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Abstract. Let A and B be countable discrete groups and let Γ = A ∗ B be their free

product. We show that if both A and B are uniformly embeddable in a Hilbert space then

so is Γ. We give two different proofs: the first directly constructs a uniform embedding of

Γ from uniform embeddings of A and B; the second works without change to show that if

both A and B are exact then so is Γ.

1. Intoduction

The concept of uniform embedding into Hilbert space was introduced by Gromov [Gro93].

It plays an important role in the study of the Novikov higher signature conjecture [FRR95,

Yu00, STY00].

Let X be a countable discrete metric space and let d denote its metric; let H be a separable

and infinite-dimensional Hilbert space. A map F : X −→ H is a uniform embedding [Gro93]

if there exist non-decreasing functions ρ1 and ρ2 from R+ = [0,∞) to R such that

(1) ρ1(d(x, y)) ≤‖ F (x) − F (y) ‖≤ ρ2(d(x, y)), for all x, y ∈ X, and

(2) limt→+∞ ρi(t) = +∞, for i = 1, 2.

The discrete metric space X is uniformly embeddable if it admits exists a uniform embedding.

A countable discrete group Γ is exact if the functor given by the reduced crossed product

with Γ converts a short exact sequence Γ-C∗-algebras into a short exact sequence of C∗-

algebras. Equivalently, the functor given by spatial tensor product with the reduced C ∗-

algebra of Γ converts one short exact sequence of C∗-algebras into another. The class of

exact groups is closed under a number of operations [KW99], including the formation of free

products (both with and without amalgam) [Dyk99, Dyk00].
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Theorem. Let A and B be countable discrete groups and let Γ = A∗B be their free product.

If both A and B are uniformly embeddable in a Hilbert space then so is Γ; if both A and B

are exact then so is Γ.

We discuss the theorem from several different perspectives. We first give a direct proof

of the uniform embeddability result; given uniform embeddings of the factors A and B we

explicitly construct the required uniform embedding of Γ. Subsequently, relying on recent

characterizations of uniform embeddability and exactness [GK02, Oza00] we give a unified

proof of both statements in the theorem. Although the statement concerning exactness is

known, our proof is more elementary than and unrelated to the original proof of Dykema

and its successive refinements [Dyk99, Dyk00].

The theorem leaves open the question of whether a free product A ∗G B with non-trivial

amalgamation is uniformly embeddable in a Hilbert space if each of the factors A and B are.

Indeed, this is proven by Dadarlat-Guentner [DG02].

2. Preliminaries

We recall some elementary facts about length functions and metrics on discrete groups

and free products. An integer valued function ` on a group G is a length function if

(1) `(g) = `(g−1) ≥ 0 for all g ∈ G,

(2) `(e) = 0,

(3) `(gh) ≤ `(g) + `(h), for all g, h ∈ G.

A length function ` is non-degenerate if `(g) = 0 implies that g = e. For any non-degenerate

length function ` on G, we define the associated metric d on G by d(g, h) = `(g−1h), for all

g, h ∈ G.

A length function ` is proper if `−1(S) is a finite set for every finite subset S of N. A group

G admits a proper and nondegenerate length function if and only if it is countable.

Remark. Although we do not require it, we point out that uniform embeddability of a

countable discrete group G, equipped with a metric associated to a proper and nondegenerate

length function, does not depend on the choice of the length function.

Next, we recall some elementary facts about free products. Let A and B be countable

discrete groups and let Γ = A ∗ B be their free product. Every element g ∈ Γ is uniquely

expressed in normal form as a reduced word g = x1 · · · xp, where it is understood that

xi ∈ A ∪ B, xi 6= e and if xi ∈ A (or B) then xi+1 ∈ B (or A), as appropriate.



