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Abstract

We introduce dynamic asymptotic dimension, a notion of dimen-
sion for actions of discrete groups on locally compact spaces, and more
generally for locally compact étale groupoids. We study our notion for
minimal actions of the integer group, its relation with conditions used
by Bartels, Lück, and Reich in the context of controlled topology, and
its connections with Gromov’s theory of asymptotic dimension. We
also show that dynamic asymptotic dimension gives bounds on the
nuclear dimension of Winter and Zacharias for C˚-algebras associated
to dynamical systems. Dynamic asymptotic dimension also has impli-
cations for K-theory and manifold topology: these will be drawn out
in subsequent work.
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1 Introduction

The main aim of this paper is to introduce dynamic asymptotic dimension,
a property of topological dynamical systems. Precisely, we are interested in
actions of discrete groups on locally compact spaces: throughout the paper,
we say ‘Γ ü X is an action’ as shorthand for saying that Γ is a discrete group
acting by homeomorphisms on a locally compact Hausdorff topological space
X.

To give an idea of our main definition, we will state it here in a specialized
form. First, we need a preliminary on ‘broken’ orbit equivalence relations.

Definition 1.1. Let Γ ü X be an action. For a subset E of Γ and an open
subset U of X, let „U,E be the equivalence relation on U generated by E:
precisely, for x, y P U , x „U,E y if there is a finite sequence

x “ x0, x1, ..., xn “ y

of points in U such that for each i P t1, ..., nu there exists g P E YE´1 Y teu
such that gxi´1 “ xi.

Note that if U “ X then „U,E is just the equivalence relation of being in
the same orbit for the subgroup xEy of Γ generated by E. However, if U is
a proper subset of X then „U,E equivalence classes will generally be smaller
than the intersection of U with the xEy-orbits.

Here is our main definition.
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Definition 1.2. Let Γ ü X be an action, where we assume for simplicity
that X is compact, and the action is free1. The dynamic asymptotic dimen-
sion of Γ ü X is the smallest d P N with the following property: for each
finite subset E of Γ, there is an open cover tU0, ..., Udu of X such that for
each i P t0, ..., du, the equivalence relation „Ui,E on Ui has uniformly finite
equivalence classes.

Heuristically, we think that Γ ü X has dynamic asymptotic dimension
at most d, if for any (large) finite subset E of Γ, the action can be ‘broken’
into at most d ` 1 parts, and on each part the ‘action generated by E’ has
only ‘finite complexity’. We generalize this definition to non-free actions on
non-compact spaces in Definition 2.1 below, and then to locally compact,
Hausdorff, étale groupoids in Definition 5.1.

Our main motivation for introducing this property is its implications for
K-theory of associated algebras (and more general categories) and thus for
manifold topology. These implications come via the use of controlled cutting-
and-pasting, or Mayer-Vietoris, techniques pioneered by the third author [43]
in the setting of asymptotic dimension, and developed in a more general con-
text by the first and third authors in collaboration with Tessera [15]. Other
important motivations come from work of Farrell and Jones [12], of Bartels,
Lück and Reich [3], and of Bartels and Lück [2] in controlled topology. We
will explore these aspects in other work [16].

We believe however, that dynamic asymptotic dimension will admit many
interesting examples, and be useful in other contexts: it is the purpose of this
paper to explore some of these other aspects. Specifically, we will develop
some of the main motivating examples and discuss some consequences for
the structure theory of C˚-algebras.

Examples

Our main theorems on examples are as follows.

Theorem 1.3. (i) Let Z ü X be a free, minimal Z action on a compact
space. Then the dynamic asymptotic dimension of Z ü X is one.

(ii) Let Γ ü X be an action satisfying a ‘Bartels-Lück-Reich type condition

1This means that if gx “ x for some g P Γ and x P X, then g “ e is the identity element
of Γ.
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of dimnesion d’ for the family of finite subgroups. Then the dynamic
asymptotic dimension of Γ ü X is at most d.

(iii) The canonical action Γ ü βΓ of any (countable) discrete group on its
Stone-Čech compactification is equal to the asymptotic dimension of Γ
in the sense of Gromov. More generally, if X is a bounded geometry
coarse space and GpXq the associated coarse groupoid, then the dynamic
asymptotic dimension of GpXq equals the asymptotic dimension of X.

(iv) Let Γ be a countable group with asymptotic dimension d. Then Γ ad-
mits a free minimal action on the Cantor set with dynamic asymptotic
dimension at most d.

See Theorems 3.1, 4.11, 6.4 and Corollary 6.6 below for parts (i), (ii), (iii)
and (iv) respectively (and more explanation of the terminology involved in
each part).

Part (i) says that the actions that are perhaps most interesting from the
point of view of classical topological dynamics fall under the purview of dy-
namic asymptotic dimension in a natural and simple way. On the other hand,
part (iv) implies that many interesting classes of groups—for example, word
hyperbolic groups [31], CAT(0) cubical groups [42], lattices in Lie groups, and
many solvable groups [4]—admit at least some actions with finite dynamic
asymptotic dimension. Parts (ii) and (iii) were our principal motivations,
as they give the connections to controlled K-theory and controlled topology
which underlie our work in those directions.

Implications

The main implications we explore in this paper are to the structure theory
of C˚-algebras: in particular to nuclear dimension in the sense of Winter
and Zacharias [41], a property that has been very important in Elliott’s
classification program [9] and elsewhere. The main result we have here is
Theorem 8.6 below: this says that under a minor technical hypothesis, the
nuclear dimension of the reduced C˚-algebra of a free étale groupoid can
be bounded in terms of the dynamic asymptotic dimension of the groupoid,
and the covering dimension of the groupoid’s unit space. Rather than repeat
Theorem 8.6 here, we just give some corollaries. See Section 8 for more
details.
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Theorem 1.4. (i) Let Z ü X be a free, minimal action on a second
countable compact space of covering dimension N . Then the nuclear
dimension of the crossed product CpXq ¸ Z is at most 2N ` 1.

(ii) Let X be a bounded geometry coarse space. Then the nuclear dimension
of the uniform Roe algebra C˚upXq is at most the asymptotic dimension
of X.

(iii) Any countable group Γ admits a free, minimal action on the Cantor
set X such that the associated reduced crossed product CpXq ¸r Γ has
nuclear dimension at most the asymptotic dimension of Γ.

Parts (i) and (ii) are originally due to Toms and Winter [38, Section 3] and
Winter and Zacharias [41, Section 8] respectively; moreover, our proofs are
in some sense close to the original ones (if heavily disguised). Nonetheless,
we think there is some interest in explicitly bringing these results under one
dynamical framework. The final result seems to be new, and says that ‘many’
groups admit simple crossed products with finite nuclear dimension. Thanks
to spectacular recent advances in C˚-algebra theory [10, 37], it seems that
one now knows that this implies these crossed products fall under the purview
of the Elliott program.

Outline of the paper

In Section 2 we introduce our main definition in the case of group actions, and
mention some basic consequences. In Section 3 we study minimal Z actions
on compact spaces using ideas of Putnam [27]. In Section 4 we discuss
the connection to the work of Bartels, Lück, and Reich [3, 1] in controlled
topology. In Section 5, we extend the main definition to étale groupoids with
applications to coarse geometry in the next section in mind. In Section 6
we explore the connections to coarse geometry, and use this to construct the
examples in part (iv) of Theorem 1.3, as well as to clarify the relationship
of the Bartels-Lück-Reich conditions to asymptotic dimension. Section 7 is
devoted to a technical construction of almost invariant partitions of unity.
Finally, Section 8 discusses the implications to nuclear dimension of groupoid
C˚-algebras, and in particular all the parts of Theorem 1.4.

We have tried to write the paper in a ‘modular’ way, so that sections can
be read independently of each other to a large extent. In particular, groupoids
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are not mentioned until Section 5, and (noncommutative) C˚-algebras are not
mentioned before Section 8.
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2 Dynamic asymptotic dimension for group

actions

In this section, we introduce our main definition.

Definition 2.1. An action Γ ü X has dynamic asymptotic dimension d if d
is the smallest natural number with the following property: for any compact
subset K of X and finite subset E of Γ there are open subsets U0, ..., Ud of
X that cover K such that for each i P t0, ..., du, the set

$

&

%

there exist x P Ui and gn, ..., g1 P E such that
g P Γ g “ gn ¨ ¨ ¨ g2g1 and for all k P t1, ..., nu,

gk ¨ ¨ ¨ g1x P Ui

,

.

-

(2.2)

is finite.
The action has finite dynamic asymptotic dimension if it has dynamic

asymptotic dimension d for some d, and infinite dynamic asymptotic dimen-
sion otherwise.

Remark 2.3. (i) An action Γ ü X on a compact space X has dynamic
asymptotic dimension 0 if and only if Γ is locally finite, i.e. any finite
subset of Γ generates a finite subgroup.

(ii) Recall that an action Γ ü X is proper if for any compact subset K of
X, the set tg P Γ | gK XK ‰ ∅u is finite. It is locally proper if every
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finitely generated subgroup of Γ acts properly on X. Point (i) says that
an action on a compact space has dynamic asymptotic dimension zero
if and only it is locally proper.

In general, it is still true that local properness implies dynamic asymp-
totic dimension zero: indeed, let a finite E Ď Γ and compact K Ď X
be given. Let U0 be any relatively compact open set that contains K
(such a U0 exists as X is locally compact). Then if xEy is the subgroup
of Γ generated by E, the set in line (2.2) above is contained in

tg P xEy | g´1U0 X U0 ‰ ∅u

and is thus finite by local properness. The converse is false, however:
for example, the action of Z on R2 considered in [22, Chapter 5, Ex-
ample 8.3] has dynamic asymptotic dimension zero but is not (locally)
proper. It is perhaps most natural to characterize dynamic asymptotic
dimension zero actions in terms of groupoids: see Example 5.3 below.

(iii) If an action has finite dynamic asymptotic dimension, then all point
stablizers must be locally finite. In particular, an action of a torsion
free group with finite dynamic asymptotic dimension is free.

(iv) If Γ ü X is a free action with X compact, then Definition 2.1 above is
equivalent to Definition 1.2 from the introduction.

To see this, assume first that Γ ü X satisfies the condition in Definition
2.1, and let a finite subset E of Γ be given. Take K “ X, and a cover
U0, ..., Ud as in Definition 2.1 for this K and E. Then if Fi is the finite
set in line (2.2), all „Ui,E equivalence classes are contained in Fi ¨ x for
some x, and thus have uniformly bounded finite cardinalities.

Conversely say a finite subset E of Γ is given and tU0, ..., Udu is a cover
of X with the properties in Definition 1.2, so in particular all „Ui,E

equivalence classes have cardinality at most some integer N . Then
each of the sets Fi in line (2.2) is contained in pE Y E´1 Y teuqN , and
thus has cardinality at most p2|E| ` 1qN .

(v) See Corollary 7.2 below for a stronger-looking equivalent definition of
dynamic asymptotic dimension in terms of almost-invariant partitions
of unity.
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3 Example - minimal Z-actions

In this section we give our first non-trivial examples: minimal actions of Z
on compact spaces (recall that an action Γ ü X is minimal if all Γ-orbits
are dense).

The proof is inspired by ideas of Ian Putnam that were originally used
to build interesting AF-algebras associated to minimal actions of Z on the
Cantor set [27] (and subsequently much developed by Putnam and others).
We would like to thank Prof. Putnam for suggesting that there might be a
connection between his work and our notion of dynamic asymptotic dimen-
sion.

Theorem 3.1. Let Z ü X be a minimal Z action on an infinite compact
space X. Then the dynamic asymptotic dimension of the action is one.

Proof. As Z is not locally finite, Remark 2.3 part (i) implies that the dynamic
asymptotic dimension of Z ü X is not zero, so it suffices to bound the
dynamic asymptotic dimension above by one.

Let a finite subset E of Z be given; we may as well assume that E is an
‘interval’ r´N,N s X Z for some N P N. As the action is minimal and X
is infinite, the action is free. It follows that we can find a non-empty open
subset U of X such that

n ¨ U X U “ ∅
for all n P r´5N, 5N szt0u. Let V be any non-empty open subset of X such
that V Ď U . Define

U0 :“
N
ď

n“´N

n ¨ U, U1 :“ X z

N
ď

n“´N

n ¨ V .

Clearly tU0, U1u is an open cover of X. To finish the proof, it suffices to show
that the sets

$

&

%

there exist x P Ui and n1, ..., nm P E such that
n P Z n “ n1 ` ¨ ¨ ¨ ` nm and for all k P t1, ...,mu,

pnk ` ¨ ¨ ¨ ` n1qx P Ui

,

.

-

(3.2)

are finite for i “ 0, 1.

