelism classes of all (p, q)-cube pairs
(as p ranges through all possible values).
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6. Continuous Fields of Hilbert Spaces

Our objective over the next several sections is to construct a family of complexes that
continuously interpolates between the Julg-Valette complex and the Pytlik-Szwarc
complex. We shall construct the interpolation within the Hilbert space context, using
the concept of a continuous field of Hilbert spaces.

We refer the reader to [Dix77, Chapter 10] for a comprehensive treatment of con-
tinuous fields of Hilbert spaces. In brief, a continuous field of Hilbert spaces over a
topological space T consists of a family of Hilbert spaces parametrized by the points
of T , together with a distinguished family Σ of sections that satisfies several axioms,
of which the most important is that the pointwise inner product of any two sections
in Σ is a continuous function on T . See [Dix77, Definition 10.1.2]. The following
theorem gives a convenient means of constructing continuous fields.

6.1 Theorem. Let T be a topological space, let {Ht} be a family of Hilbert spaces
parametrized by the points of T , and let Σ0 be a family of sections that satisfies the
following conditions:

(a) The pointwise inner product of any two sections in Σ0 is a continuous function
on T .

(b) For every t ∈ T the linear span of {σ(t) ∶ σ ∈ Σ} is dense in Ht.

There is a unique enlargement of Σ0 that gives {Ht}t∈T the structure of a continuous
field of Hilbert spaces.

Proof. The enlargement Σ consists of all sections σ such that for every t0 ∈ T and
every ε > 0 there is a section σ0 in the linear span of Σ0 such that

∥σ0(t) − σ(t)∥t < ε

for all t in some neighborhood of t0. See [Dix77, Proposition 10.2.3].

6.2 Definition. We shall call a family Σ0, as in the statement of Theorem 6.1, a
generating family of sections for the associated continuous field of Hilbert spaces.

Ultimately we shall use the parameter space T = [0,∞], but in this section we shall
concentrate on the open subspace (0,∞], and then extend to [0,∞] in the next
section. In both this section and the next we shall deal only with the construction of
continuous fields of Hilbert spaces; we shall construct the differentials acting between
these fields in Section 8.

We begin by completing the various cochain spaces from Section 3 in the natural way
so as to obtain Hilbert spaces.
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6.3 Definition. Denote by `2(Xq) the Hilbert space completion of the Julg-Valette
oriented cochain space C[Xq] in the inner product of Definition 3.18 in which the
basis comprised of the oriented cochains ⟨C ⟩ is orthonormal.

6.4 Remark. As was the case in Section 3, we shall also consider the full cochain
space comprised of the square-summable functions on the set of oriented q-cubes. This
is the completion of the full space of Julg-Valette q-cochains in the inner product
of Definition 3.18, and contains the space `2(Xq) of the previous definition as the
subspace of anti-symmetric functions.

We shall now construct, for every q ≥ 0, families of Hilbert spaces parametrized by
the topological space (0,∞]. These will be completions of the spaces of Julg-Valette
q-cochains, both full and oriented, but with respect to a family of pairwise distinct
inner products. Considering the oriented cochains, we obtain a family of Hilbert
spaces `2t (Xq) each of which is a completion of the corresponding C[Xq]. The Hilbert
space `2∞(Xq) will be the space `2(Xq) just defined.

6.5 Definition. If D1 and D2 are q-cubes in X, and if D1 and D2 are parallel and
have compatible orientations, then denote by d(D1,D2) the number of hyperplanes
in X that are disjoint from D1 and D2 and that separate D1 from D2. If D1 and D2

are q-cubes in X, but are not parallel, or have incompatible orientations, then set
d(D1,D2) =∞.

If D1 and D2 are (compatibly oriented) vertices, then d(D1,D2) is the edge-path
distance from D1 to D2. In higher dimensions, if D1 and D2 are parallel then they
may be identified with vertices in the CAT(0) cubical space which is the intersection
of the determining hyperplanes for the parallelism class. If in addition they are com-
patibly oriented, then d(D1,D2) is the edge-path distance in this complex. Compare
Theorem 4.2.

6.6 Definition. Let t > 0 and q ≥ 0. For every two oriented q-cubes D1 and D2 define

⟨D1,D2⟩t =
1
2 exp(−1

2t
2d(D1,D2)),

where of course we set exp(−1
2t

2d(D1,D2)) = 0 if d(D1,D2) =∞, and then extend by
linearity to a sesqui-linear form on the full space of Julg-Valette q-cochains.

Note that the formula in the definition makes sense when t =∞, where

1
2 exp(−1

2t
2d(D1,D2)) =

⎧⎪⎪⎨⎪⎪⎩

1
2 , D1 =D2

0, D1 ≠D2.

In particular, the form ⟨ , ⟩∞ is the one underlying Definition 3.18 that we used to
define `2(Xq).
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6.7 Theorem. The sesqui-linear form ⟨ , ⟩t is positive semi-definite.

Proof. Consideration of oriented, as opposed to unoriented, cubes merely gives two
(orthogonal copies) of each space of functions. Aside from this, the result is proved
in [NR98, Technical Lemma, p.6] in the case q = 0. See also [GH10, Prop. 3.6]. The
case q > 0 reduces to the case q = 0 using Theorem 4.2.

6.8 Definition. For t ∈ (0,∞] denote by `2t (Xq) the Hilbert space completion of the
Julg-Valette oriented cochain space C[Xq] in the inner product ⟨ , ⟩t.

6.9 Remark. The Hilbert spaces of the previous definition are completions of the
quotient of C[Xq] by the elements of zero norm. We shall soon see that every nonzero
linear combination of oriented q-cubes has nonzero `2t -norm for every t, so the natural
maps from C[Xq] into the `2t (Xq) are injective.

Next, we define a generating family of sections, using either one of the following
lemmas; on the basis of Theorem 6.1, it is easy to check that the continuous fields
arising from the lemmas are one and the same.

6.10 Lemma. Let t ∈ (0,∞]. The set of all sections of the form

t↦ f ∈ C[Xq] ⊆ `2t (Xq),

indexed by all f ∈ C[Xq], is a generating family of sections for a continuous field.

6.11 Lemma. The set of all sections of the form

t↦ f(t) ⟨C⟩ ∈ `2t (Xq),

where f is a continuous scalar function on (0,∞] and C is an oriented q-cube, is a
generating family of sections for a continuous field.

The continuous fields that we have constructed are not particularly interesting as
continuous fields. In fact they are isomorphic to constant fields (they become much
more interesting when further structure is taken into account, as we shall do later in
the paper). For the sequel it will be important to fix a particular isomorphism, and
we conclude this section by doing this.

The required unitary isomorphism will be defined using certain cocycle operators
Wt(C1,C2), which are analogues of those studied by Valette in [Val90] in the case of
trees. In the case q = 0 the cocycle operators for general CAT(0) cubical spaces were
constructed in [GH10]. The case where q > 0 involves only a minor elaboration of the
q = 0 case, and so we shall refer to [GH10] for details in what follows.
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6.12 Definition. If D is a q-cube that is adjacent to a hyperplane H, then define
Dop to be the opposite face to D in the unique (q + 1)-cube that is cut by H and
contains D as a q-face (such a cube exists by Lemma 3.6). In the case D is oriented,
we orient Dop compatibly. In either case, we shall refer to a pair such as D and Dop

as being adjacent across H.

6.13 Definition. Let C and Cop be unoriented q-cubes, adjacent across a hyperplane
H as in the previous definition. If D is any oriented q-cube that is adjacent to H,
then for t ∈ (0,∞] we define

Wt(Cop,C)D =
⎧⎪⎪⎨⎪⎪⎩

(1 − e−t2)1/2D − e− 1
2
t2Dop, if D is separated from C by H

e−
1
2
t2Dop + (1 − e−t2)1/2D, if D is not separated from C by H.

So Wt(Cop,C) really only depends on the half-space decomposition determined by
H, not on C and Cop. In addition we define

Wt(Cop,C)D =D if D is not adjacent to H.

We extend Wt(Cop,C) by linearity to a linear operator on the spaces of (full and
oriented) Julg-Valette q-cochains.

For example
W0(Cop,C)C = Cop and W0(Cop,C)Cop = −C,

while
W∞(Cop,C)C = C and W∞(Cop,C)Cop = Cop,

and indeed W∞(Cop,C) is the identity operator. More generally, when restricted to
the two-dimensional space spanned by the ordered basis (D,Dop) with D adjacent
to H but not separated from C by H, the operator Wt(Cop,C) acts as the unitary
matrix

[(1 − e
t2)1/2 −e− 1

2
t2

e−
1
2
t2 (1 − et2)1/2

] .

In particular, Wt(Cop,C) extends to a unitary operator on the completed cochain
spaces of Definition 6.3 and subsequent remark.

Let us now assume that two unoriented q-cubes C1 and C2 are parallel, but not
necessarily adjacent across a hyperplane. It follows from Theorem 4.2 that that
there exists a path of q-cubes E1,E2, . . . ,En, with E1 = C1 and En = C2, where each
consecutive pair Ei, Ei+1 consists of parallel and adjacent q-cubes. For all t ≥ 0 let us
define

(6.1) Wt(C1,C2) =Wt(E1,E2)Wt(E2,E3) . . .Wt(En−1,En).