UNIFORM EMBEDDABILITY AND EXACTNESS OF FREE PRODUCTS 3

Let `A and `B be proper non-degenerate integer valued length functions on A and B,

respectively. Define an integer valued function ` = `Γ on Γ by

`Γ(g) =
n∑

1

`A(ai) +
n∑

1

`B(bi),

where we have written g = a1b1 . . . anbn as a product without cancellation and ai ∈ A,

bj ∈ B. It is easy to see that `Γ is a proper non-degenerate length function. Let dΓ be the

metric associated to `Γ. Quite explicitly, if g, g′ ∈ Γ we write g and g′ as products without

cancellation,

g = hxx1 · · · xn

g′ = hx′ x′
1 · · · x′

m

(1)

where h is the common part of g and g′, x 6= x′ ∈ A (or B) and x1, . . . , xn are alternately

elements of B and A (or A and B) and similarly for x′
1, . . . , x

′
m, as is consistent with normal

form expressions. (We allow the degenerate cases (i) h = e, x 6= x′ and (ii) h = x = x′ = e;

observe that in (ii) one of x1 and x′
1 is from A whereas the other is from B.) Having done

so, and with the convention that empty sums are zero, we obtain

dΓ(g, g′) =
n∑

1

`A,B(xi) + dA,B(x, x′) +
m∑

1

`A,B(x′
j), (2)

where we have written `A,B to mean `A or `B as appropriate, and similarly for dA,B. (In the

degenerate case h = x = x′ = e the middle term does not appear.) Observe that, since our

length functions are integer valued, the number of non-zero terms in this expression is not

greater than dΓ(g, g′).

3. Construction of an Embedding

Given uniform embeddings of A and B we explicitly construct a uniform embedding of

their free product Γ. For the construction we require two lemmas.

Lemma 1. If a countable discrete metric space X is uniformly embeddable into Hilbert

space, then there exists a uniform embedding F : X −→ H and, for i = 1, 2, non-decreasing

functions ρi : R+ → R such that

(1) ρ1(d(x, y)) ≤‖ F (x) − F (y) ‖≤ ρ2(d(x, y)), for all x, y ∈ X,

(2) limt→+∞ ρi(t) = +∞ for i = 1, 2,

(3) ρ1(1) ≥ 1.
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Proof. Let F̃ : X −→ H be a uniform embedding and, for i = 1, 2, let ρ̃i be nondecreasing

functions on R+ satisfying

(1) ρ̃1(d(x, y)) ≤‖ F̃ (x) − F̃ (y) ‖≤ ρ̃2(d(x, y)) for all x, y ∈ X,

(2) limt→+∞ ρ̃i(t) = +∞.

We define another uniform embedding as follows

F : X −→ H ⊕ l2(X), F (x) = F̃ (x) ⊕ δx,

where δx is the Dirac function at the point x. Let

ρ1(t) =





0, when t = 0;
√

(ρ̃1(t))2 + 1, when t > 0,

and

ρ2(t) =
√

(ρ̃2(t))2 + 2.

It is easy to verify that ρ1 and ρ2 satisfy the desired conditions. �

Lemma 2. If ρ(t) is non-decreasing function satisfying limt→+∞ ρ(t) = +∞ and ρ(1) ≥ 1,

then there exists a non-decreasing function ρ̃(t) such that limt→+∞ ρ̃(t) = +∞ and such that

for all n ∈ N and (ti)
n
1 ∈ N we have

n∑

i=1

ρ(ti) ≥ ρ̃

(
n∑

i=1

ti

)
.

Proof. Define ρ̃(t) = min

(√
t

2
, ρ

(√
t

2

))
. The only non-trivial condition to check is that ρ̃

satisfies the above inequality. Let n and ti be as in the statement; denote N =
∑n

i=1
ti.

Case n ≤
√

N
2

: In this case there exists a natural number i0 ≤ n such that ti0 >
√

N
2

;

otherwise
n∑

i=1

ti ≤
√

N

2

√
N

2
=

N

4
< N,

contradicting the assumption. Therefore

n∑

i=1

ρ(ti) ≥ ρ(ti0) ≥ ρ

(√
N

2

)
= ρ

(√∑n

i=1
ti

2

)
≥ ρ̃

(
n∑

i=1

ti

)
.
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Case n >
√

N
2

: In this case we have

n∑

i=1

ρ(ti) >

√
N

2
=

√∑n

i=1
ti

2
≥ ρ̃

(
n∑

i=1

ti

)
,

since ρ(1) ≥ 1 and
∑n

i=1
ti = N . �

Proof of the Theorem (embeddability). Let A and B be countable discrete groups. Equip A,