First look at U0. We claim that in this case the set in line (3.2) is contained
in r´3N, 3N s. Indeed, assume for contradiction that there exist n1, ..., nm P
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r´N,N s with |n1` ¨ ¨ ¨`nm| ą 3N and x P U0 with pnk` ¨ ¨ ¨ `n1qx P U0 for
all k P t1, ...,mu. Write x “ n0x0 for some x0 P U and n0 P r´N,N s (such
exist by definition of U0). As each nk is in r´N,N s and |nm`¨ ¨ ¨`n1| ą 3N ,
there must exist k such that 3N ě |nk ` ¨ ¨ ¨ ` n1| ą 2N , whence

4N ě |nk ` ¨ ¨ ¨ ` n1 ` n0| ą N. (3.3)

As
pnk ` ¨ ¨ ¨ ` n1qx “ pnk ` ¨ ¨ ¨ ` n1 ` n0qx0

is in U0, there are n10 P r´N,N s and x10 P U with

pnk ` ¨ ¨ ¨ ` n1 ` n0qx0 “ n10x
1
0,

whence
pnk ` ¨ ¨ ¨ ` n1 ` n0 ´ n

1
0qx0 “ x10

Hence as x0 and x10 are in U we have that

pnk ` ¨ ¨ ¨ ` n1 ` n0 ´ n
1
0q ¨ U X U ‰ ∅.

However, line (3.3) implies that 5N ě |nk ` ¨ ¨ ¨ ` n1 ` n0 ´ n10| ą 0, so this
contradicts that U X n ¨ U “ ∅ for n P r´5N, 5N szt0u.

We now look at the set in line (3.2) for U1. We first claim that there exists
M P N such that for all x P U1 there exists m´ P r´M, 0q and m` P p0,M s
with m´x P V and m`x P V . Indeed, for each M P N define

WM :“

"

x P X there are m´ P r´M, 0q,m` P p0,M s
such that m´x,m`x P V

*

.

It follows from the fact that V is open that each WM is open. Moreover,
minimality of the action implies that for each x P X, the ‘half-orbits’ N ¨ x
and p´Nq ¨ x are dense: if not, the limit points of one of these sets would be
a closed Z-invariant subset. Hence the fact that V is open implies that each
x P X is in WM for some M , and so tWM | M P Nu is an open cover of X.
Compactness of X and the fact that WM1 Ď WM2 for M1 ďM2 implies that
X is contained in WM for some M , and this implies the claim.

To complete the proof, we will now show that for U1, the set in line (3.2)
is contained in r´M ´ N,M ` N s. Assume for contradiction this fails, so
there exist n1, ..., nm P E with |n1 ` ¨ ¨ ¨ ` nm| ą M ` N and x P U1 such
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that pn1 ` ¨ ¨ ¨ ` nkqx is in U1 for all k P t1, ...,mu. Assume for simplicity
that n1 ` ¨ ¨ ¨ ` nm ą M ` N ; the case n1 ` ¨ ¨ ¨nm ă ´M ´ N can be
handled similarly. Let m` P p0,M s be such that m`x P V . Then there
exists k P t1, ...,mu with pn1 ` ¨ ¨ ¨ ` nkq ´m` P r´N,N s. In particular,

pn1 ` ¨ ¨ ¨ ` nkqx “ pm` ` nqx

for some n P r´N,N s. However as m`x is in V , pm` ` nqx is in XzU1 by
definition of U1, which is a contradiction.

4 Example - Bartels-Lück-Reich conditions

Our main goal in this section is to study some properties of group actions
that were important in the work of Bartels, Lück, and Reich [3, 1] on the
Farrell-Jones conjecture and show that that they imply that the action has
finite dynamic asymptotic dimension.

We will need to establish come conventions on simplicial complexes. Let
V be a set, thought of a discrete topological space. The space of probability
measures on V is

P pV q :“ tµ P l1pV q | µpvq ě 0 for all v P V and }µ}1 “ 1u,

equipped with the metric

d
´

ÿ

vPV

tvv ,
ÿ

vPV

svv
¯

:“
ÿ

vPV

|tv ´ sv|.

coming from the l1-norm. Write PnpV q for the subset of P pV q consisting of
measures supported on at most n` 1 points ad define

Pf pV q :“
8
ď

n“0

PnpV q

to be the subspace of finitely supported probability measures. Elements of
P pV q will usually be written as formal sums

µ “
ÿ

vPV

tvv,
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where µpvq “ tv is in r0, 1s and
ř

v tv “ 1. We identify V with P0pV q in the
obvious way.

A simplicial complex is a subspace C of some Pf pV q as above such that
V Ď C, and with the property that whenever

µ “
ÿ

vPV

tvv

is an element of C and S “ tv P V | tv ‰ 0u is the support of µ, then
!

ÿ

vPV

tvv P Pf pV q
ˇ

ˇ

ˇ
tv “ 0 for v R S

)

is contained in C. The vertex set of C is V . A simplicial complex C is
equipped with the restriction of the l1-metric defined above. If C is a sim-
plicial complex and n P N, an n-simplex in C is a subset that is equal to the
convex hull of some set of n ` 1 vertices. The n-skeleton of C is defined to
be Cn :“ CXPnpV q (so in particular C0 “ V and C´1 “ ∅). The dimension
of C is the smallest d such that C “ Cd (or infinity if no such d exists).

If Γ is a discrete group and C a simplicial complex with vertex set C,
then a simplicial action of Γ on C is an action that is induced from some
action of Γ on V via the formula

g
´

ÿ

vPV

tvv
¯

“
ÿ

vPV

tvpgvq.

Note that a simplicial action is isometric. All actions on simplicial complexes
will be assumed simplicial.

We will need the following technical lemma at a couple of points be-
low: roughly, it says that simplicial complexes admit covers with rather rigid
combinatorial properties.

Lemma 4.1. Let C be a simplicial complex of dimension at most d and
equipped with a simplicial action by Γ. For a subset A of C and δ ą 0, write

NδpAq :“ tx P C | dpx,Aq ă δu

for the δ-neighbourhood of A. For each i P t0, ..., du define

Vi :“ N 1
3

10´ipCiq z N 5
2

10´ipCi´1q.

Then the collection tV0, ..., Vdu is an open cover of C by Γ-invariant subsets.
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Moreover, for each i P t0, ...du and i-simplex ∆, define

Vi ∆ :“ N 1
3

10´ip∆q z N 5
2

10´ipCi´1q.

Then
Vi “

ď

∆ an i-simplex

Vi ∆,

the Γ action permutes the distinct Vi ∆, and for distinct i-simplices ∆ and
∆1,

dpVi ∆, Vi ∆1q ě
1

3
10´i ě

1

3
10´d. (4.2)

Proof. Clearly each Vi is open, and each is Γ-invariant as Γ acts simplicially
(whence it preserves each i-skeleton and the metric). To show that tV0, ..., Vdu
covers C, it suffices to show that Ci Ď V0 Y ¨ ¨ ¨ Y Vi for each i, which is clear
by induction. The decomposition Vi “

Ť

∆ an i-simplex Vi ∆ is also clear as
Ci “

Ť

∆ an i-simplex ∆. Moreover, as the action is simplicial Γ permutes the
sets Vi ∆.

Finally, say for contradiction that ∆, ∆1 are distinct i-simplices such that
dpVi ∆, Vi ∆1q ă

1
3
10´i. Then there exists µ P Vi ∆ such that dpµ,∆1q ă 2

3
10´i.

Note that
1

3
10´i ą dpµ,∆q ě

ÿ

vR∆

tv, and
2

3
10´i ą dpµ,∆1

q ě
ÿ

vR∆1

tv

whence
T :“

ÿ

vR∆X∆1

tv ď
ÿ

vR∆

tv `
ÿ

vR∆1

tv ă 10´i.

Hence in particular T ă 1 and so we may define

ν :“
ÿ

vP∆X∆1

tv
1´ T

v,

which is in Ci´1 as ∆ and ∆1 are distinct. Note that

dpµ,Ci´1q ď dpµ, νq “
ÿ

vP∆X∆1

tv

´ 1

1´ T
´ 1

¯

`
ÿ

vR∆X∆1

tv “ 2T ă 2 ¨ 10´i.

However, as µ is in Vi ∆ we have µ R N 5
2

10´ipCi´1q
, and putting this together

with the line above gives

5

2
10´i ă dpµ,Ci´1q ă 2 ¨ 10´i,

which is the desired contradiction.
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A family of subgroups of a discrete group Γ is a collection of subgroups
satisfying the following conditions:

• F is closed under conjugation;

• F is closed under taking subgroups;

• F is closed under taking finite index supergroups.

The examples that are important for applications are the family of finite
subgroups, and that of virtually cyclic subgroups.

Definition 4.3. Let C be a simplicial complex equipped with a simplicial
action of a discrete group Γ. Let F be a family of subgroups of Γ satisfying
the conditions above. Then C is called a pΓ,Fq-complex if the stabilizer of
every vertex in C is an element of F .

We will only use the following definition in the case that Y is a simplicial
complex equipped with a simplicial action of Γ.

Definition 4.4. Let X be a topological space and Y a metric space, and
assume that Γ is a discrete group acting on X by homeomorphisms, and on
Y by isometries. Let E be a subset of Γ and ε ą 0. A map f : X Ñ Y is
pE, εq-equivariant if

sup
xPX

dY pfpgxq, gfpxqq ă ε.

for all g P E.

As the last of our preliminaries before getting to the conditions of Bartels-
Lück-Reich, we have another technical lemma.

Lemma 4.5. Let f : X Ñ C be a continuous pE, εq-equivariant map as in
Definition 4.4, where X is compact and E is finite. Then there exists a finite
subset S of the vertex set of C and an pE, εq-equivariant map f 1 : X Ñ C
such that f 1pXq Ď P pSq X C.

Proof. Note that for any fixed δ ą 0, the collection

tNδpP pSq X Cq | S a finite set of verticesu

is an open cover of C. It follows that if K Ď C is compact, then for any δ ą 0
there exists a finite subset S of V such that K Ď NδpP pSq X Cq. Define

δ :“ min
!

1 ,
1

2
min
gPE

 

ε´ sup
xPX

dCpfpgxq, gfpxqq
(

)

ą 0
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and let S be a finite subset of V such that fpXq Ď Nδ{2pP pSqXCq. We may
write fpxq “

ř

vPV tvpxqv where each tv : X Ñ r0, 1s is a continuous function.
Note that for any µ “

ř

vPS svv P P pSq,

dpµ, fpxqq “
ÿ

vPS

|sv ´ tvpxq| `
ÿ

vRS

tvpxq ě
ÿ

vRS

tvpxq.

Taking the infimum over all such µ and using that fpXq Ď Nδ{2pP pSq X Cq
gives

ÿ

vRS

tvpxq ă δ{2.

Hence in particular the formula T pxq :“
ř

vPS tvpxq defines a continuous
function T : X Ñ p1´ δ{2, 1s. Define

f 1pxq :“
ÿ

vPS

tvpxq

T pxq
v,

so f 1 : X Ñ C X P pSq is a continuous function. Then for any x P X,

dCpfpxq, f
1
pxqq “

ÿ

vPS

tvpxq
´ 1

T pxq
´ 1

¯

`
ÿ

vRS

tvpxq “ 2p1´ T pxqq ă δ.

It follows that f 1 : X Ñ C has the desired properties.

We now come to the conditions that are our main object of study in this
section. The first condition in the following proposition is essentially taken
from Bartels’ survey paper [1, Theorem A, page 9], and the second from
the paper of Bartels-Lück-Reich on equivariant covers of hyperbolic groups
[3, Theorem 1.2]. The result is very closely connected to [36, Lemma 4.4],
and is to some extent already implicit in [3]; nonetheless, we do not think a
complete proof exists anywhere in the literature, so give one here.

Proposition 4.6. Say Γ ü X is an action with X compact, and F is a
family of subgroups of Γ. The following are equivalent.

(i) There exists d such that for all finite E Ď Γ and all ε ą 0 there exists a
pΓ,Fq-complex C of dimension at most d and and a continuous pE, εq-
equivariant map

f : X Ñ C.
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(ii) There exists d such that for each finite subset E of Γ there exists a Γ
equivariant open cover U of X ˆ Γ such that the following hold.

(A) For every U P U and g P Γ, gU “ U , or gU X U “ ∅.

(B) For every U P U , tg P Γ | gU “ Uu P F .

(C) The multiplicity of U is at most d` 1.

(D) U{Γ is finite.

(E) For every g P Γ and x P X there exists U P U such that txuˆgE Ď
U .

Proof. Assume condition (i). Let ε “ 1
6
10´d. Fix a finite subset E of Γ, and

let C, f be as in condition (i) for this choice of E and ε. Using Lemma 4.5,
we may assume that the image of f is contained in P pSq XC for some finite
subset S of the vertex set of C. Define

φ : X ˆ Γ Ñ C X P pΓ ¨ Sq, px, gq ÞÑ gfpg´1xq.

Then φ is equivariant, and for g, h P Γ with g´1h P E satisfies

dpφpx, gq, φpx, hqq “ dpgfpg´1xq, hfph´1xqq

“ dpfpg´1xq, g´1hfph´1xqq

ă ε. (4.7)

Now, let tV0, ..., Vdu be the cover of C given by Lemma 4.1. With notation
from Lemma 4.1, define

U :“ tφ´1
pN 1

6
10´dpVi ∆qq | i P t0, ..., du and ∆ an i-simplexu.