This notation, which omits mention of the path, is justified by the following result:
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6.14 Proposition. The unitary operator Wt(C1,C2) is independent of the path from
C1 to C2.

Proof. Let γ and γ′ be two cube paths connecting cubes C1 and C2. As the cubes
C1 and C2 are parallel, by Theorem 4.2 they can be thought of as vertices in the
CAT(0) cubical space created from their parallelism class. The paths γ and γ′ then
give rise to vertex paths in this CAT(0) cubical space with common beginning and
end vertices. In this way we reduce the general case of the proposition to the zero
dimensional case, which has been proved in [GH10, Lemma 3.3].

6.15 Definition. Fix a base vertex P0 in X, and let t ∈ (0,∞]. For every oriented
q-cube D let

UtD =Wt(D0,D)D,

where D0 is the cube nearest to the base vertex P0 in the parallelism class of D (see
Proposition 4.3). Extend Ut by linearity to a linear operator on the spaces of full and
oriented Julg-Valette q-cochains; in particular, on oriented cochains we have

Ut ∶ C[Xq]Ð→ C[Xq].

6.16 Lemma. The linear operator Ut is a vector space isomorphism.

Proof. Consider the increasing filtration of the cochain space, indexed by the natural
numbers, in which the nth space is spanned by those cubes whose nearest vertex to
P0 in the edge-path metric is of distance n or less from P0. The operator Ut preserves
this filtration. In fact, a simple direct calculation (see [GH10, Lemma 4.7]) shows
that

UtD =Wt(D0,D)D
= constant ⋅D + linear combination of cubes closer to P0 than D.

This formula shows that the induced map on associated graded spaces is an isomor-
phism. So Ut is an isomorphism.

6.17 Lemma. If D1 and D2 are any two oriented q-cubes in X, then

⟨UtD1, UtD2⟩ = ⟨D1,D2⟩t,

where the inner product on the left hand side is that of `2(Xq).

6.18 Remark. The lemma implies that the sesqui-linear form ⟨ , ⟩t is positive defi-
nite for each t > 0, since ⟨ , ⟩ is positive-definite and Ut is an isomorphism.
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Proof of the lemma. We can assume that the q-cubes D1 and D2 are parallel and
compatibly oriented since otherwise both sides of the formula are zero. Let D0 denote
the q-cube in the parallelism class that is nearest to the base vertex P0. Then the
unitarity of Wt and Proposition 6.14 give

⟨UtD1, UtD2⟩ = ⟨Wt(D0,D1)D1,Wt(D0,D2)D2⟩
= ⟨Wt(D0,D2)∗Wt(D0,D1)D1,D2⟩
= ⟨Wt(D2,D0)Wt(D0,D1)D1,D2⟩
= ⟨Wt(D2,D1)D1,D2⟩.

But, by an elaboration of [GH10, Proposition 3.6] we have

(6.2) Wt(D2,D1)D1 = e−
1
2 t

2d(D2,D1)D2 + multiples of oriented cubes other than D2.

Hence we conclude that

⟨Wt(D2,D1)D1,D2⟩ = 1
2e

−
1
2 t

2d(D2,D1) = ⟨D1,D2⟩t,

as required.

The following results are immediate consequences of the above:

6.19 Theorem. For all t ∈ (0,∞] the map

Ut∶C[Xq]Ð→ C[Xq]

extends to a unitary isomorphism

Ut ∶ `2t (Xq)Ð→ `2∞(Xq).

6.20 Theorem. The unitary operators Ut determine a unitary isomorphism from the
continuous field {`2t (Xq)}t∈(0,∞] generated by sections in Lemmas 6.10 and 6.11 to the
constant field with fiber `2(Xq).

7. Extension of the Continuous Field

In this section we shall extend the continuous fields over (0,∞] defined in Section 6
by adding the following fibers at t = 0.

7.1 Definition. We shall denote by `20(Xq) the completion of the space of oriented
Pytlik-Szwarc q-cochains in the inner product of Definition 5.12. It is the subspace
of anti-symmetric functions in the Hilbert space of all square-summable functions on
the set of oriented symbols Hq.
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The following two definitions focus on the particular continuous sections that we shall
extend.

7.2 Definition. Let p, q ≥ 0 and let (C,D) be an oriented (p, q)-cube pair. The
associated basic q-cochain of type p is the linear combination

fC,D = ∑
E∥CD

(−1)d(D,E)E

in the full cochain space. Here, the sum is over those q-cubes E in C that are parallel
to D, each of which is given the orientation compatible with the orientation of D.
The associated basic oriented cochain is

f⟨C,D⟩ = fC,D − fC,D∗ = ∑
E∥CD

(−1)d(D,E)⟨E ⟩,

belonging to the space C[Xq] of oriented q-cochains.

7.3 Example. A basic q-cochain of type p = 0 is just a single oriented q-cube. A
basic q-cochain of type p=1 is a difference of q-cubes that are opposite faces of a
(q+1)-cube; a basic q-cochain of type p = 2 is a difference of basic q-cochains of type
p=1; and so on. Conversely, if (C1,D1) and (C2,D2) are parallel oriented (p, q)-cube
pairs, then f⟨C1,D1⟩ is equal to f⟨C2,D2⟩ plus a linear combination of basic cochains of
type (p+1, q).

7.4 Definition. A basic section of type p of the continuous field { `2t (Xq) }t∈(0,∞] is a
continuous section σ⟨C,D⟩ of the form

(0,∞] ∋ t
σ
⟨C,D⟩z→ t−pf⟨C,D⟩ ∈ `2t (Xq),

where (C,D) is an oriented (p, q)-cube pair.

We shall extend the basic sections to sections over [0,∞] by assigning to each of
them a value at t = 0 in the Hilbert space `20(Xq), namely the Pytlik-Szwarc symbol
associated to the cube pair (C,D), as in Section 5. We shall write the symbol as

⟨C,D ⟩ = [C,D] − [C,D]∗ ∈ `20(Xq).

Compare Definition 5.4 and Remark 5.7. We shall prove the following result.

7.5 Theorem. Let q ≥ 0.

(a) The pointwise inner product

⟨σ⟨C1,D1⟩, σ⟨C2,D2⟩⟩t
of any two basic sections (of possibly different types) extends to a continuous
function on [0,∞].
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(b) The value of this continuous function at 0 ∈ [0,∞] is equal to the inner product

⟨⟨C1,D1⟩, ⟨C2,D2⟩⟩0.

7.6 Example. Suppose that X is a tree. When q = 1, the only basic sections are
those of type p = 0, and Theorem 7.5 is easily checked in this case. When q = 0 there
are basic sections of type p = 0, which are again easily handled, but also basic sections
of type p = 1. These have the form

t↦ t−1(⟨P ⟩ − ⟨Q⟩),

where P and Q are adjacent vertices in the tree. One calculates that

⟨t−1(⟨P ⟩ − ⟨Q⟩), t−1(⟨P ⟩ − ⟨Q⟩)⟩
t
= 2t−2(1 − e− 1

2
t2),

which converges to 1 as t→ 0, in agreement with Theorem 7.5. In addition if t−1(⟨R⟩−
⟨S⟩) is a second, distinct basic cochain, and if the vertices P,Q,R,S are arranged
in sequence along a path in the tree, then a short calculation reveals that if d is the
distance between Q and R, then

⟨t−1(⟨P ⟩ − ⟨Q⟩), t−1(⟨R⟩ − ⟨S⟩)⟩
t
= −t−2e− d

2
t2(1 − e− 1

2
t2)2 = O(t2).

In particular the inner product converges to 0 as t ↘ 0, again in agreement with
Theorem 7.5.

Theorem 7.5 allows us to extend our continuous field to [0,∞]. It is an artifact of
our orientation conventions that we cannot perform this extension at the level of
full cochains; cube pairs (C1,D1) and (C2,D2) which are parallel, not compatibly
oriented and of opposite parity determine the same oriented symbol at t = 0 but their
associated basic cochains are orthogonal for all t > 0.

7.7 Definition. An extended basic section of type p of the continuous field of Hilbert
spaces { `2t (Xq) }t∈[0,∞] is a section of the form

tz→
⎧⎪⎪⎨⎪⎪⎩

⟨C,D⟩ t = 0

σ⟨C,D⟩ t > 0,

where (C,D) is an oriented (p, q)-cube pair.

The basic sections form a generating family of sections for the continuous field
{`2t (Xq)}t∈(0,∞], and of course the symbols ⟨C,D⟩ span `20(Xq). So it follows from
the theorem that the extended basic sections form a generating family of sections for
a continuous field over [0,∞] with fibers `2t (Xq), whose restriction to (0,∞] is the
continuous field of the previous section.
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We shall prove Theorem 7.5 by carrying out a sequence of smaller calculations. The
following formula is common to all of them, and it will also be of use in Section 8.
Here, and subsequently, we shall use the expression O(tp) not only in its usual sense,
but also for any finite sum of oriented q-cubes times coefficient functions, each of
which is bounded by a constant times tp as t↘ 0.