B and Γ with proper non-degenerate length functions as described above. Denote by WA

the set of those elements of Γ whose expression as a reduced word begins with A; similarly

WB. By convention e is an element of both WA and WB. Notice that the union WA ∪ WB

is Γ and that the intersection WA ∩ WB is { e }.
Assume that A and B are uniformly embeddable and let FA : A −→ H and FB : B −→

HB be uniform embeddings. By Lemma 1, we can assume that there are non-decreasing

functions ρ1 and ρ2 with limt→+∞ ρi(t) = +∞, i = 1, 2, such that ρ1(1) ≥ 1 and such that

ρ1(d(a, a′)) ≤‖ FA(a) − FA(a′) ‖≤ ρ2(d(a, a′)),

ρ1(d(b, b′)) ≤‖ FB(b) − FB(b′) ‖≤ ρ2(d(b, b′)),

for all a, a′ ∈ A and b, b′ ∈ B. Adjusting each of FA and FB by a unitary isomorphism if

necessary we further assume that HB = H, and that FA(e) = FB(e) = 0.

Define a new Hilbert space HΓ by

HΓ =

(
⊕

WA

H
)

⊕
(
⊕

WB

H
)

.

Observe that HΓ is not quite the direct sum of copies of H indexed by the elements of Γ; an

element of HΓ has a component in H at every element of the disjoint union of WA and WB.

We write an element x ∈ HΓ as x = xA ⊕ xB where xA = ⊕h∈WA
xh and xB = ⊕h∈WB

xh,

and record the fact that for x, y ∈ HΓ we have

‖ x − y ‖2=
∑

h∈WA

‖ xh − yh ‖2 +
∑

h∈WB

‖ xh − yh ‖2 .

Next define a uniform embedding F : Γ −→ HΓ. We define F (e) = 0. If g is a non-identity

element of Γ write g as a reduced word g = x1 · · · xp, where the xi 6= e are alternately elements

of A and B; for definiteness in the subsequent formula we assume that x1 ∈ A. In this case,

the components of F (g) at elements of WB will be zero; its components at elements of WA
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are defined, with the convention that an empty product is e, as follows:

F (g)A =
⊕

h∈WA

F (g)h, F (g)h =





FA(x2k+1), ∃k ≥ 0 such that h = x1 · · · x2k

FB(x2k), ∃k ≥ 1 such that h = x1 · · · x2k−1

0, otherwise.

In particular, F (g)e = FA(x1), F (g)x1
= FB(x2), F (g)x1x2

= FA(x3), . . . . Note that the

component of F (g) at h ∈ WA is non-zero precisely when h 6= g and the reduced word of h

is an initial segment (possibly empty) of the reduced word of g. A similar formula is used

and similar remarks apply when the reduced word expression of g begins with an element of

B.

It remains to show that F is indeed a uniform embedding. Let g, g ′ ∈ Γ and write

g = hxx1 · · · xn and g′ = hx′x′
1 · · · x′

m as products without cancellation as in (1). We have,

with the convention that empty sums are zero:

‖F (g) − F (g′)‖2 =
n∑

1

‖FA,B(xi)‖2 + ‖FA,B(x) − FA,B(x′)‖2 +
m∑

1

‖FA,B(x′
j)‖2, (3)

where we have written FA,B to mean either FA or FB as appropriate. (In the case h =

x = x′ = e the middle term does not appear.) Considering this expression we bound

‖F (g) − F (g′)‖2 above by

‖F (g) − F (g′)‖2 ≤
n∑

1

ρ2
2(`A,B(xi)) + ρ2

2(dA,B(x, x′)) +
m∑

1

ρ2
2(`A,B(x′

j))

≤ dΓ(g, g′)ρ2
2(dΓ(g, g′)),

recalling that, since our length functions are integer valued, the number of non-zero terms

on the right is not greater than dΓ(g, g′). Defining η2(t) =
√

tρ2(t) we therefore have

‖ F (g) − F (g′) ‖≤ η2(dΓ(g, g′)).