The open cover U of XˆΓ is equivariant as it is the pullback of an equivariant
cover by an equivariant map. It satisfies condition (A) as Γ permutes the
disjoint sets N 1

6
10´dpVi ∆q for each fixed i; it satisfies condition pBq as C is a

pΓ,Fq-complex; it satisfies condition (C) as each point in C can intersect at
most one N 1

6
10´dpVi ∆q for each i; and it satisfies condition (D) as S is finite.

Moreover, as tV0, ..., Vdu covers C, the Lebesgue number of the cover

V :“ tN 1
6

10´dpVi ∆q | i P t0, ..., du and ∆ an i-simplexu.

of C is at least ε “ 1
6
10´d. Hence the condition

g´1h P E ñ dpφpx, gq, φpx, hqq ă ε
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from line (4.7) above implies for any x and g there exists V P V such that

φptxu ˆ gEq Ď V ;

this implies condition (E) for U .

Now assume condition (ii). Let ε, E be given; replacing E by EYE´1Yteu,
we may assume that E is symmetric and contains the identity element. Let
d be as in (ii), and take a cover U of X ˆ Γ as in (ii) for the finite set
En “ tg P Γ | g “ g1...gn for some g1, ..., gn P Eu where n is such that

p2d` 2qp4d` 6q

n
ă ε.

Let C be the nerve of this cover: precisely, C is the subcomplex of P pUq
consisting of the union of the convex hulls of all subsets tU0, ..., Umu of the
vertex set U such that

Şm
i“0 Ui ‰ ∅. Note that C is a pΓ,Fq-complex by

conditions (A) and (B); it is moreover of dimension at most d by (C).
The next part of the argument is a ‘topological version’ of [7, Proposition

4.1]. For each U P U and each m P t0, ...nu define the Em-interior of U to
be

U pmq :“ tpx, gq P U | txu ˆ gEm
Ď Uu.

This gives rise to a nested sequence of open sets

U pnq Ď U pn´1q
Ď ¨ ¨ ¨ Ď U p1q Ď U p0q “ U.

Note that for each m P t0, ..., nu, tU pmquUPU is an open cover of X ˆ Γ by
condition (E). Let tVUuUPU be an open cover of X ˆ Γ such that for each
U , VU Ď U pnq; as X ˆ Γ is normal, standard arguments in general topology
imply that such a ‘shrunken’ cover exists.

Fix U P U for the moment. Define V pnq :“ VU . Define

W pnq :“ tpx, ghq P X ˆ Γ | px, gq P V pnq, h P Eu

and note that if px, gq is in W pnq, then px, ghq is in V pnq for some h P E, and
thus

txu ˆ gEn´1
Ď txu ˆ ghEn

Ď U.

This says that W pnq Ď U pn´1q, and thus by normality of X ˆ Γ there is an
open set V pn´1q with

W pnq Ď V pn´1q
Ď V pn´1q Ď U pn´1q.
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Now set

W pn´1q :“ tpx, ghq P X ˆ Γ | px, gq P V pn´1q, h P Eu,

and similarly we have W pn´1q Ď U pn´2q whence there is an open set V pn´2q

with
W pn´1q Ď V pn´2q

Ď V pn´2q Ď U pn´2q.

Continuing this process gives a nested sequence

V pnq Ď V pn´1q
Ď ¨ ¨ ¨ Ď V p1q Ď V p0q

of open sets such that: for each m P t1, ..., nu, V pmq Ď V pm´1q; for each

m P t0, ..., nu, V pmq Ď U pmq; and for each m P t1, ..., nu,

tpx, ghq P X ˆ Γ | px, gq P V pmq, h P Eu Ď V pm´1q. (4.8)

Now, for each m P t1, ..., nu, Urysohn’s lemma implies there exists a contin-

uous function ψ
pmq
U : X ˆ Γ Ñ r0, 1s such that

ψ
pmq
U pV pmqq “ t1u and ψ

pmq
U ppX ˆ ΓqzV pm´1q

q “ t0u.

Define

ψU :“
n
ÿ

m“1

ψ
pmq
U .

Note that if px, gq P V pm´1qzV pmq for some m P t1, ..., nu then ψUpx, gq P
rm´ 1,ms and moreover ψUpx, gq “ 0 whenever px, gq R V p0q. Hence by line
(4.8) we have that for any px, gq P X ˆ Γ

h P E ñ |ψUpx, gq ´ ψUpx, ghq| ď 2. (4.9)

At this point, we unfix U , and define φU : X ˆ Γ Ñ r0, 1s by the formula

φU “
ψU

ř

V PU ψV
.

As tVUuUPU is an open cover of X ˆ Γ, tφUuUPU is a well-defined partition of
unity on X ˆ Γ. Moreover, for any x P X, any g, h P G such that g´1h P E,
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and any U P U we have

|φUpx, gq ´ φUpx, hq|

ď

ˇ

ˇ

ˇ

ψUpx, gq ´ ψUpx, hq
ř

V PU ψV px, gq

ˇ

ˇ

ˇ
`

ψUpx, hq
ř

V PU ψV px, hq

ˇ

ˇ

ˇ

ř

V PU ψV px, gq ´
ř

V PU ψV px, hq
ř

V PU ψV px, gq

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ψUpx, gq ´ ψUpx, hq
ř

V PU ψV px, gq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ř

V PU ψV px, gq ´ ψV px, hq
ř

V PU ψV px, gq

ˇ

ˇ

ˇ
.

By construction, at least one of the terms in the sum
ř

V PU ψV px, gq equals
n. Combining this with line (4.9) and the fact that the cover has multiplicity
at most d` 1 implies that the above is bounded by

2

n
`

4pd` 1q

n
“

4d` 6

n
.

Hence for x P X and g, h P Γ with g´1h P E

ÿ

UPU
|φUpx, gq ´ φUpx, hq| ă

p2d` 2qp4d` 6q

n
.

as at most 2d`2 of the terms can be non-zero by the multiplicity restriction.
Finally, define

f : X Ñ C, x ÞÑ
ÿ

UPU
φUpx, eqU,

which is continuous as each φU is. Note that for g P E, x P X,

dpfpgxq, gfpxqq “
ÿ

UPU
|φUpgx, eq ´ φUpgx, gq| ă

p2d` 2qp4d` 6q

n
ă ε

by choice of n; thus we may conclude (i).

Definition 4.10. If an action Γ ü X and family F satisfy the conditions in
Proposition 4.6, we say that the action is d-BLR for F .

The following theorem shows that the conditions on an action in Proposi-
tion 4.6 imply that the action has dynamic asymptotic dimension at most d.
We do not know whether the converse is true: some evidence for a converse
is provided by Corollary 6.5 below that relates the d-BLR condition and dy-
namic asymptotic dimension to asymptotic dimension in the sense of coarse
geometry.
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Theorem 4.11. Let Γ ü X be an action with X compact, and let F be the
family of finite subgroups of Γ. If Γ ü X is a d-BLR action for F , then it
has dynamic asymptotic dimension at most d.

Proof. Assume condition (i) in Proposition 4.6 for the family F of finite
subgroups of Γ. Let a finite subset E of Γ be given; we may assume that E
contains the identity and that E “ E´1. Let ε “ 1

3
10´d. Then there exists a

pΓ,Fq-complex of dimension at most d and an pE, εq-equivariant continuous
map

f : X Ñ C

as in Definition 4.4. Using Remark 4.5, we may assume that there exists a
finite subset S of the vertex set of C such that fpXq is contained in CXP pSq.
Define also

F :“ tg P Γ | gS X S ‰ ∅u. (4.12)

Note that as S is finite and as the stabilizer in Γ of each vertex in S is finite,
F is a finite subset of Γ.

Now, let tV0, ..., Vdu be the open cover of C as in Lemma 4.1; we will freely
use the notation from Lemma 4.1 in the rest of the proof. For each i P t0, ...du
define Ui :“ f´1pViq and for each i-simplex ∆, define Ui ∆ :“ f´1pVi ∆q. Note
that tU0, ..., Udu is an open cover of X, and that each Ui is the disjoint union
of the sets Ui ∆ as ∆ ranges over all i-simplices. We claim that the following
holds for any i and i-simplex ∆:

x P Ui ∆, gx P Ui, g P E ñ gx P Ui g∆. (4.13)

Indeed, with notation as in the line above, we know that gx is in Ui ∆1 for
some i-simplex ∆1. As f is pE, εq-equivariant we have

dpfpgxq, gfpxqq ă ε;

As gfpxq is in Vi g∆ and fpgxq is in Vi ∆1 , line (4.2) from Lemma 4.1 now
forces g∆ “ ∆1 and thus gx is in Ui g∆ as claimed.

To complete the proof, say x P Ui for some i and g “ gn ¨ ¨ ¨ g1 with gk P E
and gk ¨ ¨ ¨ g1x P Ui for each k P t1, ..., nu. If x is in Ui ∆ for some i-simplex
∆, then repeated applications of line (4.13) force gx to be in Ui g∆, so in
particular fpgxq P Vi g∆ X fpXq. As both fpgxq and fpxq are supported on
vertices in S, this in turn forces gS X S to be non-empty, and thus g is in
the finite set F from line (4.12) above. This shows that Γ ü X satisfies the
conditions in Definition 2.1 so we are done.
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Remark 4.14. In earlier versions of this work, we considered the following
definition. An action Γ ü X with X compact is d-amenable if for all finite
subsets E of Γ and all ε ą 0 there exists an pE, εq-equivariant map

f : X Ñ PdpΓq.

This definition is motivated by the notion of an amenable action, which
is the same definition without the extra restriction on d. We also said the
amenability dimension of an action is the smallest d such that the action is d-
amenable. This notion was used in recent work of Szabó, Wu, and Zacharias,
where they gave very interesting relations to Rokhlin-type conditions for
actions of residually finite groups: see [36], particularly Section 4.

Clearly a d-amenable action is d-BLR; it is not difficult to see that the
converse is true for torsion free groups, but false (for example) for finite
groups in general (take X a point, and Γ to a finite group of cardinality
larger than d). Thus in particular, Theorem 4.11 also implies that d-amenable
actions have dynamic asymptotic dimension at most d (and thus by our other
results, d-amenability has consequences for nuclear dimension).

5 Dynamic asymptotic dimension for groupoids

In this section we reformulate the definition of dynamic asymptotic dimension
for groupoids. Our main goal is to explore connections to coarse geometry
in Section 6, but also the extra generality seemed interesting for the results
in Section 8.

For us, groupoids are always locally compact and Hausdorff; we generally
leave these assumptions implicit from now on. We will also assume that
groupoids are étale, but do not leave this (less standard) assumption implicit.
Accessible, as well as reasonably self-contained and concise, introductions to
this class of groupoids and their associated C˚-algebras can be found in [29,
Section 2.3] and [6, Section 5.6].

We use the following notation for groupoids. A groupoid is denoted G,
and its unit space by Gp0q. We identify Gp0q with a closed and open subspace
of G in the canonical way. The range and source maps are denoted r, s : GÑ
Gp0q. An ordered pair pg, hq of elements from G is composable if spgq “ rphq,
and the composition is written gh in this case. The inverse of g P G is
denoted g´1.
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Definition 5.1. LetG be an étale groupoid. ThenG has dynamic asymptotic
dimension d P N if d is the smallest number with the following property: for
every open relatively compact subset K of G there are open subsets U0, ..., Ud
ofGp0q that cover spKqYrpKq such that for each i, the set tg P K | spgq, rpgq P
Uiu is contained in a relatively compact subgroupoid of G.

Note that we may equivalently ask that for each i, the subgroupoid Gi

generated by the set tg P K | spgq, rpgq P Uiu is relatively compact. It is often
convenient to note that this Gi is automatically open. This follows from the
next quite general (and presumably well-known) lemma, which will be used
several times in the remainder of the paper.

Lemma 5.2. Let G be an étale groupoid.

(i) If K, H are open (respectively compact, respectively relatively compact)
subsets of G, then

K ¨H :“ tkh P G | k P K,h P H, spkq “ rphqu

is open (respectively compact, respectively relatively compact).

(ii) If K Ď G is open, then the subgroupoid of G generated by K is also
open, and is itself an étale groupoid.

Proof. For part (i), assume first that K and H are open, and let kh be a
point of KH. As G is étale there are neighborhoods V Ď K of k and W Ď H
of h such that r and s both restrict to homeomorphisms on V and W . Define
V 1 :“ ps|V q

´1pspV q X rpW qq, W 1 :“ pr|W q
´1pspV q X rpW qq, and

U :“ tk1h1 | k P V 1, h P W 1, spk1q “ rph1qu;

note that U is a subset of KH. As s and r both restrict to homeomorphisms
on V 1 and W 1, r restricts to a homeomorphism from U to rpV 1q. In particular,
U contains an open neighborhood of kh, so we are done. Assume next that
K and H are compact. It is clear from the corresponding property for K
and H that any net in K ¨H has a convergent subnet, so K ¨H is compact.
Finally, assume that K and H are relatively compact. Clearly K ¨H Ď K ¨H,
and we have already shown that the latter set is compact.