7.8 Lemma. If (C,D) is an oriented (p, q)-cube pair then

(7.1) ∑
E∥CD

(−1)d(D,E)Wt(D,E)E = (−t)pDop +O(tp+1),

where Dop is the q-face of C separated from D by the complementary hyperplanes of
the pair (C,D), with compatible orientation.

Proof. We shall prove the lemma by induction on p. The case p = 0 is clear. As for
the case p > 0, let H be a hyperplane that cuts C but not D. Our aim is to apply the
induction hypothesis to the codimension-one faces of C separated by H. Denote these
faces by C± with C+ being the face containing D; denote D+ = D and D− the face of
C− directly across H from D; and finally denote by Dop

± the face in C± separated from
D± by all the complementary hyperplanes of the pair (C,D) except H. We have, in
particular, Dop =Dop

− .

Now, the expression on the left hand side of (7.1) depends on the cube pair (C,D)
and for the course of the proof we shall denote it by gC,D. We compute the summand
of gC,D corresponding to a face E that belongs to C− using the path from D+ to D−

and on to E. Doing so, we see that

gC,D = gC+,D+
−Wt(D+,D−)gC−,D−

= (1 − e− 1
2
t2) gC+,D+

− (1 − e−t2) 1
2 gC−,D−

.

Here, we have used that the coefficient of gC+,D+
at a face E of C+ equals the coefficient

of gC−,D−
at the face of C− which is directly across H from E. By the induction

hypothesis, gC+,D+
= (−t)p−1Dop

+ +O(tp), which is O(tp−1). Since 1− e− 1
2
t2 is O(t2) the

first term in the display is O(tp+1). As for the second term, again by induction we
have gC−,D−

= (−t)p−1Dop
− +O(tp), which is O(tp−1). It follows that

−(1 − e−t2) 1
2 gC−,D−

= −t gC−,D−
+ (t − (1 − e−t2) 1

2 ) gC−,D−

= (−t)pDop
− +O(tp+1) + (t − (1 − e−t2) 1

2 )O(tp−1)
= (−t)pDop +O(tp+1),

where we have used that t − (1 − e−t2) 1
2 is O(t3). Putting things together, the lemma

is proved.
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In the previous section we defined unitary isomorphisms Ut ∶ `2t (Xq)→ `2(Xq). While
these were defined using a specific choice of base point within each parallelism class
of q-cubes, the choice is not important as far as the unitarity of Ut is concerned.
We shall exploit this by making judicious choices of base point to calculate the inner
products in Theorem 7.5.

7.9 Lemma. Let (C,D) be an oriented (p, q)-cube pair, and let fC,D be the associated
basic q-cochain of type p. The pointwise inner product

⟨t−pfC,D, t−pfC,D⟩
t

converges to 1
2 as t↘ 0.

Proof. Choose D as the base point for defining the unitary isomorphisms Ut. Then
UtfC,D is exactly the expression (7.1) in the previous lemma. It follows from the
lemma that

⟨t−pfC,D, t−pfC,D⟩
t
= ⟨t−pUtfC,D, t−pUtfC,D⟩

∞

= ⟨(−1)pDop +O(t), (−1)pDop +O(t)⟩
∞

= 1
2 +O(t),

and the result follows.

7.10 Lemma. Let (C1,D1) and (C2,D2) be parallel (p, q)-cube pairs of the same
parity, in which the q-dimensional faces are compatibly oriented. The pointwise inner
product

⟨t−pfC1,D1 , t
−pfC2,D2

⟩
t

converges to 1
2 as t↘ 0.

Proof. We may assume that D2 lies on the same side of each of the complementary
hyperplanes of the parallelism class as D1; indeed replacing D2 by this face, if neces-
sary, does not change the corresponding basic cochain. Choose D1 as the base point
for defining the unitary isomorphisms Ut, so that by Lemma 7.8 we have

UtfC1,D1 = (−t)pDop
1 +O(tp+1)

and also, using the identity Wt(D1,E) =Wt(D1,D2)Wt(D2,E) for the q-dimensional
faces E of C2,

UtfC2,D2 = (−t)pWt(D1,D2)Dop
2 +O(tp+1).

But, the hyperplanes separating D1 and D2 are precisely those separating Dop
1 and

Dop
2 , so that by (6.2) we have

Wt(D1,D2)Dop
2 =Wt(Dop

1 ,D
op
2 )Dop

2

= e− 1
2
t2d(D1,D2)Dop

1 +O(1),
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in which the terms included under the O(1) are orthogonal to Dop
1 . Putting everything

together we get

⟨t−pfC1,D1 , t
−pfC2,D2

⟩
t
= ⟨t−pUtfC1,D1 , t

−pUtfC2,D2
⟩
∞

= e− 1
2
t2d(D1,D2)⟨(−1)pDop

1 , (−1)pDop
1 ⟩

∞
+O(t)

and the result follows from this.

7.11 Lemma. Let (C1,D1) and (C2,D2) be oriented cube pairs of types (p1, q) and
(p2, q), respectively, and let fC1,D1 and fC2,D2 be the associated basic q-cochains. If
(C1,D1) and (C2,D2) are not parallel, or if D1 and D2 are not compatibly oriented,
then the pointwise inner product

⟨t−p1fC1,D1 , t
−p2fC2,D2

⟩
t

converges to 0 as t↘ 0. In particular, this is the case if p1 ≠ p2.

Proof. If D1 and D2 fail to be parallel or have incompatible orientations, then fC1,D1

and fC2,D2 are orthogonal in the full cochain space for all t > 0, and the lemma is
proved. So we can assume that D1 and D2 are parallel and compatibly oriented, and
therefore that C1 and C2 are not parallel. There is then, after reindexing if necessary,
a hyperplane H that passes through C2 but not C1, and through neither D1 nor D2.
Choose as a base point for the unitary Ut a q-dimensional face D of C2 which is
parallel to the Di, compatibly oriented, and on the same side of H as the cube C1.
So fC2,D2 = ±fC2,D and also

⟨t−p1fC1,D1 , t
−p2fC2,D⟩

t
= ⟨t−p1UtfC1,D1 , t

−p2UtfC2,D⟩
∞

= ⟨t−p1UtfC1,D1 , (−1)p2Dop +O(t)⟩
∞
,

where Dop is the face of C2 separated from D by all the complementary hyperplanes
of the pair (C2,D). In particular, D and Dop are on opposite sides of H. Now,
it follows from the definition of Ut and basic properties of the cocycle Wt that all
cubes appearing in the support of UtfC1,D1 are on the same side of H as D. Further,
arguing as in the proof of the previous lemma, it follows from Lemma 7.8 that UtfC1,D1

is O(tp1), so that the inner product above is O(t).

Proof of Theorem 7.5. The possible values of the inner product in (b) are 0 and ±1:
the positive value occurs when the oriented cube pairs (C1,D1) and (C2,D2) are
parallel and aligned; the negative value occurs when they are parallel and not aligned;
and 0 occurs when they are not parallel. The result now follows from Lemmas 7.10
and 7.11. Indeed, the result is clear when the cube pairs are not parallel, and in the
case of parallel cube pairs the inner product in (a) is the linear combination

⟨t−pfC1,D1 , t
−pfC2,D2⟩t + ⟨t−pfC1,D∗

1
, t−pfC2,D∗

2
⟩t

− ⟨t−pfC1,D∗

1
, t−pfC2,D2⟩t − ⟨t−pfC1,D1 , t

−pfC2,D∗

2
⟩t.
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Assume the cube pairs are aligned. If (Ci,Di) are compatibly oriented and have the
same parity then the same is true of the cube pairs appearing in the first row, whereas
the cube pairs appearing in the second row are not compatibly oriented; the inner
products in the first row converge to 1

2 and those in the second row converge to 0.
Similarly, if (Ci,Di) are not compatibly oriented and have the opposite parity then
the inner products in the first row converge to 0, whereas those in the second row
converge to −1

2 . The case of non-aligned cube pairs is similar.

In the sequel it will be convenient to work with the following generating family of
continuous bounded sections. All sections we have encountered so far are geometrically
bounded in the following sense.

7.12 Definition. A (not necessarily continuous) section σ of the continuous field
{`2t (Xq)}t∈[0,∞] is geometrically bounded if there is a finite set A ⊆ Xq such that σ(t)
is supported in A for all t ∈ (0,∞].

7.13 Proposition. The space of geometrically bounded, continuous sections of the
continuous field {`2t (Xq)}t∈[0,∞] is spanned over C[0,∞] by the extended basic contin-
uous sections.