Again considering (3) we bound ‖F (g) − F (g′)‖2 below by

‖ F (g) − F (g′) ‖2≥
n∑

1

ρ2
1(`A,B(xi)) + ρ2

1(dA,B(x, x′)) +
m∑

1

ρ2
1(`A,B(x′

j)).

Define η1(t) =
√

ρ̃(t), where ρ̃ is as in Lemma 2 applied to ρ = ρ2
1. By Lemma 2, we obtain

‖ F (g) − F (g′) ‖≥ η1(dΓ(g, g′)). �
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4. Uniform Embeddability and Exactness

We will use the following characterizations of uniform embeddability and exactness [GK02,

Oza00]. A countable discrete group Γ is uniformly embeddable if and only if for every ε > 0

and every C > 0 there exists a Hilbert space valued function ξ : Γ → H, (ξa)a∈Γ such that

‖ξa‖ = 1 and

(1) ‖ξa − ξb‖ < ε if d(a, b) ≤ C

(2) for all ε̂ > 0 there exists R > 0 such that |〈 ξa, ξb 〉| < ε̂ if d(a, b) ≥ R.

A countable discrete group Γ is exact if and only if for every ε > 0 and every C > 0 there

exists a Hilbert space valued function ξ : Γ → H, (ξa)a∈Γ such that ‖ξa‖ = 1 and

(1) ‖ξa − ξb‖ < ε if d(a, b) ≤ C

(2) there exists R > 0 such that 〈 ξa, ξb 〉 = 0 if d(a, b) ≥ R

We refer to the conditions (1) and (2) as the convergence and support conditions , respectively.

From the perspective of these conditions, uniform embeddability and exactness appear

to be very similar. Indeed, based on these characterizations we give below a unified proof

of both statements in the theorem. Further, as one might expect, the class of uniformly

embeddable groups shares, in nearly every case, the closure properties of the class of exact

groups; a systematic treatment of these ideas appears elsewhere [DG02].

In the proof of the theorem we require one preliminary result. A tree T consists of two sets,

a set V of vertices and a set E of edges, together with two endpoint maps E → V associating

to each edge its endpoints. Every two vertices are connected by a unique geodesic edge path,

that is, one without backtracking. It is convenient to define a metric on E by

dT (e, f) =

{
the number of vertices on the

unique path in T from e to f .

Observe that dT (e, f) is simply half the number of edges on the unique path from e to

f viewed as vertices in the first barycentric subdivision of T . The following lemma is a

straightforward adaptation to the present situation of a well-known construction (compare

[Yu00]).

Lemma 3. Let T be a tree. For every N ∈ N there exists a Hilbert space valued function

τN : E → H such that ‖τN,e‖ = 1, and

(1) if dT (e, f) ≥ 2N then 〈 τN,e, τN,f 〉 = 0,

(2) ‖τN,e − τN,f‖2 ≤ 2dT (e, f)/N .
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Proof. Let H = l2(V ) ⊕ l2(N+) and let v̂ be a fixed vertex in V . Define

τN,e =





1√
N

(
δve,1

+ · · · + δve,N

)
⊕ 0, N ≤ k

1√
N

{(
δve,1

+ · · · + δve,k

)
⊕ (δ1 + · · · + δN−k)

}
, N > k

where ve,1, . . . , ve,k = v̂ are the vertices along the unique path from e to v̂. The assertions

are easily verified. �

Proof of the Theorem (embeddability and exactness). We concentrate on the statement about

uniform embeddability; nevertheless, our proof applies equally well to the statement concern-

ing exactness, on which we comment briefly at the end. Let ε > 0 and C > 0 be given. As in

the characterization of uniform embeddability above obtain a Hilbert space valued function

α : A → H such that ‖αa‖ = 1, and

(1) ‖αa − αa′‖ < ε/2C, if `A(a−1a′) ≤ C,

(2) ∀ε̂ > 0 ∃R > 0 such that |〈αa, αa′ 〉| < ε̂, if `A(a−1a′) ≥ R.