For (ii), note that if H is any open subset of G then

Hn :“ thn ¨ ¨ ¨h1 | hk P H and sphkq “ rphk´1q for all k P t1, ..., nuu
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is open by (i). If K is open, then so too is K YK´1 Y rpKq Y spKq and the
subgroup generated by K is equal as a set to

8
ď

n“1

`

K YK´1
Y rpKq Y spKq

˘n

and thus open. An open subgroupoid of an étale groupoid is easily seen to
be itself étale, so this completes the proof.

We give a first, easy, example: it is a groupoid analogue of Remark 2.3,
parts (i) and (ii).

Example 5.3. A groupoid is locally finite if it is the union of open, relatively
compact subgroupoids. It is not difficult to check directly from Definition
5.1 that a groupoid has dynamic asymptotic dimension zero if and only if it
is locally finite in this sense.

In particular, if G “ Gp0q is just a space, then G has dynamic asymptotic
dimension zero.

We now show that Definition 5.1 generalizes our earlier definition for
group actions. An action Γ ü X gives rise to an associated transformation
groupoid Γ ˙ X as follows. To fix notation, recall that as a set Γ ˙ X is
defined by

Γ˙X :“ tpgx, g, xq | x P X, g P Γu.

Note that the projection onto the last two variables is a bijection from Γ˙X
to Γ ˆ X; Γ ˙ X is given the topology that makes this bijection a homeo-
morphism. The unit space of Gp0q is tpx, e, xq | x P Xu and the source and
range maps are given by

rpgx, g, xq “ gx, spgx, g, xq “ x.

Composition and inverse are defined by

pghx, g, hxqphx, h, xq “ pghx, gh, xq, pgx, g, xq´1
“ px, g´1, gxq

respectively.

Lemma 5.4. An action Γ ü X has dynamic asymptotic dimension d in
the sense of Definition 2.1 if and only if the corresponding transformation
groupoid G “ Γ ˙ X has dynamic asymptotic dimension d in the sense of
Definition 5.1.
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Proof. Say an action Γ ü X has dynamic asymptotic dimension d, and
let K be an open relatively compact subset of the transformation groupoid
Γ˙X. Any open relatively compact subset of G is contained in a (relatively
compact, open) set of the form tpgx, g, xq P G | x P K 1, g P Eu for some
finite subset E of Γ such that e P E and E “ E´1, and some open relatively
compact subset K 1 of X. Hence we may assume that K has this form. Let
U 10, ..., U

1
d be open subsets of Gp0q that cover K 1 and are such that the set

Fi :“

$

&

%

there exist x P U 1i and gn, ..., g1 P E such that
g P Γ g “ gn ¨ ¨ ¨ g2g1 and for each k P t1, ...,mu,

gk ¨ ¨ ¨ g1x P U
1
i

,

.

-

is finite for each i. Define Ui :“ U 1i X K 1, so U1, ..., Ud are open subsets of
Gp0q “ X that cover K 1. Then the subgroupoid of G generated by

tpgx, g, xq P K | x, gx, P Uiu

is contained in tpgx, g, xq P G | g P Fi, x P K
1u, and is thus relatively compact.

The converse can be proved in a very similar way.

6 Example - coarse spaces with finite asymp-

totic dimension

In this section we show that the coarse groupoid GpXq associated to a
bounded geometry coarse space X has dynamic asymptotic dimension d if
and only if X has asymptotic dimension d. This example (in the special case
X is the coarse space underlying a group Γ) was our original motivation, and
also motivates the terminology ‘dynamic asymptotic dimension’.

We recall the following definition: compare for example [30, Chapter 2].

Definition 6.1. Let X be a set. A coarse structure on X is a collection E
of subsets of X ˆX called controlled sets such that:

(i) the diagonal tpx, xq | x P Xu is contained in E ;

(ii) if E is in E and F is a subset of E, then F is in E ;

(iii) if E and F are in E , then their union E Y F is in E ;
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(iv) if E is in E then

E´1 :“ tpx, yq P X ˆX | py, xq P Eu

is in E ;

(v) if E and F are in E , then

E˝F :“ tpx, yq P XˆX | there exists z P X such that px, zq P E, pz, yq P F u

is in E .

A set X equipped with a coarse structure in called a coarse space.
A coarse space X has bounded geometry if for each controlled set E the

cardinals

sup
xPX

|ty P X | px, yq P Eu|, sup
xPX

|ty P X | py, xq P Eu|

are finite.

The reader should keep the following example of a coarse space in mind.
If pX, dq is a discrete metric space, a controlled tube is defined to be a set of
the form

E :“ tpx, yq P X ˆX | dpx, yq ă ru

for some r ě 0, and the controlled sets are defined to be those subsets E
of X ˆ X that are contained in a controlled tube. The bounded geometry
condition corresponds to the following assumption: for any r ą 0, there is a
uniform bound on the cardinality of all balls of radius r in X.

We recall the following definition, due originally to Gromov [14, Section
1.E] in the special case that the coarse structure comes from a metric as
above. See for example [30, Chapter 9], [24, Chapter 2], or [4, Section 12] for
more information.

Definition 6.2. Let X be a coarse space and E a controlled set for X. A
cover U “ tUiuiPI of X is:

(i) E-separated if whenever i ‰ j, Ui ˆ Uj X E “ ∅;

(ii) E-bounded if each set Ui ˆ Ui is contained in E.
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Definition 6.3. Let X be a coarse space. Then X has asymptotic dimension
d if d is the smallest number with the following property: for any controlled
set E there exists a controlled set F and a cover U “ tUiuiPI of X such that
U is F -bounded and such that U admits a decomposition

U “ U0 \ ¨ ¨ ¨ \ Ud

such that each Ui is E-separated.

Now, let X be a bounded geometry coarse space. Skandalis, Tu, and Yu
[34] (see also [30, Chapter 10]) associate a groupoid to X as follows. For each
controlled set E for X, let E denote its closure in the product βX ˆ βX of
the Stone-Čech compactification of X with itself. Define

GpXq :“
ď

EPE
E,

and equip GpXq with the weak topology coming from this union, i.e. a subset
U of GpXq is open if and only if its intersection with each E is open in the
natural compact topology on E. This is a locally compact Hausdorff topology
for which each E is a compact open subset of GpXq. It is not difficult to see
that if pω, ηq are in E, and pη, ζq are in F , then pω, ζq is in E ˝ F , whence
it follows that GpXq inherits a groupoid structure from the pair groupoid
structure on βX ˆ βX (its topology, however, is not the same as the one it
inherits from βX ˆ βX). The groupoid operations satisfy all the necessary
continuity axioms to show that GpXq is a (locally compact, Hausdorff) étale
groupoid.

Theorem 6.4. A bounded geometry coarse space X has asymptotic dimen-
sion d if and only if the associated coarse groupoid GpXq has dynamic asymp-
totic dimension d.

Moreover, if X has asymptotic dimension at most d, then GpXq has dy-
namic asymptotic dimension at most d in the following slightly stronger form:
for any open, relatively compact subset K of GpXq, there exists an open cover
tU0, ..., Udu of GpXqp0q such that the subset

tg P K | spgq, rpgq P Uiu

is contained in a compact open subgroupoid of GpXq.
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Proof. Assume first that GpXq has dynamic asymptotic dimension d. Fix
a controlled set E as in the definition of asymptotic dimension, which we
may assume contains the diagonal, and let K “ E, a compact open subset
of GpXq that contains the unit space GpXqp0q “ βX. Take an open cover
U0, ..., Ud of GpXqp0q “ βX with the properties in Definition 5.1 for this K,
so for each i P t0, ..., du the subgroupoid Gi generated by the set

tg P E | spgq, rpgq P Uiu

is relatively compact. In particular, by definition of the topology on GpXq
there exists a controlled set F Ď X ˆ X such that each Gi is contained in
F Ď GpXq. Fixing i for the moment, let „ be the equivalence relation on Ui
induced by Gi, so x „ y if there exists g P Gi with spgq “ x and rpgq “ y.
Write the equivalence classes for this relation as tU j

i | j P Jiu and define
Ui :“ tU j

i X X | j P Jiu to be the collection of equivalence classes for this
relation. Now let U “ U0 \ ¨ ¨ ¨ \ Ud be the collection of all these subsets of
X (which covers X as tU0, ..., Udu covers βX).

We claim that U , decomposed as U “ U0 \ ¨ ¨ ¨ \ Ud, has the properties
required by Definition 6.3. Indeed, for F -boundedness, note that the equiv-
alence relation induced on each U j

i XX by Gi is entirely contained in F (as
Gi is contained in F ). For E-separatedness, note that if for j ‰ k there was
some px, yq in pU j

i ˆ U
k
i q XE, then we would have that x „ y, contradicting

the fact that U j
i and Uk

i are distinct equivalence classes.
Conversely, say G has asymptotic dimension at most d. Let K be a

compact subset of GpXq. The definition of the topology on GpXq implies
that K Ď E for some controlled set E. Let U “ U0 \ ¨ ¨ ¨ \ Ud and F be as
in the definition of finite asymptotic dimension for this E. For each i, set

Ui :“
ğ

UPUi

U,

which is a compact open subset of βX; as U is a cover of X, tU0, ..., Udu is a
cover of βX. Note that for each i,

Gi :“
ğ

UPUi

U ˆ U

is a subgroupoid of the pair groupoid that is contained (as a set) in F , and
by continuity of the groupoid operations, the subgroupoid of GpXq generated
by

tg P E | rpgq, spgq P Uiu
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is contained in Gi, a subgroupoid of GpXq contained (as a set) in the compact
subset F . Hence the dynamic asymptotic dimension of GpXq is at most d.

The final statement is clear from the construction in the proof.

Finally in this section, we give two consequences. The first discusses
the relationship of the above to the Bartels-Lück-Reich conditions of Section
4; the second shows that groups of finite asymptotic dimension all admit
free, amenable, minimal actions on the Cantor set which have finite dynamic
asymptotic dimension.

Theorem 6.5. Let Γ be a discrete group. The following are equivalent:

(i) Γ admits an action Γ ü X on a compact space that is d-BLR with
respect to the family of finite subgroups.

(ii) Γ admits an action Γ ü X on a compact space with dynamic asymptotic
dimension at most d.

(iii) The canonical action of Γ on βΓ has dynamic asymptotic dimension at
most d.

(iv) Γ equipped with the canonical left-invariant coarse structure for which
the controlled sets are

E “ tE Ď Γˆ Γ | ts´1t P Γ | ps, tq P Eu is finiteu,

has asymptotic dimension at most d.

(v) The canonical action of Γ on βΓ is d-BLR with respect to the family of
finite subgroups.

Proof. The fact that (i) implies (ii) (for the same X) is Theorem 4.11.
For (ii) implies (iii), assume that Γ ü X is an action on a compact space

with dynamic asymptotic dimension at most d. Let Γ Ñ X be any orbit
map, and let φ : βΓ Ñ X be the canonical extension to the Stone-Čech
compactification of Γ. Pulling back covers along φ shows that Γ ü βΓ also
has dynamic asymptotic dimension at most d.

For (iii) implies (iv), note that the transformation groupoid Γ ˙ βΓ has
dynamic asymptotic dimension at most d by Lemma 5.4. On the other hand,
this transformation groupoid canonically identifies with the coarse groupoid
of Γ by [34, Proposition 3.4], so the result follows from Theorem 6.4.
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The fact that (iv) implies (v) is essentially due to Higson and Roe, and
very similar to the proof of Proposition 4.6. The result follows from combin-
ing the arguments of [18, Lemma 4.3] and [18, Section 3]: indeed, these give
an pE, εq-equivariant map βΓ Ñ PdpΓq for any finite E Ď Γ and any ε ą 0.

Finally, (v) implies (i) is trivial.

The following theorem is a result of combining Theorem 6.4 with ideas of
Rørdam and Sierakowski from [32, Section 6].

Theorem 6.6. Let Γ be a countably infinite discrete group with asymptotic
dimension d. Then Γ admits a free, minimal action on the Cantor set which
has dynamic asymptotic dimension at most d.

Proof. Using Theorem 6.5, the action of Γ on βΓ is d-BLR for the family F
of finite subgroups of Γ. Let

E1 Ď E2 Ď E3 Ď ¨ ¨ ¨

be a nested sequence of finite subsets of Γ such that Γ “
Ť

En. For each n, let
fn : βΓ Ñ Cn be a pEn, 1{nq-equivariant map to a pΓ,Fq simplicial complex
of dimension at most d. As βΓ is compact, we may assume by Remark 4.5
that the image of each fn is contained in a set of the form P pSnq X Cn,
where Sn is a finite subset of the vertex set of Cn. Hence, replacing Cn by
Cn X P pΓ ¨ Snq, we may assume that there are only finitely many Γ-orbits of
vertices of Cn, and thus in particular that the vertex set Vn of Cn is countable.