Proof. Fix q ≥ 0 and select one representative cube pair (C,D) from each parallelism
class of (p, q)-cubes. The associated basic cochains ±f⟨C,D⟩ span C[Xq] (the signs
indicate that we need to choose orientations to define f⟨C,D⟩). That is, each q-cube
is a complex linear combination of basic cochains of type (p, q) for possibly varying
p. It follows that the basic sections ±σ⟨C,D⟩ span the geometrically bounded sections
over (0,∞], as a module over C(0,∞], since the individual cubes certainly do. Now
suppose that σ is a geometrically bounded continuous section over [0,∞]. From the
above, for t > 0 we can write

σ(t) =
N

∑
j=1

hj(t)σ⟨Cj ,Dj⟩

where h1, . . . , hN are continuous scalar functions on (0,∞]. Using Theorem 7.5 and
the boundedness of ∥σ(t)∥2 as t→ 0, we find that the functions hj are bounded. Taking
inner products with each σ⟨Ci,Di⟩ and applying Theorem 7.5 again we find that each
hj extends to a continuous function on [0,∞]. This proves the proposition.

8. Differentials on the Continuous Field

The purpose of this section is to construct differentials

`2t (X0) dtÐ→ `2t (X1) dtÐ→ ⋯ dtÐ→ `2t (Xn−1) dtÐ→ `2t (Xn)
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that continuously interpolate between the Julg-Valette differentials at t =∞ and the
Pytlik-Szwarc differentials at t = 0. For later purposes it will be important to use
weighted versions of the Julg-Valette differentials, as in Definition 3.23. But first we
shall proceed without the weights, and then indicate at the end of this section how
the weights are incorporated.

Recall that the operators
Ut∶C[Xq]Ð→ C[Xq]

from Definition 6.15 were proved to be isomorphisms in Lemma 6.16.

8.1 Definition. For t ∈ (0,∞] we define

dt = U−1
t dUt∶C[Xq]Ð→ C[Xq+1],

where d is the Julg-Valette differential from Definition 3.9. In addition, we define

d0∶C[Hq]Ð→ C[Hq+1]

to be the Pytlik-Szwarc differential from Definition 5.8.

We aim to prove the following continuity statement concerning these operators:

8.2 Theorem. If {σ(t)} is any continuous and geometrically bounded section of the
continuous field {`2t (Xq)}t∈[0,∞], then the pointwise differential {dtσ(t)} is a contin-
uous and geometrically bounded section of {`2t (Xq+1)}t∈[0,∞]. In fact if (C,D) is an
oriented (p, q)-cube pair, and if σ⟨C,D⟩ is the associated extended basic cochain, then

dtσ⟨C,D⟩(t) =∑
H

σ⟨C,H∧D⟩(t) +O(t)

for t > 0, where the sum is over the hyperplanes that cut C but not D.

It follows formula above and the definition of d0 that dσ⟨C,D⟩ is a continuous section,
and according to Proposition 7.13 the space of continuous and geometrically bounded
sections is generated as a module over C[0,∞] by the extended basic sections. So
the formula implies the first statement in the theorem.

8.3 Lemma. Let (C,D) be an oriented (p, q)-cube pair and assume that all the
complementary hyperplanes of the pair (C,D) separate D from the base point P0.
The associated basic q-cochain of type p satisfies

t−pUtfC,D =Wt(D0,D1)D +O(t),

where D0 is the q-cube in X that is closest to the base point P0 among cubes parallel
to D, and D1 is the face of C that is parallel to D and separated from D by all the
complementary hyperplanes.
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Proof. According to our definitions, fC,D = (−1)pfC,D1 and

UtfC,D1 = ∑
E∥CD

(−1)d(D1,E)Wt(D0,E)E

=Wt(D0,D1) ∑
E∥CD

(−1)d(D1,E)Wt(D1,E)E

= (−t)pWt(D0,D1)D +O(tp+1),

where we have applied Lemma 7.8. The result follows.

8.4 Lemma. Let (C,D) and D1 be as in the previous lemma. Let C0 be the nearest
cube to P0 in the parallelism class of C, let F be the face of C0 which is parallel to
D and separated from the base point P0 by the complementary hyperplanes, and let
F1 be the face of C0 that is parallel to D and separated from F by the complementary
hyperplanes. Then

(a) H ∧F is nonzero if and only if H is a complementary hyperplane, in which case
H ∧ F ⊆ C0;

(b) d(C0,C) = d(F,D) = d(F1,D1);

(c) Wt(D0,D1)D = F +O(t).

Proof. Consider first the case q = 0. In this case, D0 = P0 and the vertex F1 is charac-
terized by the following hyperplane property from the proof of Proposition 4.3: every
hyperplane separating P0 and F1 is parallel to at least one determining hyperplane of
parallelism class of C (and C0).

For (a), H ∧F is nonzero exactly when H is adjacent to F and separates it from P0.
The hyperplanes cutting C0 certainly satisfy this condition. Conversely, a hyperplane
satisfying this condition must intersect all determining hyperplanes by Lemma 2.4,
so cannot separate F1 from P0 and so must cut C0.

For (b), no determining hyperplane (of the parallelism class of C) separates F and
D. It follows easily that a hyperplane separates C and C0 if and only if it separates
F and D. The same argument applies to F1 and D1.

For (c), from the cocycle property we have

Wt(D0,D1)D =Wt(D0, F1)Wt(F1,D1)D.

To evaluate this, observe that a hyperplane appearing along (a geodesic) path from F1

to D1 must cross every determining hyperplane. It follows that Wt(F,F1) =W (D,D1)
commutes with Wt(F1,D1) and we have

Wt(F1,D1)D =Wt(F,F1)W (D1,D)Wt(F1,D1)D
=Wt(F,D)D
= e 1

2
dt2F +O(t),
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where d = d(F,D), and the last equality follows from an elaboration of [GH10, Propo-
sition 3.6]. Finally, no hyperplane separating D0 and F1 is adjacent to F so that
Wt(D0, F1)F = F . Putting things together, the result follows.

We reduce the general case to the case q = 0 using Proposition 4.2, according to which
the set of q-cubes parallel to D is the vertex set of a CAT(0) cube complex in such
a way that the (p + q)-cubes in X correspond to the p-cubes in this complex. The
key observation is that the p-cube in this complex corresponding to the (p + q) cube
C0 in the statement of the lemma is the p-cube closest to the vertex corresponding
to D0.

Proof of Theorem 8.2. We need to show that

dtσ⟨C,D⟩(t) =∑
H

σ⟨C,H∧D⟩(t) +O(t),

where the sum is over the hyperplanes that cut C but not D. After possibly chang-
ing a sign, we can assume that D is the furthest from the base point among the
q-dimensional faces of C parallel to D. In other words, we can assume that the
complementary hyperplanes H1, . . . ,Hp of the pair (C,D) separate D from the base
point. Each Hi ∧D is therefore a (q + 1)-dimensional face of C, and we shall show
that

dt(σ⟨C,D⟩(t)) =
p

∑
i=1

σ⟨C,Hi∧D⟩(t) +O(t).

We have equality when t = 0, so it suffices to treat the case for t > 0 where we need
to show that

dt(t−pfC,D) = t−(p−1)
p

∑
i=1

fC,Hi∧D +O(t).

This is equivalent to

(8.1) dUt(t−pfC,D) =
p

∑
i=1

Ut(t−(p−1)fC,Hi∧D) +O(t).

As for the left hand side of (8.1), applying Lemmas 8.3 and 8.4 we have

dUt(t−pfC,D) = dF +O(t) =
p

∑
i=1

Hi ∧ F +O(t),

where F is as in the statement of Lemma 8.4. So, to complete the verification of (8.1)
it suffices to check that

Ut(t−(p−1)fC,Hi∧D) =Hi ∧ F +O(t).

But this follows from Lemmas 8.3 and 8.4, applied to the (p − 1, q + 1)-cube pair
(C,Hi ∧D) (although a little care must be taken here since the base cube D0 that is
nearest to P0 within the parallelism class of D should be replaced by an analogous
base cube for the parallelism class of Hi ∧D).
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Consider now the adjoint operators

(8.2) δt = U−1
t δUt∶C[Xq]Ð→ C[Xq+1]

for t > 0, together with the adjoint Pytlik-Szwarc differential

δ0∶C[Hq]Ð→ C[Hq+1]

8.5 Theorem. If {σ(t)} is any continuous and geometrically bounded section of the
continuous field {`2t (Xq+1)}t∈[0,∞], then {δtσ(t)} is a continuous and geometrically
bounded section of the continuous field {`2t (Xq)}t∈[0,∞]. In fact if Σ⟨C,D⟩ is any basic
extended section, then

δtσ⟨C,D⟩(t) =∑σ⟨C,Hi⌟D⟩(t) +O(t),

where the sum is over the hyperplanes that cut D.