Similarly obtain a Hilbert space valued function β : B → HB. It is convenient to assume,

as we may by applying an appropriate unitary operator HB → H, that β : B → H satisfies

αe = βe and

(1) ‖βb − βb′‖ < ε/2C, if `B(b−1b′) ≤ C,

(2) ∀ε̂ > 0 ∃R > 0 |〈 βb, βb′ 〉| < ε̂, if `B(b−1b′) ≥ R.

We view H as a pointed Hilbert space with distinguished vector ω = αe = βe.

Using the Bass-Serre tree TΓ of Γ we define a single Hilbert space HΓ. Recall that the

vertex set of TΓ is VΓ = Γ/A∪Γ/B, and that its edge set is EΓ = Γ. Associate to each vertex

v the Hilbert space Hv = H and define

HΓ = lim
F⊂VΓ

finite

⊗

v∈F

Hv.

A few remarks concerning this definition are in order. First, if F ⊂ G are finite subsets of

VΓ the map ⊗v∈FHv → ⊗v∈GHv is given by inserting the distinguished vector ω for those

v ∈ G \ F . Second, these maps are isometries so that the algebraic direct limit of the

⊗v∈FHv is an inner product space in a natural way. Finally, HΓ is obtained by completion.

For notational convenience we shall regard the formal infinite tensor product ρ = ⊗v∈VΓ
ρv

where all but finitely many of the ρv = ω, as an element of HΓ. Such elements span a dense

linear subspace of HΓ. If σ is another such element then we have

〈 ρ, σ 〉 =
∏

v∈VΓ

〈 ρv, σv 〉Hv
, ‖ρ − σ‖ ≤

∑

v∈VΓ

‖ρv − σv‖Hv
,
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where in the expression for the norm we assume that the components of ρ and σ have norm

not greater than 1. Observe that all but finitely many of the terms in the infinite product

and sum are 1 and 0, respectively.

Define γ : Γ → HΓ by the formal infinite tensor product expression

γg =
⊗

v∈VΓ

γg,v,

where the component γg,v of γg at the vertex v is defined recursively: γe,v = ω, and

γgx,v =





γg,v, v 6= gA

αx, v = gA,

where gx is a product without cancellation and e 6= x ∈ A. A similar formula is used when

e 6= x ∈ B. Equivalently, consider the normal form expression g = x1 . . . xp, and assume for

definiteness that x1, xp ∈ A. In this case, the recursive expression for γg is best understood

by considering the following portion of the Bass-Serre tree for Γ:

e

x1

x1B

x1x2                    
                  x1x2x3                

 x1...xp-1A

x1x2x3 B

A

x1...xpB

g=x1...xp


x1x2A



For vertices on the path from e to g the components of γg are given according to

αx1
⊗ βx2

⊗ αx3
⊗ · · · ⊗ αxp

∈ HA ⊗Hx1B ⊗Hx1x2A ⊗ · · · ⊗ Hx1...xp−1A.

For vertices not on this path we have γg,v = ω. Again, similar formulas hold in the cases

when one or both x1, xp ∈ B.

The function γ will in general not satisfy the support condition. In order to remedy this,

let N ≥ 8Cε−2 and obtain τ = τN : Γ → H as in the Lemma 3. Define

ξ : Γ → HΓ ⊗H, ξg = γg ⊗ τg.

It is clear that ‖ξg‖ = 1. We verify the support and convergence properties.

For the support property let ε̂ > 0 be given and obtain R > 0 such that the conditions

(2) hold for both α and β. Let g, g′ ∈ Γ be such that dΓ(g, g′) ≥ 2NR. We show that

〈 ξg, ξg′ 〉 = 〈 γg, γg′ 〉〈 τg, τg′ 〉



10 XIAOMAN CHEN, MARIUS DADARLAT, ERIK GUENTNER, AND GUOLIANG YU

has absolute value less than ε̂. Each of the terms in this product has absolute value not

greater than 1. Also, according to the lemma if dT (g, g′) ≥ 2N we have 〈 τg, τg′ 〉 = 0. There-

fore, it suffices to show that 〈 γg, γg′ 〉 has absolute value less than ε̂ under the assumption

that dT (g, g′) < 2N . In order to show this write g = hxx1 . . . xn and g′ = hx′x′
1 . . . x′

m as

products without cancellation as in (1). With the convention that empty products are 1 we

have

〈 γg, γg′ 〉 =

(
n∏

1

〈 γxi
, ω 〉

)
〈 γx, γx′ 〉

(
m∏

1

〈ω, γx′

j
〉
)