Now, let A denote a unital Γ-invariant C˚-subalgebra of l8pΓq. Let pA
denote the spectrum of A, which by Gelfand duality identifies with a quotient
space of βΓ such that the quotient map βΓ Ñ pA is equivariant. For each n,
write

fnpxq “
ÿ

vPVn

tvpxqv,

where each tv : βΓ Ñ r0, 1s is continuous. Define Ω1 :“ ttv | v P Vn, n P Nu,
which is a countable subset of l8pΓq. If A contains Ω1, then the action Γ ü pA

is d-BLR: indeed, the functions tv then descend to the quotient space pA of
βΓ, whence the maps fn : βΓ Ñ Cn descend to fn : pA Ñ Cn (this argument
is inspired by [17, Lemma 3.5]). On the other hand, [32, Lemma 6.4] shows
that there is a countable subset Ω2 of l8pΓq such that if A contains Ω2, then

the action of Γ on pA is free.
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Define Ω :“ Ω1 Y Ω2, a countable subset of l8pΓq. Rørdam and Sier-
akowski [32, Lemma 6.7] show there is a countable Γ-invariant collection of
projections P such that the C˚-algebra generated by P contains Ω. Let A
be the C˚-algebra generated by P and the unit of l8pGq. It follows from the

above discussion that pA is a Γ-space, and that the action of Γ is free and d-
BLR. Moreover, as A is unital and generated by countably many projections,
the space pA is compact, metrizable, and totally disconnected.

We now have that Γ admits a free, d-BLR action on a totally disconnected,
metrizable compact space Y :“ pA. Note that if Z is any non-empty closed
Γ-invariant subset of Y , then Z and the induced Γ action on it will still have
all these properties. Inclusion defines a partial order on the closed non-empty
Γ-invariant subsets of Y ; compactness implies that any descending chain for
this order has non-empty intersection, and thus Zorn’s lemma implies there
exists a minimal element X. It follows easily that the induced Γ action on
X is minimal. We now have that Γ admits a free, minimal, d-BLR action on
a totally disconnected, metrizable compact space X.

To complete the proof, it suffices to show that this X is a copy of the
Cantor set, and for this it suffices to show that it has no isolated points. Note
then that if x P X is isolated then the orbit of Γ ¨x is open, and thus XzΓ ¨x
is empty by minimality. As the action is free and Γ is infinite, the open
cover ttgxu | g P Γu of X “ Γ ¨ x has no finite subcover which contradicts
compactness. Hence no isolated point can exist, and we are done.

7 Partitions of unity

In this section we prove a technical result showing that dynamic asymptotic
dimension gives rise to partitions of unity which are ‘almost’ invariant in an
appropriate sense. This will be important in Section 8.

Proposition 7.1. Let G be an étale groupoid with compact unit space, and
with dynamic asymptotic dimension d. Then for any open relatively compact
subset K of G and any ε ą 0 there exists an open cover tU0, ..., Udu of rpKqY
spKq with the following properties.

(i) For each i, the set
tg P K | spgq, rpgq P Uiu

is contained in an (open and) relatively compact subgroupoid of G.
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(ii) For each x P rpKqYspKq, the ‘partial orbit’ spr´1pxqXKq is completely
contained in some Ui.

(iii) There exists a collection of continuous functions tφi : Gp0q Ñ r0, 1sudi“0

such that the support of each φi is contained in Ui, such that for all
x P rpKq Y spKq we have

řd
i“0pφipxqq

2 “ 1, and such that for any
g P K and each i

|φipspgqq ´ φiprpgqq| ă ε.

For the convenience of readers who are mainly interested in the case of
group actions on compact spaces, we spell out here what this says in the
special case where G is a transformation groupoid in the language of actions.
The proposition is not really any easier to prove in this special case, however.

Corollary 7.2. Let Γ ü X be an action with X compact, and with dynamic
asymptotic dimension d. Then for any finite subset E of Γ and any ε ą 0
there exists an open cover tU0, ..., Udu of X with the following properties.

(i) For each i, the set

"

g P Γ Dx P Ui and gn, ..., g1 P E such that g “ gn ¨ ¨ ¨ g1

and @k P t1, ..., nu, gk ¨ ¨ ¨ g1x P Ui

*

is finite.

(ii) For each x P X, the collection E ¨ x :“ tg´1x | g P Eu is completely
contained in some Ui.

(iii) There exists a collection of continuous functions tφi : X Ñ r0, 1sudi“0

on X such that the support of each φi is contained in Ui, such that
řd
i“0pφipxqq

2 “ 1 for all x P X, and such that for any g P E and each i

sup
xPX

|φipgxq ´ φipxq| ă ε.

The proof of Proposition 7.1 is related to that of Proposition 4.6. We
wanted to keep the two proofs separate for the convenience of readers who
are only interested in one or the other case, and as there are enough significant
differences that it did not seem possible to make a ‘combined’ proof that was
much shorter.

We start with a lemma.
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Lemma 7.3. Say G is an étale groupoid with dynamic asymptotic dimension
d. Then for any open relatively compact subset K of G there is a cover
tU0, ..., Udu of rpKq Y spKq by relatively compact open subsets of Gp0q such
that for each i, the set tg P K | spgq, rpgq P Uiu generates an (open and)
relatively compact subgroupoid of G, and moreover so that for each x P Gp0q

the set spr´1pxq XKq is completely contained in some Ui.

Proof. Replacing K with KYK´1YrpKqYspKq (which is open and relatively
compact as r and s are open, continuous maps), we may assume that K “

K YK´1 Y rpKq Y spKq. Define

K3 :“ tg P G | there are g1, g2, g3 P K such that g “ g1g2g3u,

which is again an open relatively compact subset of G by Lemma 5.2. Let
tV0, ..., Vdu be an open cover of rpK3q Y spK3q such that the subgroupoid Gi

of G generated by
tg P K3

| spgq, rpgq P Viu (7.4)

is relatively compact. For i P t0, ..., du, define

Ui :“ spK X r´1
pViqq X prpKq Y spKqq,

which is open and relatively compact. Note that as rpKq Y spKq Ď K, each
Ui contains Vi X prpKq Y spKqq; thus we have

d
ď

i“0

Ui Ě
d
ď

i“0

Vi X prpKq Y spKqq Ě prpK
3
q Y spK3

qq X prpKq Y spKqq

“ rpKq Y spKq.

It remains to show that for each fixed i, the set tg P K | spgq, rpgq P Uiu
generates a relatively compact subgroupoid of G. Indeed, say g is in the
subgroupoid generated by this set. Then (recalling that K “ K Y K´1 Y

rpKq Y spKq) there exists a finite sequence gn, ..., g1 of composable elements
from tg P K | spgq, rpgq P Uiu such that g “ gn ¨ ¨ ¨ g1. As for each k P t1, ..., nu
we have that spgkq P Ui, there exists hk P K such that rphkq P Vi, and
sphkq “ spgkq. Moreover, as spgnq P Ui, there exists hn`1 P K such that
sphn`1q “ spgnq and such that rphn`1q P Vi. For each k P t1, ..., nu, define

g1k :“ hk`1gkh
´1
k ,
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and note that g1k P tg P K3 | spgq, rpgq P Viu. On the other hand, g “
h´1
n`1g

1
n ¨ ¨ ¨ g

1
1h1. If Gi is the subgroupoid of G generated by the set in line

(7.4), it follows that g is in the subset

K¨Gi¨K :“ th P G | there are h0, h2 P K and h1 P Gi such that h “ h0h1h2u;

by relative-compactness of Gi and K, and Lemma 5.2, this set is relatively
compact, so we are done.

We need one more technical lemma before giving the proof of Proposition
7.1; in some sense it is an iterated version of Lemma 7.3 above.

Lemma 7.5. Say G is an étale groupoid with dynamic asymptotic dimension
d. Let K be an open relatively compact subset of G, and let N be a fixed
natural number. Then for each i P t0, ...du there is a nested collection

U
p0q
i Ď U

p1q
i Ď ¨ ¨ ¨ Ď U

pN`1q
i

of open, relatively compact subsets of Gp0q with the following properties.

(i) The collection tU
p0q
0 , ..., U

p0q
d u covers rpKq Y spKq.

(ii) For all i, n, U
pnq
i Ď U

pn`1q
i .

(iii) For all i, n,

spK X r´1
pU

pnq
i qq Ď U

pn`1q
i .

(iv) For all i, the set

tg P K | spgq, rpgq P U
pN`1q
i u

generates a relatively compact subgroupoid of G.

Proof. Replacing K with K Y K´1 Y rpKq Y spKq, we may assume that
K “ K YK´1 Y rpKq Y spKq. For each n, define

K
n

:“ tgn ¨ ¨ ¨ g1 | gk P K and spgk`1q “ rpgkq for all ku.

Note that K
n

is compact for all n by Lemma 5.2, and that K
n
Ď K

n`1

for all n by our assumption that K “ K Y K´1 Y rpKq Y spKq. As G is
locally compact, there exists an open, relatively compact subset K 1 Ď G that

32



contains K
N`1

. Let tV0, ..., Vdu be an open cover of rpK 1q Y spK 1q with the
properties in Lemma 7.3 for the open relatively compact set K 1. Replacing
each Vi with its intersection with rpK 1q Y spK 1q, we may assume that each
Vi is contained in rpK 1q Y spK 1q.

Now, for each i P t0, ...du and each n P t0, ..., N ` 1u, define

V
pnq
i :“ tx P Vi | spK

N`1´n
X r´1

pxqq Ď Viu.

As the sets K
n

are nested, this gives a nested sequence of subsets

V
p0q
i Ď V

p1q
i Ď ¨ ¨ ¨ Ď V

pN`1q
i

of Gp0q. As for each x P Gp0q, spr´1pxq XK 1q Ď Vi for some i, the collection

tV
p0q

0 , ...V
p0q
d u covers rpK 1qYspK 1q. We claim moreover that each V

pnq
i is open.

Indeed, if this does not happen, then we may find a net pxλq inGp0q converging

to some x P V
pnq
i such that for each λ there exists gλ P K

N`1´n
X r´1pxλq

with spgλq R Vi. As K
N`1´n

is compact we may assume by passing to a

subnet that pgλq converges to some g P K
N`1´n

. As r is continuous, g is in

K
N`1´n

X r´1pxq, and as Vi is open, spgq is not in Vi. This contradicts that

x is in V
pnq
i , so V

pnq
i is open as claimed.

We may now define the sets U
pnq
i . As the set rpK 1q Y spK 1q is compact, it

is normal. It follows that there are open subsets U
p0q
0 , ..., U

p0q
d of rpK 1qYspK 1q

such that U
p0q
i Ď V

p0q
i for each i and such that the collection tU

p0q
0 , ..., U

p0q
d u

covers rpKq Y spKq. Note that for each i,

spK X r´1pU
p0q
i qq Ď spK X r´1pU

p0q
i qq Ď spK X r´1pU

p0q
i qq Ď spK X r´1

pU
p0q
i qq

Ď spK X r´1
pV

p0q
i qq.

It is not difficult to see that this last set is contained in V
p1q
i , however. More-

over, U
p0q
i is contained in V

p0q
i Ď V

p1q
i by assumption. Hence by normality of

the compact set Vi, there exists an open set U
p1q
i containing spK X r´1pU

p0q
i qqY

U
p0q
i such that U

p1q
i Ď V

p1q
i . Continuing in this way, we see that

spK X r´1pU
p1q
i qq Ď V

p2q
i ,

and thus there is an open set U
p2q
i containing spK X r´1pU

p1q
i qq Y U

p1q
i , with

closure contained in V
p2q
i , and so on.
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The process above gives a nested sequence of open subsets

U
p0q
i Ď U

p1q
i Ď ¨ ¨ ¨ Ď U

pN`1q
i

for each i such that

spK X r´1pU
pnq
i qq Ď U

pn`1q
i and U

pnq
i Ď V

pnq
i

for all n. Note that each U
pnq
i is relatively compact as V

pnq
i Ď Vi Ď rpK 1q Y

spK 1q for all n. It remains to check properties (i) through (iv) from the
statement. Properties (i), (ii), and (iii) are obvious from the way we chose
our sets. Property (iv) follows as

tg P K | spgq, rpgq P U
pN`1q
i u Ď tg P K 1

| spgq, rpgq P Viu,

and the set on the right generates a relatively compact subgroupoid by choice
of the sets V0, ..., Vd.

Proof of Proposition 7.1. Let K be an open, relatively compact subset of G
and ε ą 0 be given. Replacing K with K Y K´1 Y rpKq Y spKq, we may
assume that K “ K´1, and that K contains its image under r and s. Let N
be any natural number larger than 2 such that p

?
2p1 `

?
d` 1qq{

?
N ă ε,

and let tU
pnq
i | i P t0, ..., du, n P t0, ..., N `1uu have the properties in Lemma

7.5. For each i “ 0, ..., d, set Ui “ U
pN`1q
i . Condition (i) from Lemma

7.5 combined with the assumptions from the first paragraph of that lemma
imply that tU0, ...Udu is an open cover of rpKqYspKq. Condition (ii) from the
statement of Proposition 7.1 follows condition (iii) from Lemma 7.5 and the

fact that tU
p0q
0 , ..., U

p0q
d u covers rpKqYspKq. Condition (i) from the statement

of Proposition 7.1 follows directly from condition (iv) from Lemma 7.5. It
remains to construct a partition of unity with the properties in condition (iii)
from the statement of Proposition 7.1.