Proof. While this could be approached through computations similar to those above,
there is a shortcut. We can write X as an increasing union of finite, combinatorially
convex subcomplexes K, each of which contains the base point; see [Lea13, Theorem
B4]. Each C[Kq] is invariant under d and δ, and under all the operators Ut. The
latter restrict to isomorphisms by the argument of Lemma 6.16. It follows that for
each (p, q)-cube pair (C,D) there is some finite subcomplex K within which δtσ⟨C,D⟩

is supported for all t > 0. So for t > 0 there is a finite expansion

δtσ⟨C,D⟩ =
N

∑
j=1

hj(t)σ⟨Cj ,Dj⟩,

as in the proof of Proposition 7.13, where h1, . . . , hN are continuous on (0,∞]. Using
the adjoint relation

⟨σ⟨Ci,Di⟩, δtσ⟨C,D⟩⟩ = ⟨dtσ⟨Ci,Di⟩, σ⟨C,D⟩⟩

and Theorem 8.2 we see that the inner products on the left-hand side are continuous
on [0,∞], and indeed

⟨σ⟨Ci,Di⟩, δtσ⟨C,D⟩⟩ =
⎧⎪⎪⎨⎪⎪⎩

1 +O(t) if (Ci,Di) is some (C,H ⌟D)
O(t) otherwise.

The theorem follows from this.

Finally, we return to the issue of weights, which will be important in the next section
when we work in the context of Kasparov theory. Let wt the function on hyperplanes
defined by the formula

(8.3) wt(H) =
⎧⎪⎪⎨⎪⎪⎩

1 + tdist(H,P0), 0 < t ≤ 1

1 + dist(H,P0) 1 ≤ t ≤∞.
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In the next section we shall work with the weighted operators

(8.4) dt = U−1
t dwtUt∶C[Xq]Ð→ C[Xq+1],

for t > 0, where as before Ut is the isomorphism from Definition 6.15, and where dwt

is the weighted Julg-Valette differential described in Definition 3.23.

If t > 0, then operator in (8.4) does not extend from C[Xq] to a bounded operator
between `2t -spaces. But since the pointwise values of a geometrically bounded section
lie in C[Xq], Theorem 8.2 makes sense in the weighted case without extending the
domains of the operators dt in (8.4) beyond C[Xq]. Moreover the theorem remains
true for the weighted family of operators. The proof reduces immediately to the
unweighted case because the weighted and unweighted differentials, applied to a con-
tinuous and geometrically bounded section, differ by an O(t) term. The same applies
to Theorem 8.5.

9. Equivariant Fredholm Complexes

We shall assume from now on that a second countable, locally compact Hausdorff
topological group1 G acts on a locally finite and finite-dimensional CAT(0) cubical
space X (preserving the cubical structure). We shall not assume that G fixes any
base point in X.

Our goal in this section to place the Julg-Valette and Pytlik-Szwarc complexes within
the context of equivariant Fredholm complexes, and we need to begin with some
definitions.

9.1 Definition. A Fredholm complex of Hilbert spaces is a bounded complex of
Hilbert spaces and bounded operators for which the identity morphism on the complex
is chain homotopic, through a chain homotopy consisting of bounded operators, to a
morphism consisting of compact Hilbert space operators.

In other words, a Fredholm complex of Hilbert spaces is a complex of the form

H0 dÐ→ H1 dÐ→ ⋯ dÐ→ Hn,

with each Hp a Hilbert space and each differential a bounded operator. Moreover
there exist bounded operators

h ∶ Hp Ð→ Hp−1 (p = 1, . . . , n)
1The topological restrictions on the group G are not really necessary, but they will allow us to

easily fit the concept of equivariant Fredholm complex into the context of Kasparov’s KK-theory in
the next section.
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such that each operator

dh + hd ∶ Hp Ð→ Hp (p = 0, . . . , n)

is a compact perturbation of the identity operator.

The Fredholm condition implies that the cohomology groups of a Fredholm complex
are all finite-dimensional, which is the main reason for the definition. But we are
interested in the following concept of equivariant Fredholm complex, for which the
cohomology groups are not so relevant.

9.2 Definition. Let G be a second countable Hausdorff locally compact topological
group. A G-equivariant Fredholm complex of Hilbert spaces is a bounded complex of
separable Hilbert spaces and bounded operators satisfying the following conditions:

(a) Each Hilbert space carries a continuous unitary representation of G.

(b) The differentials d are not necessarily equivariant, but the differences d − gdg−1
are compact operator-valued and norm-continuous functions of g ∈ G.

(c) The identity morphism on the complex is chain homotopic, through a chain
homotopy consisting of bounded operators, to a morphism consisting of compact
Hilbert space operators.

(d) The operators h in the chain homotopy are not necessarily equivariant, but the
differences h − ghg−1 are compact operator-valued and norm-continuous func-
tions of g ∈ G.

9.3 Remark. Because the differentials are not necessarily equivariant, the cohomol-
ogy groups of an equivariant Fredholm complex of Hilbert spaces do not necessarily
carry actions of G, and so are not of direct interest themselves as far as G is concerned.
Nevertheless the above definition, which is due to Kasparov (in a minor variant form),
has played an important role in a number of mathematical areas, most notably the
study of the Novikov conjecture in manifold topology [Kas88] (see [BCH94] for a
survey of other topics).

We are going to manufacture equivariant Fredholm complexes from the Julg-Valette
and Pytlik-Szwarc complexes. The Julg-Valette complex is the more difficult of the
two to understand. Disregarding the group action, the Julg-Valette differentials from
Definition 3.9 extend to bounded operators on the Hilbert space completions of the
cochain spaces associated to the inner products in (3.18), and the resulting complex
of Hilbert spaces and bounded operators is Fredholm, as in Definition 9.1. Moreover
the group G certainly acts unitarily. But the Julg-Valette differentials typically fail
to be G-equivariant, since they are defined using a choice of base point in the complex
X which need not be fixed by G. This means that the technical items (b) and (d) in
Definition 9.2 need to be considered carefully.
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In fact to handle these technical items it will be necessary to finally make use of
the weight functions w(H) that we introduced in Definition 3.23. The following
computation will be our starting point. Assemble together all the Julg-Valette cochain
spaces to form the single space

C[X●] =
dim(X)

⊕
q=0

C[Xq],

and then form the Hilbert space completion

`2(X●) =
dim(X)

⊕
q=0

`2(Xq).

9.4 Lemma. For any weight function w(H) the Julg-Valette operator

D = d + δ ∶ `2(X●)Ð→ `2(X●),

viewed as a densely-defined operator with domain C[X●], is essentially self-adjoint.

Proof. The operator D is formally self-adjoint in the sense that

⟨Df1, f2⟩ = ⟨f1,Df2⟩

for all f1, f2 ∈ C[X●]. The essential self-adjointness of D is a consequence of the fact
that the range of the operator

I +∆ = I +D2

is dense in `2(X●), and this in turn is a consequence of the fact that the Julg-Valette
Laplacian is a diagonal operator, as indicated in Proposition 3.25.

Since D is an essentially self-adjoint operator, we can study the resolvent operators
(D ± iI)−1, which extend from their initial domains of definition (namely the ranges
of (D ± iI) on C[X●]) to bounded operators on `2(X●).

9.5 Lemma. If w is a weight function that is proper in the sense that for every d > 0
the set {H ∶ w(H) < d} is finite, then the resolvent operators

(D ± iI)−1 ∶ `2(X●)Ð→ `2(X●)

are compact Hilbert space operators.

Proof. The two resolvent operators are adjoint to one another, and so it suffices to
show that the product

(I +∆)−1 = (D + iI)−1(D − iI)−1

is compact. But the compactness of (I +∆)−1 is clear from Proposition 3.25.
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Let us now examine the dependence of the Julg-Valette operator D on the initial
choice of base point in X.

9.6 Lemma. If w is a weight function that is G-bounded in the sense that

sup
H

∣w(H) −w(gH)∣ <∞

for every g ∈ G, then
∥D − g(D)∥ <∞.

That is, the difference D − g(D), which is a linear operator on C[X●], extends to a
bounded linear operator on `2(X●).

Proof. It suffices to prove the estimate for d in place of D = d + δ, since d and δ are
adjoint to one another. Now

dC − g(d)C =∑
H

w(H)H ∧P0 C −∑
H

w(g(H))H ∧g(P0) C,

where ∧P0 and ∧g(P0) denote the operators of Definition 3.7 associated to the two
indicated choices of base points. Since w(H) −w(gH) is uniformly bounded we can
replace w(g(H)) by w(H) in the second sum, and change the overall expression only
by a term that defines a bounded operator. So it suffices to show that for any pair of
base points P0 and P1 the expression

∑
H

w(H)(H ∧P0 C −H ∧P1 C)

defines a bounded operator. But the expression in parentheses is only non-zero when
H separates P0 from P1, and there are only finitely many such hyperplanes. So the
lemma follows from the fact that for any hyperplane H the formula

H ∧P0 C −H ∧P1 C

defines a bounded operator.

From now on we shall assume that the Julg-Valette complex is weighted using a
proper and G-bounded weight function. Since the weighted Julg-Valette differential
is not bounded, we shall need to make an adjustment to fit the weighted complex into
the framework of Fredholm complexes of Hilbert spaces and bounded operators. We
do this by forming the normalized differentials

d′ = d(I +∆)− 1
2 ∶ `2(Xq)Ð→ `2(Xq+1)
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(where, strictly speaking, by d in the above formula we mean the closure of d in the
sense of unbounded operator theory). The normalized Julg-Valette complex is the
complex

(9.1) `2(X0) d′Ð→ `2(X1) d′Ð→ ⋯ d′Ð→ `2(Xn).