, (4)

where γ’s on the right hand side stand for α’s and β’s as appropriate and consistent with

the expressions (1). (Again, in the degenerate case h = x = x′ = e the middle term does not

appear.) Indeed, assume for definiteness that x, x′ ∈ A and that xn, x′
m ∈ A and consider

the following portion of the Bass-Serre tree:

...

hx

hx’

hxx1

hxx1x2

hx’x’1

hx’x’1x’2

g

g’

e
hA

gB

g’B

h

hxB

g’A

gA





Bearing in mind their recursive descriptions we see that the components of γg and γg′ agree for

all vertices other than those on the paths from hA to gA and to g ′A. The components at the

vertex hA are αx and αx′ , respectively, and contribute the term 〈 γx, γx′ 〉. The components

at the vertex hxB are βx1
and ω, respectively, and contribute the term 〈 γx1

, ω 〉. The other

vertices are similar.

Now, each term in the product (4) has absolute value not greater than 1 and we conclude

by showing that at least one term has absolute value less than ε̂. Assume this is not the case.

Then each of the dT (g, g′) non-zero terms in the espression (2) for dΓ(g, g′) would necessarily

be less than R and we would have

dΓ(g, g′) ≤ dT (g, g′)R < 2NR,

a contradiction.
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For the convergence property let g, g′ ∈ Γ be such that dΓ(g, g′) ≤ C. Observe that

‖ξg − ξg′‖ ≤ ‖γg − γg′‖ + ‖τg − τg′‖.

Again write g and g′ as products without cancellation as in (1) and consider the expression

(2) for dΓ(g, g′). Recalling that our length functions and distances are integer valued, the

number dT (g, g′) of non-zero terms in (2) is not greater than C. According to the lemma

we obtain ‖τg − τg′‖ < ε/2. Further, arguing as above, and with the convention that empty

sums are 0, we obtain

‖γg − γg′‖ ≤
(

n∑

1

‖γzi
− ω‖

)
+ ‖γx − γx′‖ +

(
m∑

1

‖γz′i
− ω‖

)
.

(Again, when h = x = x′ = e the middle term does not appear.) Since no term in the

expression (2) for dΓ(g, g′) is greater than C each of these ≤ C terms is less than ε/2C and

‖γg − γg′‖ ≤ ε/2.

The proof in the case of exactness is largely the same, the only difference being with

the support condition. Essentially, instead of showing that the product (4) is less than ε̂

we are to show it is 0. However, with the strengthened hypothesis that 〈αa, αa′ 〉 = 0, if

`A(a−1a′) ≥ R, and similarly for β, the proof proceeds as for uniform embeddability. �

Remark on non-trivial amalgamation. All the methods in this note can be used to prove

corresponding results when the free product is replaced by the amalgamated free product of

A and B over a finite subgroup G. Indeed, we replace `A and `B by new length functions ˜̀
A

on A and ˜̀
B on B such that

(1) ˜̀
A(g) = 0, for every g ∈ G;

(2) ˜̀
A is equivalent to `A; that is, there exist positive constants c and c′ and a non-

negative constant d such that for every a ∈ A

c ˜̀
A(a) − d ≤ `A(a) ≤ c′ ˜̀

A(a) + d;

(3) ˜̀
A(gah) = ˜̀

A(a), for all a ∈ A, and g, h ∈ G.

Similar properties are required of ˜̀
B. A proof of existence of such length functions can be

found in Jolissaint [Jol90]. Having done so the methods above apply to the free product of

the metric spaces A/G and B/G, which is quasi-isometric to A ∗G B.

The case of arbitrary amalgamation is somewhat more difficult and is treated by Dadarlat-

Guentner [DG02].
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