For each i P t0, ..., du and n P t1, ..., Nu, let

ψ
pnq
i : Gp0q Ñ r0, 1s

be any continuous function which is constantly equal to one on U
pn´1q
i and

constantly equal to zero on Gp0qzU
pnq
i ; such functions exist by condition (ii)

from Lemma 7.5 and Urysohn’s lemma. For i P t0, ..., du set

ψi “
1

N

N
ÿ

n“1

ψ
pnq
i
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and define

φi “
ψi

max
!
b

řd
j“0 ψ

2
j , 1

) .

Note that condition (i) from Lemma 7.5 implies that for all x P rpKqYspKq,
there is at least one i P t0, ..., du such that ψipxq “ 1, whence

d
ÿ

i“0

pφipxqq
2
“ 1

for all x P rpKq Y spKq.
Fix now g P K and i P t0, ..., du; to complete the proof we must show

that
|φipspgqq ´ φiprpgqq| ă ε. (7.6)

For notational convenience, for each j P t0, ..., du, set U
pnq
j “ Gp0q for n ě

N ` 2. Define
M “Mj :“ mintn | rpgq P U

pnq
j u.

Note that

ψ
pnq
j prpgqq “

"

1 n ěM ` 1
0 n ďM ´ 1

and 0 ď ψprpgqq ď 1 whence

N ´ pM ` 1q

N
ď ψjprpgqq ď

N ´M

N
. (7.7)

Note also that condition (iii) from Lemma 7.5 combined with the fact that

K “ K´1 implies that spgq is in U
pM`1q
j zU

pM´2q
j whence

ψ
pnq
j pspgqq “

"

1 n ěM ` 2
0 n ďM ´ 2

;

as 0 ď ψ
pnq
j pspgqq ď 1 for all values of n, this forces

N ´ pM ` 2q

N
ď ψjpspgqq ď

N ´ pM ´ 1q

N
. (7.8)

Combining lines (7.7) and (7.8), we may conclude that

|ψjprpgqq ´ ψjpspgqq| ď
2

N
(7.9)
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One the other hand, at least one of the ψj is equal to one on each of spgq
and rpgq, and therefore

1 ď
d
ÿ

j“0

ψjprpgqq and 1 ď
d
ÿ

j“0

ψjpspgqq. (7.10)

Hence for our fixed choice of i P t0, ..., du and g P K,

|φiprpgqq ´ φipspgqq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ψiprpgqq
b

řd
j“0 ψ

2
j prpgqq

´
ψipspgqq

b

řd
j“0 ψ

2
j pspgqq

ˇ

ˇ

ˇ

ˇ

ˇ

and so

|φiprpgqq ´ φipspgqq| ď
1

b

řd
j“0 ψ

2
j prpgqq

|ψiprpgqq ´ ψipspgqq|

` |ψipspgqq|

ˇ

ˇ

ˇ

ˇ

ˇ

1
b

řd
j“0 ψ

2
j prpgqq

´
1

b

řd
j“0 ψ

2
j pspgqq

ˇ

ˇ

ˇ

ˇ

ˇ

.

(7.11)

Using lines (7.9) and (7.10) we have

1
b

řd
j“0 ψ

2
j prpgqq

|ψiprpgqq ´ ψipspgqq| ď
2

N
. (7.12)
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On the other hand,

|ψipspgqq|

ˇ

ˇ

ˇ

ˇ

ˇ

1
b

řd
j“0 ψ

2
j prpgqq

´
1

b

řd
j“0 ψ

2
j pspgqq

ˇ

ˇ

ˇ

ˇ

ˇ

“
1

b

řd
j“0 ψ

2
j prpgqq

1
b

řd
j“0 ψ

2
j pspgqq

ˇ

ˇ

ˇ

ˇ

ˇ

g

f

f

e

d
ÿ

j“0

ψ2
j pspgqq ´

g

f

f

e

d
ÿ

j“0

ψ2
j prpgqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

g

f

f

e

d
ÿ

j“0

ψ2
j pspgqq ´

g

f

f

e

d
ÿ

j“0

ψ2
j prpgqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

g

f

f

e

ˇ

ˇ

ˇ

d
ÿ

j“0

ψ2
j pspgqq ´

d
ÿ

j“0

ψ2
j prpgqq

ˇ

ˇ

ˇ

ď

g

f

f

e

d
ÿ

j“0

|ψjpspgqq ´ ψjprpgqq||ψjpspgqq ` ψjprpgqq|.

Using line (7.9) again thus gives

|ψipspgqq|

ˇ

ˇ

ˇ

ˇ

ˇ

1
b

řd
j“0 ψ

2
j prpgqq

´
1

b

řd
j“0 ψ

2
j pspgqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

c

4pd` 1q

N
. (7.13)

Combining lines (7.11), (7.12) and (7.13) therefore gives

|φiprpgqq ´ φipspgqq| ď
2

N
`

c

4pd` 1q

N
ď

c

2

N
`

c

4pd` 1q

N

“

?
2p1`

?
d` 1q

?
N

.

which is smaller than ε by choice of N .

8 Nuclear dimension

As usual, we adopt the conventions that all groupoids are locally compact
and Hausdorff. Recall that a groupoid G is free (such groupoids are also
called principal) if for each x P Gp0q, the isotropy group defined by

Gx
x :“ tg P G | spgq “ rpgq “ xu
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is trivial.
In this section, we study nuclear dimension for the reduced groupoid C˚-

algebra C˚r pGq of a free groupoid G of finite dynamic asymptotic dimension.
Modulo a minor technical assumption that is satisfied for example when
G is second countable, our main result—Theorem 8.6 below—says that the
nuclear dimension of C˚r pGq is bounded above by pd`1qpN`1q´1, where d is
the dynamic asymptotic dimension of G, and N is the covering dimension of
Gp0q. The result is inspired by (and implies) the Winter-Zacharias result that
the nuclear dimension of the uniform Roe algebra associated to a bounded
geometry metric space is at most the asymptotic dimension of the space [41,
Theorem 8.5]. See the end of the section for some other corollaries.

We first recall the definitions of nuclear dimension, covering dimension,
and of the reduced C˚-algebra of a groupoid. More details on nuclear dimen-
sion can be found in the paper of Winter and Zacharias [41] that introduces
the notion. We do not really need a definition of covering dimension, but
record it as there is some ambiguity about which definition one should use
for non-metrizable spaces. Accessible introductions to groupoid C˚-algebras,
that largely focus on the case of interest here, can be found in [29, Section
2.3] and [6, Section 5.6].

Definition 8.1. A completely positive map φ : A Ñ B is order zero if it
preserves orthogonality: in other words, if a1, a2 are positive elements of A
such that a1a2 “ 0, then φpa1qφpa2q “ 0.

Let A be a C˚-algebra. The nuclear dimension of A is the smallest
integer d P N with the following property. For any finite subset F of A and
any ε ą 0 there exist finite dimensional C˚-algebras F0, ..., Fd and contractive
completely positive maps

A
Φi

��

A

Fi

Ψi

??

such that each Ψi is order zero, and such that for all a P F ,

›

›

›

d
ÿ

i“0

pΨi ˝ Φiqpaq ´ a
›

›

›
ă ε}a}.
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Definition 8.2. Let X be a paracompact (Hausdorff) topological space. The
covering dimension of X is the smallest integer d P N such that every open
cover of X has a refinement V such that V splits into a disjoint union

V “ V0 \ ¨ ¨ ¨ \ Vd

such that whenever V ‰ W are distinct elements of some Vi, then V XW “ ∅.

The definition above is equivalent to several other commonly used defi-
nitions of covering dimension on the class of paracompact Hausdorff spaces:
compare for example [21, Proposition 1.6] or [26, Remark 4.5].

Definition 8.3. Let G be an étale groupoid. Let CcpGq denote the vector
space of compactly supported complex-valued functions on G, made into a
˚-algebra via the convolution product and adjoint defined by

pf1f2qpgq “
ÿ

g1g2“g

f1pg1qf2pg2q, f˚pgq “ fpg´1q.

For each x P Gp0q let l2ps´1pxqq denote the Hilbert space of square-summable
functions on the source fibre of x, and define a ˚-representation πx of CcpGq
on l2ps´1pxqq by

pπxpfqξqpgq “
ÿ

g1g2“g

fpg1qξpg2q.

The reduced groupoid C˚-algebra of G is the completion of CcpGq for the
norm

}f} :“ sup
xPGp0q

}πxpfq}.

Before we state the main theorem, we need one (ad-hoc) definition.

Definition 8.4. Let G be an étale groupoid, and H be an open subgroupoid
of G. The subgroupoid H is small if it is either compact, or second countable
and relatively compact.

A groupoid G has strong dynamic asymptotic dimension at most d if
for any open relatively compact subset K of G there exists an open cover
tU0, ..., Udu of spKq Y rpKq such that for each i, the set

tg P K | spgq, rpgq P Uiu

is contained in a small subgroupoid of G.

39



Remark 8.5. (i) A second countable groupoid with dynamic asymptotic
dimension at most d automatically has strong dynamic asymptotic di-
mension at most d. Thus readers who are only interested in the second
countable case can just ignore the word ‘strong’ in all the statements
below, and replace ‘small’ with ‘open and relatively compact’.

(ii) Theorem 6.4 implies that if X is a bounded geometry metric space
of asymptotic dimension d, then the coarse groupoid GpXq has strong
dynamic asymptotic dimension d.

(iii) Say G has strong dynamic asymptotic dimension d. Then Proposition
7.1, point (i) can be strengthened to say that tg P K | spgq, rpgq P Uiu
is contained in a small subgroupoid of G for each i: indeed, exactly the
same proof gives the stronger statement.

Theorem 8.6. Let G be a free, étale, groupoid. Assume that G has strong
dynamic asymptotic dimension at most d (Definition 8.4), and moreover that
the unit space Gp0q has topological covering dimension at most N .

Then the nuclear dimension of the reduced groupoid C˚-algebra C˚r pGq is
at most pN ` 1qpd` 1q ´ 1.

As well as the results subsumed by this theorem discussed in the corol-
laries at the end of this section, the reader might compare it to [36, Theorem
4.6], which deduces analogous estimates on nuclear dimension from Rokhlin
type conditions, and a condition related to asymptotic dimension. We do not
know the extent of the overlap between Theorem 8.6 above and [36, Theorem
4.6]; the relationship between the hypotheses of the two results seems worth
investigating more carefully.

Most of the rest of this section is devoted to the proof of Theorem 8.6;
we give some corollaries at the end. There are two main steps to the proof:
an analysis of small subgroupoids, and a reduction to these subgroupoids.

Small subgroupoids

The goal of this subsection is to prove the following fact about small sub-
groupoids.

Proposition 8.7. Let G be a free, étale groupoid with unit space. Let H be
a small (open) subgroupoid of G in the sense of Definition 8.4, and assume
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that its unit space Hp0q has covering dimension N . Then C˚r pHq has nuclear
dimension2 N .

We will prove this separately in the case where H is compact, and in the
case where H is relatively compact and second countable. Before this point
though, we need some basic definitions and lemmas that will be used in both
cases.

Definition 8.8. Let H be a (locally compact, Hausdorff) groupoid. Let „
be the equivalence relation on Hp0q induced by H, i.e. x „ y if there is h P H
with sphq “ x and rphq “ y. For x P Hp0q, let rxs denote its equivalence
class. For each m P N, define

Hp0q
m :“ tx P Hp0q

| |rxs| “ mu.

Finally, let Hp0q{H and H
p0q
m {H denote the spaces of equivalence classes

equipped with the quotient topology in inherited from Hp0q.

Lemma 8.9. Let H be a topological groupoid. Then the quotient map π :
Hp0q Ñ Hp0q{H is open.

Proof. Say U is an open subset of Hp0q. Then as s is continuous and r is
open, the set rps´1pUqq is open in Hp0q. However, it is clear that π´1pπpUqq “
rps´1pUqq, and thus by definition of the quotient topology, πpUq is open.

Lemma 8.10. Let G be an étale groupoid and H be a relatively compact
subgroupoid of G. Then there exists M P N such that H

p0q
m is empty for all

m ąM .

Proof. Note that as G is étale, each g P G is contained in an open neighbour-
hood U on which both r and s are injective. As the closure H is compact,
there are finitely many of these neighbourhoods covering H, say U1, ..., UM .
For each x P Hp0q we have |rxs| ď |ps|Hq

´1pxq|; as ps|Hq
´1pxq can intersect

each Ui at most once, however, |ps|Hq
´1pxq| is bounded above by M .

We will need the following classical theorem from dimension theory: see
[26, Proposition 2.16].

2As will be clear from the proof, one can replace nuclear dimension with decomposition
rank here, but we will not need this distinction.
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Proposition 8.11. Let X and Y be paracompact Hausdorff topological spaces.
Let π : X Ñ Y be a continuous open surjection such that for all y P Y , π´1pyq
is finite. Then the covering dimensions of X and Y are equal.

At this point, we specialize to the case of Proposition 8.7 where H is
compact; we will come back to the second countable and relatively compact
case later.

Lemma 8.12. Let H be a compact étale groupoid, and assume that the cov-
ering dimension of Hp0 is N . Then Hp0q{H is compact and Hausdorff, and
the covering dimension of Hp0q{H is exactly N .