It is indeed a complex because d and (I +∆)− 1
2 commute with one another, and it is

a Fredholm complex because the adjoints d′∗ constitute a chain homotopy between
the identity and a compact operator-valued cochain map. In fact

d′d′∗ + d′∗d′ =D2(I +D2)−1 = I − (I +D2)−1,

and (I +D2)−1 is compact by Lemma 9.5.

We shall use the following computation from the functional calculus to show that the
normalized complex is an equivariant Fredholm complex of Hilbert spaces.

9.7 Lemma (Compare [BJ83]). If T is a positive, self-adjoint Hilbert space operator
that is bounded below by some positive constant, then

T − 1
2 = 2

π ∫
∞

0
(λ2 + T )−1 dλ.

(The integral is defined as a limit of Riemann sums and is convergent in the norm
topology.)

9.8 Theorem. The normalized Julg-Valette complex

`2(X0) d′Ð→ `2(X1) d′Ð→ ⋯ d′Ð→ `2(Xn)

defined using a proper and G-bounded weight function is an equivariant Fredholm
complex.

Proof. In light of the discussion above it suffices to show that the normalized operator

D′ =D(I +D2)−1/2 = d′ + d′∗

has the property that g(D′) −D′ is a compact operator-valued and norm-continuous
function of g ∈ G. For this we use Lemma 9.7 and the formula

D(λ2 + 1 +D2)−1 = 1

2
((D + iµ)−1 + (D − iµ)−1),

where µ = (λ2 + 1)1/2, to write the difference g(D′) −D′ as a linear combination of
two integrals

∫
∞

0
((g(D) ± iµ)−1 − (D ± iµ)−1)dλ.
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The integrand is

(9.2) (g(D) ± iµ)−1(D − g(D))(D ± iµ)−1,

which, by Lemmas 9.5 and 9.6, is a compact operator-valued and norm-continuous
function of λ ∈ [0,∞) whose norm is O(λ−2) as λ ↗∞. So the integrals converge to
compact operators, as required.

Having dealt with the Julg-Valette complex, let us now examine the Pytlik-Szwarc
complex. The inner products on the Pytlik-Szwarc cochain spaces given in Defini-
tion 5.12 are G-invariant, and the Pytlik-Szwarc differentials given in Definition 5.8
are bounded and G-equivariant, so the story here is much simpler.

9.9 Theorem. The Pytlik-Szwarc complex

`20(X0)Ð→ `20(X1)Ð→ ⋯Ð→ `20(Xn)

is an equivariant Fredholm complex.

Proof. It follows from Proposition 5.14 that the formula

h = 1

p + q
δ ∶C[Hpq]Ð→ C[Hp+1q−1]

(we set h = 0 when p = q = 0) defines an exactly G-equivariant and bounded chain
homotopy between the identity and a compact operator-valued cochain map, namely
the orthogonal projection onto C[H0

0] ≅ C in degree zero, and the zero operator in
higher degrees.

To conclude this section we introduce the following notion of (topological, as op-
posed to chain) homotopy between two equivariant Fredholm complexes. In the next
section we shall construct a homotopy between the Julg-Valette and Pytilik-Szwarc
equivariant Fredholm complexes we constructed above using the continuous field of
complexes constructed in Section 8.

9.10 Definition. Two equivariant complexes of Hilbert spaces (H●
0, d0) and (H●

1, d1)
are homotopic if there is a bounded complex of continuous fields of Hilbert spaces
over [0,1] and adjointable families of bounded differentials satisfying the following
conditions:

(a) Each continuous field carries a continuous unitary representation of G.

(b) The differentials d = {dt} are not necessarily equivariant, but the differences
d − gdg−1 are compact families and norm-continuous functions of g ∈ G.
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(c) The identity morphism on the complex is chain homotopic, through a chain ho-
motopy consisting of adjointable families of bounded operators, to a morphism
consisting of compact operators between continuous fields.

(d) The operators h = {ht} in the homotopy above are again not necessarily equiv-
ariant, but the differences h − ghg−1 are compact families and norm-continuous
functions of g ∈ G.

(e) The restrictions of the complex to the points 0,1 ∈ [0,1] are the complexes
(H●

0, d0) and (H●
1, d1).

We need to supply definitions for the operator-theoretic concepts mentioned above.
These are usually formulated in the language of Hilbert modules, as for example in
[Lan95], but for consistency with the rest of this paper we shall continue to use the
language of continuous fields of Hilbert spaces.

9.11 Definition. An adjointable family of operators (soon we shall contract this to
adjointable operator) between continuous fields {Ht} and {H′

t} over the same compact
space T is a family of bounded operators

At∶Ht Ð→ H′
t

that carries continuous sections to continuous sections, whose adjoint family

A∗
t ∶H′

t Ð→ Ht

also carries continuous sections to continuous sections. An adjointable operator is
unitary if each At is unitary.

9.12 Definition. A representation of G as unitary adjointable operators on a con-
tinuous field {Ht} is continuous if the action map

G × { continuous sections}Ð→ { continuous sections}

is continuous. We place on the space of continuous sections the topology associated
to the norm ∥σ∥ = max ∥σ(t)∥.

9.13 Definition. An adjointable operator A = {At} between continuous fields of
Hilbert spaces over the same compact base space T is compact if it is the norm limit,
as a Banach space operator

A ∶ { continuous sections}Ð→ { continuous sections},

of a sequence of linear combinations of operators of the form

σ z→ ⟨σ1, σ⟩σ2,

where σ1 and σ2 are continuous sections (of the domain and range continuous fields,
respectively). The compact operators form a closed, two-sided ideal in the C∗-algebra
of all adjointable operators.
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Here, then, is the theorem that we shall prove in the next section:

9.14 Theorem. The equivariant Fredholm complexes obtained from the Julg-Valette
and Pytlik-Szwarc complexes in Theorems 9.8 and 9.9 are homotopic (in the sense of
Definition 9.10).

10. K-Amenability

The purpose of this section is to prove Theorem 9.14. Before giving the proof, we
shall explain the K-theoretic relevance of the theorem. To do so we shall need to
use the language of Kasparov’s equivariant KK-theory [Kas88] and so shall assume
familiarity with this theory. We emphasize, however, that the proof of Theorem 9.14
will involve only the definitions from the last section and our work ealier in the paper.

A G-equivariant complex of Hilbert spaces, as in Definition 9.2, determines a class in
Kasparov’s equivariant representation ring

R(G) =KKG(C,C),

in such a way that the following conditions are satisfied:

(a) Homotopic complexes, as in Definition 9.10, determine the same element.

(b) A complex whose differentials are exactly G-equivariant determines the same
class as the complex of cohomology groups (these are finite-dimensional unitary
representations of G) with zero differentials.

(c) A complex with the one-dimensional trivial representation in degree zero, and
no higher-dimensional cochain spaces, determines the multiplicative identity
element 1 ∈ R(G).

10.1 Definition. See [JV84, Definition 1.2]. A second countable and locally compact
Hausdorff topological group G is K-amenable if the multiplicative identity element
1 ∈ R(G) is representable by an equivariant Fredholm complex of Hilbert spaces

H0 Ð→ H1 Ð→ ⋯Ð→ Hn

in which the each cochain space Hp, viewed as a unitary representation of G, is weakly
contained in the regular representation of G.

10.2 Theorem (See [JV84, Corollary 3.6].). If G is K-amenable, then the natural
homomorphism of C∗-algebras

C∗
max(G)Ð→ C∗

red(G)

induces an isomorphism of K-theory groups

K∗(C∗
max(G))Ð→K∗(C∗

red(G)).
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10.3 Remarks. The C∗-algebra homomorphism in the theorem is itself an isomor-
phism if and only if the group G is amenable; this explains the term K-amenable. Not
every group is K-amenable; for example an infinite group with Kazhdan’s property
T is certainly not K-amenable, because the K-theory homomorphism is certainly not
an isomorphism.

After having quickly surveyed this background information, we can state the main
result of this section. The following theorem is not new; it was proved by Higson and
Kasparov in [HK01, Theorem 9.4] using a different argument that is more general (it
applies to a broader class of groups) but less less geometric than the argument we
shall present here.

10.4 Theorem. If a second countable and locally compact group G admits a proper
action on a locally finite and finite dimensional CAT(0) cubical space, then G is
K-amenable.

Julg and Valette proved this theorem in [JV84] in the case where the cubical space
is a tree. They used the Julg-Valette complex, as we have called it, for a tree, and
showed that the continuous field of complexes that we have constructed in this paper
is a homotopy connecting the Julg-Valette and Pytlik-Szwarc complexes. We shall do
the same in the general case. The construction of this homotopy proves the theorem
in view of the following simple result, whose proof we shall omit.

10.5 Lemma. Assume that a second countable and locally compact group G acts
properly on a CAT(0) cubical space. The Hilbert spaces in the Julg-Valette complex
are weakly contained in the regular representation of G.