Proof. As H is compact and Hp0q is a closed subspace of H, Hp0q is compact.
Hence Hp0q{H is a quotient space of a compact space, so compact. To see that
Hp0q{H is Hausdorff, note that the equivalence relation „ on Hp0q induced
by H is equal to

pr ˆ sqpHq Ď Hp0q
ˆHp0q,

and is thus compact and in particular closed as Hp0qˆHp0q is Hausdorff. It is a
standard fact that the quotient of a compact space by an equivalence relation
that is closed in this sense is Hausdorff: see for example [39, Proposition 2.1].
The claim on covering dimension now follows immediately from Proposition
8.11 applied to the quotient map π : Hp0q Ñ Hp0q{H.

Proof of Proposition 8.7 when H is compact. As H is compact and G is free,
H is a free and proper groupoid. Hence C˚r pHq is Morita equivalent to
CpHp0q{Hq by [23, Example 2.5 and Theorem 2.8]3. Hence the nuclear di-
mension of C˚r pHq is equal to the covering dimension of Hp0q{H by [41, Propo-
sition 2.4 and Corollary 2.8], and this is N by Lemma 8.12.

We now turn to the case of Proposition 8.7 when H is second countable
with compact closure. We start by recalling a result of Winter, which needs
the following notation. If A is a C˚-algebra then PrimpAq denotes the col-
lection of all kernels of irreducible representations of A, equipped with the
hull-kernel topology: this is defined by saying that a subset S of Prim(A) is
closed if there exists an ideal I of A such that S “ tJ P PrimpAq | J Ě Iu.
Recall moreover that for m P N, PrimmpAq denotes the subspace of PrimpAq
consisting of kernels of m-dimensional representations; by [8, Proposition

3The cited paper only covers the second countable case, but the second countability
assumption is unnecessary when the groupoid is étale: see [13].
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3.6.4], PrimmpAq is locally compact and Hausdorff when equipped with the
subspace topology.

Here then is a (weak version of) Winter’s result: see [40, Theorem 1.6].

Theorem 8.13. Let A be a separable C˚-algebra such that all irreducible
representations of A have dimension at most M for some M P N, and assume
that N is the maximal covering dimension of the spaces PrimmpAq for m P

t1, ...,Mu. Then the nuclear dimension of A is N .

Proof. Winter shows in [40, Theorem 1.6] that the decomposition rank of
C˚r pHq is exactly N under the stated assumptions. Decomposition rank
is (trivially - see [41, Remarks 2.2 (ii)]) an upper bound for the nuclear
dimension, and it follows from [41, Proposition 2.9 and Corollary 2.10] that
the nuclear dimension of C˚r pHq is bounded below by the maximum of the
covering dimensions of the spaces PrimmpC

˚
r pHqq.

Clearly the remaining case of Proposition 8.7 follows from this theorem
of Winter and the following result.

Lemma 8.14. Let H be a relatively compact, open subgroupoid of an étale
groupoid, and assume that the covering dimension of Hp0q is N . Then PrimpC˚r pHqq
is naturally homeomorphic to Hp0q{H, via a homeomorphism that takes PrimmpAq

to H
p0q
m {H. Moreover, the spaces H

p0q
m {H are locally compact and Hausdorff,

and the maximum of their covering dimensions is N .

For the proof of the lemma, we need a little more notation, and some pre-
liminary lemmas about ideals in groupoid C˚-algebras. Much of the following
material seems to likely to be standard for experts in groupoid C˚-algebras.
However, we could not find a reference for exactly what we needed4 so give
direct proofs below.

Definition 8.15. A subset U of Hp0q is invariant if whenever x P U and
x „ y, we have y P U .

We write OpHp0qq for the collection of all invariant open sets in Hp0q, and
IpC˚r pHqq for the collection of all ideals in C˚r pHq. Both of these sets are
equipped with the partial orders defined by inclusion.

4The discussion of [28, Pages 101-103] is closely connected to what follows, but we
could not follow the proof of [28, Proposition 4.6], which is the key point.
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Lemma 8.16. Let H be an étale groupoid. For a subset S of C˚r pHq, write
xSy for the ideal in C˚r pHq generated by S. Provisionally define maps by

Φ : IpC˚r pHqq Ñ OpHp0q
q, I ÞÑ PrimpI X C0pH

p0q
qq

and
Ψ : OpHp0q

q Ñ IpC˚r pHqq, U ÞÑ xC0pUqy.

Then Φ and Ψ are well-defined and ΦpΨpUqq “ U for all U P OpHp0qq.

Proof. It is clear that Ψ is well-defined. To see that Φ is well-defined, we
must show that the primitive ideal space I X C0pH

p0qq, which canonically
identifies with the open subset

tx P Hp0q
| there exists f P I X C0pH

p0q
q with fpxq ‰ 0u

of Hp0q, is invariant. Say then x is in this subset, and x „ y, so there is h P H
with rphq “ x and sphq “ y. Let f P I X C0pH

p0qq be such that fpxq ‰ 0.
Let U Q h be an open subset of H such that the restrictions of r and s to U
are injective. Let φ : U Ñ r0, 1s be any compactly supported function such
that φphq “ 1 (so in particular, φ is an element of C˚r pHq). Then φfφ˚ is in
C0pH

p0qq X I, and is non-zero on y; thus y is in the primitive ideal space of
C0pH

p0qq X I as required.
We now check that for U P OpHp0qq that ΦpΨpUqq “ U . This is equivalent

to showing that
xC0pUqy X C0pHq “ C0pUq;

as the inclusion xC0pUqy X C0pHq Ě C0pUq is obvious, it remains to show
the converse inclusion. Say then f is an element of xC0pUqy X C0pH

p0qq and
x P Hp0q is such that fpxq ‰ 0; we will show that x is in U . As f is in xC0pUqy
we may approximate it by elements of the algebraic ideal generated by C0pUq,
and thus in particular there must exist fi P CcpUq and φi, ψi P CcpHq for
i P t1, ..., nu such that

n
ÿ

i“1

pφifiψiqpxq ‰ 0.

Hence for some fixed i, we have pφifiψiqpxq ‰ 0. This says that
ÿ

g,h,kPH, x“ghk

φipgqfiphqψipkq ‰ 0.

As fi is supported in U , this implies that there must be h P U and k P H with
h “ rpkq and x “ spkq. Hence x „ h, and thus x is in U by invariance.
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Lemma 8.17. Let H be an open relatively compact subgroupoid of a free
étale groupoid G. With notation as in Lemma 8.16, we have ΨpΦpIqq “ I
for all I P IpC˚r pHqq.

Proof. Given an ideal I in C˚r pHq, we need to show that xI XC0pH
p0qqy “ I.

The inclusion I Ě xI X C0pH
p0qqy is obvious, so it remains to show that

xI X C0pH
p0qqy Ě I. Say then f is an element of I. Let ε ą 0 and f0 be an

element of CcpHq such that }f ´ f0}C˚r pHq ă ε (note that f0 need not be an
element of I); write K Ď H for the support of f0.

Fix for the moment x P Hp0q and write s´1pxq “ th1, ..., hmu (this set
is finite by Lemma 8.10). For each hi choose an open neighborhood Vi of
hi on which r and s restrict to homeomorphisms and which is such that
Vi X Vj “ ∅ for all i ‰ j. As rphiq ‰ rphjq for i ‰ j, we may further assume
that the sets rpV1q, ..., rpVmq are mutually disjoint. Set Vx “

Şm
i“1 spViq, an

open neighborhood of x.
We now have an open cover tVxuxPHp0q of Hp0q, and in particular of the

compact subset spKq. Hence by standard results about existence of partitions
of unity there is a finite collection tφi : Hp0q Ñ r0, 1s | i P t1, ..., nuu of
continuous functions such that each φi is supported in some compact subset
of some Vx, and such that

řn
i“1 φipxq “ 1 for all x P spKq. It follows that

f0p
řn
i“1 φiq “ f0 (where the product is the convolution on CcpHq). As the

norm of C˚r pHq restricts to the supremum norm on on the C˚-subalgebra
C0pH

p0qq this implies that

›

›

›
f
´

n
ÿ

i“1

φi

¯

´ f
›

›

›

C˚r pHq
ď }f ´ f0}C˚r pHq `

›

›

›

n
ÿ

i“1

φi

›

›

›

C˚r pHq
}f ´ f0}C˚r pHq ă 2ε.

As ε was arbitrary, to complete the proof it suffices to show that each element
fφi of I is actually in xI X C0pH

p0qqy.
Fix then φ “ φi, which is supported in a compact subset Kx of some Vx.

Say s´1pxq “ th1, ..., hmu, and write s´1pVxq “
Ům
j“1 Vj, where Vj is an open

neighborhood of hj such that s and r restrict to homeomorphisms on each
Vj, and so that the sets rpV1q, ..., rpVmq are mutually disjoint (the existence of
such Vj follows from the construction of Vx). For each j, let ψj : H Ñ r0, 1s be
a continuous function supported in Vj, and such that ψjps

´1pKxqXVjq “ t1u
(such a ψj exists by Urysohn’s lemma). Then

řm
j“1 ψ

˚
j fφ is an element of

C0pH
p0qq X I. Moreover, fφ “

řm
j“1 ψjψ

˚
j fφ, so we are done.
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Lemma 8.18. Say H is an open relatively compact subgroup of an étale
groupoid G. Then the correspondence from Lemmas 8.16 and 8.17 restricts
to a bijection between the collection of primitive ideals in C˚r pHq and the
collection of subsets of Hp0q of the form Hp0qzrxs for some x P Hp0q.

Proof. Note that by Lemma 8.10, any equivalence class rxs of some x P Hp0q

is finite, so closed. Hence all maximal open invariant sets are of the form
Hp0qzrxs for some x P Hp0q. Hence by Lemmas 8.16 and 8.17, the maximal
ideals in IpC˚r pHqq are exactly those of the form ΨpHp0qzrxsq for some x P
Hp0q. Maximal ideals are primitive by [8, Theorem 2.9.7 (ii)], so to complete
the proof, it suffices to prove that any non-maximal ideal in C˚r pHq is not
primitive.

We first claim that if rxs, rys are distinct equivalence classes in Hp0q, then
there exist U, V P OpHp0qq such that rxs Ď U , rys Ď V , and such that for
all z P U X V , |rzs| ě |rxs| ` |rys|. Indeed, let M be as in Lemma 8.10. Let
s : H Ñ Hp0q be the source map for H (not for the ambient groupoid G),
and write s´1pxq “ th1, ..., hmu and s´1pyq “ tg1, ..., gnu, where |rxs| “ m,
|rys| “ n (this is possible as the groupoid H is free). As rxs X rys “ ∅ and
H is Hausdorff there are open sets Ui Q gi and Vj Q hj such that s restricts
to a homeomorphism on each Ui and Vj, such that UiXUj “ ∅ “ ViXVj for
i ‰ j, and such that Ui X Vj “ ∅ for all i, j. Define

U0 :“
m
č

i“1

spUiq and V0 :“
n
č

j“1

spVjq

and set
U :“ rps´1

pU0qq and V :“ rps´1
pV0qq.

Clearly U and V are open and invariant, and rxs Ď U , rys Ď V . Consider
now z P U X V . Then s´1pzq must intersect all the sets Ui and Vj; as these
sets are disjoint, this forces m ` n ď |s´1pzq|, and as H is a free groupoid,
this forces

|rzs| “ |s´1
pzq| ě m` n “ |rxs| ` |rys|,

completing the proof of the claim.
Now, say V P OpHp0qq is not maximal, so there are rxs ‰ rys with

rxs, rys Ď Hp0qzV . Say without loss of generality |rxs| ě |rys| ě 1. The
claim above implies there exist Ux, Uy P OpHp0qq such that rxs Ď Ux and
rys Ď Uy, and so that for any z P Ux X Uy, |rzs| ą |rxs|. If Ux X Uy “ ∅,
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it is not difficult to see that the images of the ideals ΨpUxq and ΨpUyq are
non-zero and orthogonal in C˚r pHq{ΨpV q whence ΨpV q is not primitive5 as
required. On the other hand, if there is some z P Ux X Uy, then we may
repeat the process with rzs replacing rxs and rxs replacing rys. Using Lemma
8.10, this process must finish eventually to give orthogonal non-zero ideals
in C˚r pHq{ΨpV q, which is thus not primitive.