In light of these remarks, Theorem 10.4 follows from Theorem 9.14, and we now turn
to the proof of that theorem. We shall construct the required homotopy by modifying
the constructions in Section 8 in more or less the same way that we modified the Julg-
Valette complex to construct the complex (9.1). We shall therefore be applying the
functional calculus to the family of operators

(10.1) Dt = U∗
t (dwt + δwt)Ut∶ `2t (X●)Ð→ `2t (X●),

where dwt is a weighted Julg-Valette differential, and of course δwt is the adjoint
differential. Henceforth, we shall work exclusively with the weight functions wt defined
in (8.3), which are G-bounded and proper when the underlying CAT(0) cubical space
is locally finite. To apply the functional calculus we shall need to know that the family
of resolvent operators

(Dt + iλ)−1∶ `2t (X●)Ð→ `2t (X●)
carries continuous sections to continuous sections. Actually we shall need a small
variation on this, involving the following operators.
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10.6 Definition. Denote by P = {Pt} the operator that is in each fiber the orthogonal
projection onto the span of the single basic 0-cochain f⟨P0,P0⟩ of type p = 0 for t > 0
(of course this basic cochain is just ⟨P0⟩).

It follows from the formula for the Julg-Valette Laplacian in Proposition 3.25 that
the operators Pt +∆t are essentially self-adoint and bounded below by 1. So we can
form the resolvent operators (Dt + Pt + iλ)−1 for any λ ∈ R, including λ = 0.

10.7 Proposition. Let λ be a nonzero real number. The families of operators

{ (Dt+iλ)−1∶ `2t (X●)→ `2t (X●) }
t∈[0,∞]

and { (Dt+Pt+iλ)−1∶ `2t (X●)→ `2t (X●) }
t∈[0,∞]

map the space of continuous sections to itself.

We shall prove this by examining action of the Laplacians

(10.2) ∆t =D2
t = U∗

t (dwt + δwt)2Ut

on continuous and geometrically bounded sections of the field {`2t (X●)}t∈[0,∞]. The
essential point is that these Laplacians are diagonalized (up to geometrically bounded
O(t) terms) by the extended basic sections.

Proof of Proposition 10.7. Since the continuous sections are generated by the ex-
tended basic sections, it suffices to prove that each such section is mapped to a
continuous section. Since it is only continuity at t = 0 that is in question, it suffices
to show that a basic section is mapped to a continuous section, plus a section that
vanishes at t = 0. For this, it suffices to show that the ranges of the families {Dt + iλ}
and {Dt + Pt + iλ} as they act on all continuous and geometrically bounded sections
include all basic sections, modulo sections that vanish at t = 0. Finally, using

∆t + λ2I = (Dt + iλ)(Dt − iλ)

and
∆t + Pt + λ2I = (Dt + Pt + iλ)(Dt + Pt − iλ),

it suffices to show that the ranges of the families {∆t +λ2I} and {∆t +Pt +λ2I} have
this property.

Let σ⟨C,D⟩ be an extended basic cochain of type (p, q). Lemmas 8.3 and 8.4 tell us
that

σ⟨C,D⟩(t) = t−pfC,D,

so according to our formula for the Julg-Valette Laplacian in Proposition 3.25,

(dwt + δwt)2Ut ∶ t−pσ⟨C,D⟩ z→ (pt + qt) ⋅ F +O(t),
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where pt is the sum of the squares of the weights of the hyperplanes adjacent to F that
separate it from P0, and qt is the sum of the squares of the weights of the hyperplanes
cutting F . Applying U∗

t to both sides we get

(∆2
t + λ2I) ∶ t−pσ⟨C,D⟩ z→ ((pt + qt) + λ2) ⋅ t−pσ⟨C,D⟩ +O(t).

Similarly

(∆t+Pt+λ2I) ∶ t−pσ⟨C,D⟩ z→ (max{1, (pt + qt)} + λ2) ⋅ t−pσ⟨C,D⟩ +O(t).

So the ranges of the families {∆t+λ2I} and {∆t+Pt+λ2I} contain O(t) perturbations
of every basic section, as required.

Now form the bounded self-adjoint operators

Ft =Dt(Pt +D2
t )−

1
2 .

By the above and Lemma 9.7 the family {Ft}t∈[0,∞] maps continuous sections to
continuous sections. So we can consider the bounded complex of continuous fields of
Hilbert spaces over [0,1] and bounded adjointable operators

(10.3) {`2t (X0)}t∈[0,∞]

{d′t}t∈[0,∞] // {`2t (X1)}t∈[0,∞]

{d′t}t∈[0,∞] // ⋯
{d′t}t∈[0,∞] // {`2t (Xn)}t∈[0,∞]

in which each differential {d′t} is the component of {Ft} mapping between the indi-
cated continuous fields.

10.8 Proposition. Disregarding the G-action, the complex (10.3) is a homotopy of
Fredholm complexes.

Proof. If we set ht = d′t∗, then

htd
′
t + d′tht = ∆t(Pt +∆t)−1 = I − Pt(Pt +∆t)−1,

and {Pt(Pt+∆t)−1} is a compact operator on the continuous field {`2t (X●)}t∈[0,∞].

It remains show that (10.3) is an equivariant homotopy. If the resolvent families
{(Dt + Pt + iλ)−1} were compact, then we would be able to follow the route taken in
the previous section to prove equivariance of the Fredholm complex associated to the
Julg-Valette complex. But compactness fails at t = 0, and so we need to be a bit more
careful. The following two propositions will substitute for the Lemmas 9.5 and 9.6
that were used to handle the Julg-Valette complex in the previous section.

10.9 Proposition. For every ε > 0 and for every λ ∈ R the restricted family of
operators

{(Dt + Pt ± iλ)−1}t∈[ε,∞]

is compact.
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10.10 Proposition. For every g ∈ G the operators Dt−g(Dt) are uniformly bounded
in t:

sup
t∈[0,∞]

∥Dt − g(Dt)∥ <∞.

Moreover
∥Dt − g(Dt)∥ = O(t).

as t↘ 0.

Taking these for granted for a moment, here is the result of the calculation:

10.11 Theorem. The complex (10.3) is a homotopy of equivariant Fredholm com-
plexes in the sense of Definition 9.10.

Proof. We need to check that the families of differentials {d′t} in the complex (10.3)
are G-equivariant modulo compact operators, and also that {d′t − g(d′t)} varies norm-
continuously with g ∈ G.

Let us discuss norm-continuity first. If g is sufficiently close to the identity in G, then
g fixes the base point P0, and for such g we have g(d′t) = d′t for all t. So {g(d′t)} is
actually locally constant as a function of g.

The proof of equivariance modulo compact operators is a small variation of the proof
of Theorem 9.8. We need to show that the family of operators {g(Ft)−Ft} is compact.
Since

Ft =Dt(Pt +∆t)−
1
2

= (Pt +Dt)(Pt +∆t)−
1
2 + compact operator,

it suffices to prove that the operator

Et = (Pt +Dt)(Pt +∆t)−
1
2

is equivariant modulo compact operators. Applying Lemma 9.7 we find that

Et =
2

π ∫
∞

0
(Pt +Dt)(λ2I + Pt +∆t)−1 dλ

= 1

π ∫
∞

0
((Dt + Pt − iλ)−1 + (Dt + Pt + iλ)−1)dλ

(the integral converges in the strong topology). Therefore the difference g(Et)−Et is
the sum of the two integrals

(10.4)
1

π ∫
∞

0
((g(Dt) + g(Pt) ± iλ)−1 − (Dt + Pt ± iλ)−1)dλ.
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(we shall see that these integrals are norm-convergent). The integrands in (10.4) can
be written as

(10.5) (g(Pt) + g(Dt) ± iλ)−1(Dt − g(Dt))(Pt +Dt ± iλ)−1

+ (g(Pt) + g(Dt) ± iλ)−1(Pt − g(Pt))(Pt +Dt ± iλ)−1.

Both terms in (10.5) are norm-continuous, compact operator-valued functions of λ ∈
[0,∞), the first by virtue of Proposition 10.10 and the second because Pt is compact.
Moreover the norms of both are O(λ−2) as λ↗∞. So the integrals associated to the
integrands (10.5) converge in the norm to compact operators, as required.

It remains to prove Propositions 10.9 and 10.10.

Proof of Proposition 10.9. We want to show that the family of operators

{Kt}t∈[ε,∞] = {(Dt + Pt ± iλ)−1}t∈[ε,∞]

is compact. Since the compact operators form a closed, two-sided ideal in the C∗-
algebra of all adjointable families of operators it suffices to show that the family

{K∗
t Kt}t∈[ε,∞] = {(∆t + Pt + λ2)−1}t∈[ε,∞]

is compact; compare [Ped79, Proposition 1.4.5]. Conjugating by the unitaries Ut it
suffices to prove that the family

{(dwtδwt + δwtdwt + Pt + λ2)−1}t∈[ε,∞]

on the constant field of Hilbert spaces with fiber `2(X●) is compact; this is one of the
things that restricting to t ∈ [ε,∞] makes possible. But this final assertion is a simple
consequence of the explicit formula for the Julg-Valette Laplacian in Proposition 3.25,
together with the fact that the weight functions wt are uniformly proper in t ∈ [ε,∞]
in the sense that for every d, all but finitely many hyperplanes H satisfy wt(H) ≥ d
for all t ∈ [ε,∞]. Compare to the proof of Lemma 9.5.

We turn now to Proposition 10.10, the proof of which shall occupy us for the remainder
of the section. We aim to analyze the differenceDt−g(Dt), and a complicating factor is
that G not only fails to preserve the Julg-Valette differential, but also fails to preserve
the unitary operators Ut that appear in the definition of Dt. In fact Proposition 10.10
is only correct because the two failures cancel out one another out.

10.12 Definition. Let P and Q be vertices in X. Define a unitary operator

Ŵt(Q,P )∶ `2(Xq)Ð→ `2(Xq)
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as follows. When q = 0, we define Ŵt(Q,P ) to be the cocycle operator Wt(Q,P )
of Definition 6.13. On higher cubes, Ŵt(Q,P ) respects the decomposition of `2(Xq)
according to parallelism classes, and on a summand determined by an equivalence
class we set Ŵt(Q,P ) = Wt(CQ,CP ), where CQ and CP are the cubes in the class
nearest to Q and P .

Recall that P0 is our fixed base point. We write Q0 = g(P0), and introduce the
abbreviation Ŵt ∶= Ŵt(Q0, P0). With this notation, it is immediate from the definition
of the unitary operator Ut in Definition 6.15 that

g(Ut) = ŴtUt ∶ `2t (X●)→ `2(X●).

Combining this with the definition of Dt we obtain

g(Dt) = U∗
t Ŵ

∗
t (g(dwt) + g(δwt))ŴtUt,

so that difference we wish to analyze is given by

Dt − g(Dt) = U∗
t ((dwt + δwt) − Ŵ ∗

t (g(dwt) + g(δwt))Ŵt)Ut.

The right-hand side of this expression can be rearranged as

U∗
t Ŵ

∗
t (Ŵtdwt − g(dwt)Ŵt)Ut +U∗

t (δwtŴ
∗
t − Ŵ ∗

t g(δwt))ŴtUt,

the norm of which is bounded by

∥Ŵtdwt − g(dwt)Ŵt∥ + ∥δwtŴ
∗
t − Ŵ ∗

t g(δwt)∥.

So, to prove Proposition 10.10 it suffices to show that the operators

Ŵtdwt − g(dwt)Ŵt and δwtŴ
∗
t − Ŵ ∗

t g(δwt)

satisfy the conclusions of that proposition. In fact, since the second operator is the
adjoint of the first it suffices to prove these conclusions for the first operator alone,
and this is what we shall do.

Before we proceed, let us adjust our notation a bit, as follows. Given a vertex P
in X, we shall denote by dP,wt the Julg-Valette differential that is defined using the
base vertex P and the weight function (8.3), for whose definition we also use the base
vertex P rather than P0. With this new notation we can drop further mention of the
group G. Proposition 10.10 is now a consequence of the following assertion:

10.13 Proposition. The operator

Ŵt(Q,P )dP,wt − dQ,wtŴt(Q,P )∶C[Xq]Ð→ C[Xq+1]

is bounded for all t > 0, and moreover

lim
t→0

∥Ŵt(Q,P )dP,wt − dQ,wtŴt(Q,P )∥ = 0.
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Recall now that the Julg-Valette differential is defined using the operation H ∧ C
between hyperplanes and cubes. Since the operation depends on a choice of base
vertex, we shall from now on write H ∧P C to indicate that choice, as we did earlier.

To prove Proposition 10.13 it suffices to consider the case where P and Q are at
distance 1 from one another. We shall make this assumption from now on, and shall
denote by K the (unique) hyperplane that separates P and Q.

10.14 Lemma. If a hyperplane H fails to separate P from Q, then

H ∧P Ŵt(P,Q)D = Ŵt(P,Q)(H ∧QD)

for all oriented q-cubes D.

Proof. First, since we assume that H fails to separate P from Q the operators H∧P
and H∧Q are equal, and we shall drop the subscripts for the rest of the proof.

Next, if H cuts D, then it cuts all the cubes parallel to D, and therefore cuts all the
cubes that make up Ŵt(P,Q)D. In this case both sides of the equation in the lemma
are zero. So we assume from now on that H is disjoint from D.

Recall that K is the hyperplane that separates Q from P . According to Proposi-
tion 4.6 the cubes CP and CQ nearest to P and Q in the parallelism class of D are
either equal or are opposite faces across K of a (q+1)-cube that is cut by K. So
Ŵt(P,Q)D is either just D or is a combination

(10.6) Ŵt(P,Q)D = aD + bE

of D and another cube E that is an opposite face from D in a (q+1)-cube that is cut
by K.

If H fails to separate D from P , or equivalently, if it fails to separate D from Q, then
it also fails to separate any of the terms in Ŵt(P,Q)D from P or Q, and accordingly
both sides of the equation in the lemma are zero. So we can assume from now on
that H does separate D from P and Q.

Suppose now that K fails to be adjacent to D, either because it cuts D or because
some vertex of D is not adjacent to K. The left-hand side of the equation is then
H ∧ D. This is either zero, in which case the equation obviously holds, or it is a
(q+1)-cube to which K also fails to be adjacent, in which case the right-hand side of
the equation is simply H ∧D. So we can assume that K is adjacent to D.

Let E be the q-cube that is separated from D by K alone, as in (10.6). Since H fails
to separate D from E, or P from Q, but separates D and E from P and Q, we see
from Lemma 2.4 that H and K intersect. By Lemma 2.6, if H is adjacent to either
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of D or E, then there is a (q+2)-cube that is cut by H and K and contains both D
and E as faces. In this case both sides of the equation in the lemma are

aH ∧D + bH ∧E

with a and b as in (10.6). Finally, if H is adjacent to neither D nor E, then both
sides of the equation are zero.

10.15 Lemma. Recall that K separates P from Q. We have:

K ∧P Ŵt(P,Q)D − Ŵt(P,Q)(K ∧QD) = f(t)K ∧QD − g(t)K ∧P D,

where f and g are smooth, bounded functions on [0,∞) that vanish at t = 0.

Proof. If D fails to be adjacent to K, then both sides in the displayed formula are
zero. So suppose D is adjacent to K. In this case

Ŵt(P,Q)(K ∧QD) =K ∧QD.

Now according to the definitions

Ŵt(P,Q)D = ±e− 1
2
t2E + (1 − e−t2) 1

2D,

where E is the q-cube opposite D across K, and where the sign is +1 if D is separated
from P by K, and −1 if it is not. We find then that

K ∧P Ŵt(P,Q)D = ±e− 1
2
t2K ∧P E + (1 − e−t2) 1

2K ∧P D.

But K ∧P E = 0 if E is not separated from P by K, which is to say if D is separated
from P by K. So we can write

K ∧P Ŵt(P,Q)D = −e− 1
2
t2K ∧P E + (1 − e−t2) 1

2K ∧P D.

In addition
K ∧P E = −K ∧QD

so that
K ∧P Ŵt(P,Q)D = e− 1

2
t2K ∧QD + (1 − e−t2) 1

2K ∧P D.

Finally we obtain

Ŵt(P,Q)(K ∧QD) −K ∧P Ŵt(P,Q)D = (e 1
2
t2 − 1)K ∧QD − (1 − e−t2) 1

2K ∧P D,

as required.
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Proof of Proposition 10.13. We shall use the previous lemmas and the formula

dP,wtD =∑
H

wP,t(H)H ∧P D

for the Julg-Valette differential. We get

(10.7) Ŵt(Q,P )dP,wt − dQ,wtŴt(Q,P )

=∑
H

(wP,t(H)Ŵt(Q,P ) (H ∧P D) −wQ,t(H)H ∧Q Ŵt(Q,P )D).

Let us separate the sum into a part indexed by hyperplanes that do not separate P
from Q, followed by the single term indexed by the hyperplane K that does separate
P from Q. According to Lemma 10.14 the first part is

∑
H≠K

(wP,t(H) −wQ,t(H)) Ŵt(Q,P ) (H ∧P D) .

Inserting the definition of the weight function, we obtain

(10.8) t ∑
H≠K

(dist(H,P ) − dist(H,Q)) Ŵt(Q,P ) (H ∧P D) ,

and moreover
∣dist(H,P ) − dist(H,Q)∣ ≤ 1.

As for the part of (10.7) indexed by K, keeping in mind that

dist(K,P ) = 1
2 = dist(K,Q),

we obtain from Lemma 10.15 the following formula for it:

(10.9) (1 + 1
2t)f(t)K ∧QD − (1 + 1

2t)g(t)K ∧P D,

where f and g are bounded and vanish at 0. The required estimates follow, because the
terms in (10.8) and (10.9) are uniformly bounded in number, are supported uniformly
close to D, are uniformly bounded in size, and vanish at t = 0.
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