Proof of Lemma 8.14. It follows from Lemma 8.18 that the map

Hp0q
{H Ñ Prim(A), rxs ÞÑ ΨpHp0q

zrxsq

is a bijection. Lemmas 8.16 and 8.17, the definition of the quotient topology
on Hp0q{H, and the definition of the hull-kernel topology on PrimpAq imply
that this map is a homeomorphism. Moreover, it is not difficult to see that
C˚r pHq{ΨpH

p0qzrxsq is isomorphic to the C˚-algebra M|rxs|pCq of |rxs| ˆ |rxs|

matrices over C, whence it follows that this homeomorphism takes H
p0q
m {H

onto PrimmpAq.
Finally, note that the spaces PrimmpC

˚
r pHqq are locally compact and

Hausdorff ([8, Proposition 3.6.4]), and that for each m, PrimmpC
˚
r pHqq is

open in \nďmPrimnpC
˚
r pHqq ([8, Proposition 3.6.3]). Hence in particular

H
p0q
m is open in \nďmH

p0q
n (one could also prove this directly, of course). As

covering dimension does not increase on taking open subsets in our context
(this follows for example from [41, Proposition 2.5]), it follows inductively

that the covering dimension of H
p0q
m is at most N for each m; on the other

hand, it follows from [26, Proposition 5.2] (plus second countability) that
the covering dimension of Hp0q is at most the maximum of the covering di-
mensions of H

p0q
m for m P t1, ...,Mu. Hence the maximum of the covering

dimensions of H
p0q
m , m P t1, ...,Mu is exactly N . The claim on the cover-

ing dimension of H
p0q
m {H now follows from Proposition 8.11 applied to the

quotient map π : Hp0q Ñ Hp0q{H, which is open by Lemma 8.9.

Completion of the proof of Theorem 8.6

For this subsection, G is as in the assumptions of Theorem 8.6.

5If A is a C˚-algebra faithfully represented on a Hilbert space H, and I, J are non-zero
orthogonal ideals in A, then I ¨H and J ¨H are A-invariant non-zero subspaces of H; in
particular, the representation is reducible.
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For the next two lemmas, if φ and f are in CcpGq, let f ¨ φ denote their
pointwise product in CcpGq, i.e. pφ ¨fqpgq “ φpgqfpgq. Also, for a subset K of
G, we will write C˚KpGq for the subspace of C˚r pGq consisting of all elements
supported in K.

Lemma 8.19. Let K be a compact subset of G. Then there exists a constant
M ą 0 such that for all φ P C˚KpGq we have

}φ ¨ f}C˚r pGq ďM sup
gPG

|φpgq| }f}C˚r pGq.

Proof. With notation as in Definition 8.3, it suffices to prove that there exists
M ą 0 such that for all f P CcpGq and all x P Gp0q,

}πxpφ ¨ fq} ďM sup
gPG

|φpgq| }πxpfq}.

As G is étale, for each g P G there is an open neighbourhood U of G such
that both r and s are injective when restricted to U ; as K is compact, there
is a collection U1, ..., UM of open subsets of G with this property such that
K Ď

ŤM
i“1 Ui. We may write φ as a sum φ “ φ1 ` ¨ ¨ ¨ ` φM , where each φi

is supported in some Ui as above, and satisfies supgPG |φipgq| ď supgPG |φpgq|.
It thus suffices to prove that if ψ P CcpGq is supported in an open set U such
that r, s are injective when restricted to U , then

}πxpψ ¨ fq} ď sup
gPG

|ψpgq|}πxpfq}.

We now prove this. Indeed, computing for ξ P l2ps´1pxqq

}πxpψ ¨ fqξ}
2
“

ÿ

gPs´1pxq

ˇ

ˇ

ˇ

ÿ

g1g2“g

ψpg1qfpg1qξpg2q

ˇ

ˇ

ˇ

2

.

For each g P G, write gU for the unique element in r´1prpgqq X U (if this
exists). Then the sum above becomes

ÿ

tgPs´1pxq | r´1prpgqqXU‰∅u

|ψpgUqfpgUqξpg
´1
U gq|2

ď sup
gPG

|ψpgq|2 sup
!

|fpgq|2
ÿ

gPs´1pxq

|ξpgq|2
ˇ

ˇ

ˇ
g P

ď

sphq“x

s´1
prphqq

)

“ sup
gPG

|ψpgq|2 sup
!

|fpgq|2}ξ}2
ˇ

ˇ

ˇ
g P

ď

sphq“x

s´1
prphqq

)

.
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As the expression supt|fpgq|2 | g P Ysphq“xs
´1prphqqu is easily seen to be a

lower bound for }πxpfq}, we are done.

Lemma 8.20. For any ε ą 0 and compact subset K of G, there exists δ ą 0
such that if φ P CcpG

p0qq satisfies

sup
gPK

|φprpgqq ´ φpspgqq| ă δ,

then the commutator rf, φs has norm at most ε}φ}}f} for any f P CKpGq.

Proof. With assumptions as above, the commutator is the element of CcpGq
given by

rf, φspgq “ fpgqφpspgqq ´ φprpgqqfpgq

in other words, it is the function pφ˝s´φ˝ rq ¨f , where ‘¨’ denotes pointwise
multiplication. Fix now a compact set K 1 containing an open neighbourhood
of K, and let ψ be any function that agrees with φ ˝ s´φ ˝ r on K, vanishes
outside K 1 and is bounded above by supgPK |pφ ˝ s´ φ ˝ rqpgq|. Lemma 8.19
then implies that there exists M such that for any f P C˚KpGq

}rf, φs}C˚r pGq “ }ψ ¨ f}C˚r pGq ďM sup
gPG

|ψpgq|}f}C˚r pGq

ďM sup
gPK

|pφ ˝ s´ φ ˝ rqpgq|}f}C˚r pGq;

taking δ “ ε{M thus works.

Proof of Theorem 8.6. Let a finite subset F of C˚r pGq and ε ą 0 be given.
As CcpGq is dense in C˚r pGq we may assume that F is a subset of CcpGq;
let K be a compact subset of G such that K “ K´1 and such that each

element f P F is supported in K. Let ČC˚r pGq denote the unitization of

C˚r pGq, and let ČC˚KpGq denote the closed subspace of ČC˚r pGq spanned by

C˚KpGq and the identity of ČC˚r pGq; as K “ K´1, this is an operator subsystem

of ČC˚r pGq. Using Proposition 7.1 (see also Remark 8.5 part (iii)), there exists
a collection tφi : Gp0q Ñ r0, 1s | i P t0, ..., duu of continuous compactly
supported functions on Gp0q with the following properties:

(i) for each x P rpKq Y spKq we have
řd
i“0 φ

2
i pxq “ 1;

(ii) for each i there is a small open subgroupoid Hi of G such that for any

f P ČC˚KpGq, the element φifφi is in contained in the sub-C˚-algebra
C˚r pHiq of C˚r pGq;
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(iii) for each i and g P K,

|φiprpgqq ´ φipspgqq| ă
ε

2pd` 1q
.

From the third point above and Lemma 8.20 we have

}rf, φis} ă
ε

2pd` 1q
}f} (8.21)

for any f P C˚KpGq, so in particular for all f P F .
Now, for each i P t0, ..., du, the formula

Φi : ČC˚KpGq Ñ C˚r pHiq, f ÞÑ φifφi

defines a contractive completely positive map. Let

Ψi : C˚r pHiq Ñ C˚r pGq

be the canonical inclusion ˚-homomorphism. For each i P t0, ...du we now
have a triangle of maps

ČC˚KpGq
Φi

$$

C˚r pGq

C˚r pHiq

Ψi

::
, (8.22)

where each Φi is contractive and completely positive, and each Ψi is a ˚-
homomorphism, so in particular order zero. Moreover, for every f P F

d
ÿ

i“0

ΨipΦipfqq “
d
ÿ

i“0

φifφi “
d
ÿ

i“0

φ2
i f `

d
ÿ

i“0

φirf, φis “ f `
d
ÿ

i“0

φirf, φis,

whence line (8.21) implies that

›

›

›

d
ÿ

i“0

ΨipΦipfqq ´ f
›

›

›
ă ε{2

for all f P F .
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On the other hand, we have already shown that each C˚r pHiq has nuclear

dimension at most the covering dimension of H
p0q
i in Proposition 8.7, and

this is at most N as covering dimension does not increase under taking open
subsets (this follows for example from [41, Proposition 2.5]). Combining the
triangle in line (8.22) with approximations to each C˚r pHiq arising from the
definition of nuclear dimension gives triangles

ČC˚KpGq
Φij

""

C˚r pGq

Fij

Ψij

<<
, i P t0, ...du, j P t0, ..., Nu

where each Φij is contractive and completely positive, each Ψij is contractive
and order zero, each Fij is a finite dimensional C˚-algebra, and

›

›

›

d
ÿ

i“0

N
ÿ

j“0

ΨijpΦijpfqq ´ f
›

›

›
ă ε

for all f P F . Finally, the finite dimensional version of Arveson’s extension
theorem (see for example [6, Section 1.6]) implies that each Φij extends to a
contractive completely positive map

Φij : ČC˚r pGq Ñ Fij,

and restricting each of these maps to C˚r pGq gives approximating triangles

C˚r pGq
Φij

##

C˚r pGq

Fij

Ψij

;;
, i P t0, ...du, j P t0, ..., Nu

as required by the definition of nuclear dimension pd` 1qpN ` 1q ´ 1.

Consequences

Finally, we spell out a few consequences. Many of these are known results,
but we think that combining the proofs under one common dynamical frame-
work has some interest.

The first result is much easier to check directly! See Winter [41, Remark
2.2 (iii)] and Kirchberg-Winter [21, Example 4.1]; nonetheless, it seemed
interesting that it fits directly into our framework.
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Corollary 8.23. Separable AF C˚-algebras have nuclear dimension zero.

Proof. Renault [28, Proposition III.1.15] has shown that any (separable) AF
C˚-algebra arises as the C˚-algebra of a locally finite groupoid (in the sense
of Example 5.3) with unit space of covering dimension zero. The result thus
follows directly from Example 5.3 and Theorem 8.6.

The next corollary is due to Winter-Zacharias: see [41, Section 8].

Corollary 8.24. Let X be a bounded geometry coarse space of asymptotic
dimension d. Then the uniform Roe algebra C˚upXq has nuclear dimension
at most d.

Proof. The uniform Roe algebra of X is naturally isomorphic to the reduced
groupoid C˚-algebra of the coarse groupoid GpXq: see [30, Proposition 10.29]
for a proof. The result now follows on combining Theorem 6.4, Theorem 8.6
(see also Remark 8.5, part (ii)), and the fact that the unit space of GpXq is
βX, which has covering dimension zero.

The next corollary is due to Toms-Winter [38, Section 3].

Corollary 8.25. Let Z ü X be a minimal action of Z on an infinite sec-
ond countable compact space X of covering dimension N . Then the nuclear
dimension of CpXq ¸r Z is at most 2N ` 1.

Proof. Combine Theorem 3.1, Lemma 5.4, Theorem 8.6, and the well-known
(and easily checked) fact that the reduced groupoid C˚-algebra of a trans-
formation groupoid Γ˙ Y identifies naturally with CpY q ¸r Γ.

It is worth noting explicitly that the proofs of Corollary 8.24 and Corollary
8.25 in the original references given above are quite similar to our proof of
Theorem 8.6: all involve constructing ‘almost invariant’ partitions of unity,
and using these to ‘cut down’ to subhomogeneous C˚-algebras whose nuclear
dimension can be directly estimated. This only became apparent to us ‘after
the fact’, but we hope it helps to clarify how this style of argument that
estimates nuclear dimension from geometric and / or dynamic assumptions
is built up.

The following result seems to be new as stated. Note however that if
Γ ü X is a minimal, free, amenable action of a non-amenable group on
the Cantor set, then CpXq ¸r Γ is a Kirchberg algebra in the UCT class;
the main result of [33] (see also [5]) thus implies that the nuclear dimension
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of CpXq ¸r Γ is one. As any exact (non-amenable) group admits such an
action (see [32, Theorem 6.11]), and as finite asymptotic dimension implies
exactness (see [18, Lemma 4.3] and [25]) but not conversely, the corollary
below is not optimal, neither with respect to the class of groups covered, nor
with respect to the estimate on nuclear dimension.

Corollary 8.26. Let Γ be a countable discrete group with finite asymptotic
dimension. Then Γ admits a minimal, free action on the Cantor set X
such that CpXq¸r Γ has nuclear dimension bounded above by the asymptotic
dimension of Γ.

Proof. Combine Lemma 5.4, Theorem 6.6, Theorem 8.6, and again that the
reduced groupoid C˚-algebra of a transformation groupoid Γ ˙ Y identifies
naturally with CpY q ¸r Γ.

We should note that there are many other results in the literature that
give estimates on nuclear dimension or other C˚-algebraic regularity prop-
erties based on conditions on actions: see for example [35, 19, 36, 20, 11].
Many of these results go further than ours in at least some ways: for ex-
ample, [35] proves fairly general finite dimensionality results for Zn-actions,
[20] treats non-free Z-actions, [11] treats some Z-actions on non-finite dimen-
sional spaces, and several works deal with some actions on noncommutative
C˚-algebras. It would be interesting to clarify the relationships holding be-
tween the various conditions involved in these results and ours.

The final result is not strictly a ‘corollary’ as such, but follows from ex-
actly the same method of proof; it does not require any separability assump-
tions as these were only used in the above in the appeal to Theorem 8.13,
and to avoid complications from general topology with respect to dimension
theory. It is no doubt possible to prove it more directly.

Corollary 8.27. Let G be an étale groupoid with compact unit space, and
with finite dynamic asymptotic dimension. Then G is amenable.

Proof. The method of proof of Theorem 8.6 implies in particular that C˚r pGq
is nuclear (whether or not the unit space of G is finite dimensional). Hence
G is amenable by [6, Theorem 5.6.18].
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