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With affection and admiration, we dedicate this paper to Richard Kadison

on the occasion of his ninetieth birthday.

Abstract. We survey results connecting exactness in the sense of C∗-algebra theory, coarse

geometry, geometric group theory, and expander graphs. We summarize the construction of

the (in)famous non-exact monster groups whose Cayley graphs contain expanders, following

Gromov, Arzhantseva, Delzant, Sapir, and Osajda. We explain how failures of exactness for

expanders and these monsters lead to counterexamples to Baum-Connes type conjectures:

the recent work of Osajda allows us to give a more streamlined approach than currently

exists elsewhere in the literature.

We then summarize our work on reformulating the Baum-Connes conjecture using exotic

crossed products, and show that many counterexamples to the old conjecture give confirm-

ing examples to the reformulated one; our results in this direction are a little stronger than

those in our earlier work. Finally, we give an application of the reformulated Baum-Connes

conjecture to a version of the Kadison-Kaplansky conjecture on idempotents in group alge-

bras.

1. Introduction

The Baum-Connes conjecture relates, in an important and motivating special case, the

topology of a closed, aspherical manifold M to the unitary representations of its fundamental

group. Precisely, it asserts that the Baum-Connes assembly map

(1.1) K∗(M)→ K∗(C
∗
red(π1(M))

is an isomorphism from the K-homology of M to the K-theory of the reduced C∗-algebra

of its fundamental group. The injectivity and surjectivity of the Baum-Connes assembly

map have important implications—injectivity implies that the higher signatures of M are

oriented homotopy invariants (the Novikov conjecture), and that M (assumed now to be a
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spin manifold) does not admit a metric of positive scalar curvature (the Gromov-Lawson-

Rosenberg conjecture); surjectivity implies that the reduced C∗-algebra of π1(M) does not

contain non-trivial idempotents (the Kadison-Kaplansky conjecture). For details and more

information, we refer to [8, Section 7].

Proofs of the Baum-Connes conjecture, or of its variants, generally involve some sort of

large-scale or coarse geometric hypothesis on the universal cover of the manifold M . A

sample result, important in the context of this piece, is that if the universal cover of M is

coarsely embeddable in a Hilbert space, then the Baum-Connes assembly map is injective

[77, 64], so that the Novikov conjecture holds for M .

For some time, it was thought possible that every bounded geometry metric space was

coarsely embeddable in Hilbert space. At least there was no counterexample to this state-

ment until Gromov made the following assertions [52]: an expander does not coarsely embed

in Hilbert space, and there exists a countable discrete group that ‘contains’ an expander

in an appropriate sense. With the appearance of this influential paper, there began a pe-

riod of rapid progress on counterexamples to the Baum-Connes conjecture [37], and other

conjectures. In particular, these so-called Gromov monster groups were found to be coun-

terexamples to the Baum-Connes conjecture with coefficients ; they were also found to be the

first examples of non-exact groups in the sense of C∗-algebra theory; and expander graphs

were found to be counterexamples to the coarse Baum-Connes conjecture. We mention that,

while counterexamples to most variants of the Baum-Connes conjecture have been found,

there is still no known counterexample to the conjecture as we have stated it in (1.1).

The point of view we shall take in this survey is that the failure of exactness, and the failure

of the Baum-Connes conjecture (with coefficients) are intimately related. This point of view

is not particularly novel—the counterexamples given by Higson, Lafforgue and Skandalis

all have the failure of exactness as their root cause [37]. More recent work has moreover

suggested that at least some of the counterexamples can be obviated by forcing exactness

[57, 74, 75, 21, 25].

We shall exploit this point of view to reformulate the conjecture by replacing the reduced

C∗-algebra of the fundamental group, and the associated reduced crossed product that is

used when coefficients are allowed, on the right hand side by a new group C∗-algebra and

crossed product; the new crossed product will by its definition be exact . By doing so, we

shall undercut the arguments that have lead in the past to the counterexamples, and indeed,

we shall see that some of the former counterexamples are confirming examples for the new,

reformulated conjecture.
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To close this introduction, we give a brief outline of the paper. The first several sections are

essentially historical. In Sections 2 and 3 we provide background information on exact groups,

crossed products, and the group theoretic and coarse geometric properties relevant for the

theory surrounding the Baum-Connes and Novikov conjectures. We discuss the relationships

among these properties, and their connection to other areas of C∗-algebra theory.

Section 4 contains a detailed discussion of expanders, focusing on the aspects of the theory

necessary to produce the counterexamples that will appear in later sections. Here, we follow

an approach outlined by Higson in a talk at the 2000 Mount Holyoke conference, but updated

to a slightly more modern perspective. For the Baum-Connes conjecture itself, expanders

provide counterexamples through the theory of Gromov monster groups. In Section 5 we

describe the history and recent progress on the existence of these groups, beginning with the

original paper of Gromov and ending with the recent work of Arzhantseva and Osajda.

The remainder of the paper is dedicated to discussion of the implications for the Baum-

Connes conjecture itself. We begin in Section 6 by recalling the necessary machinery to

define the conjecture, focusing on the aspects needed for the subsequent discussion. In

Section 7 we describe how Gromov monster groups give counterexamples to the conjecture,

by essentially reducing to the discussion of expanders given in Section 4. In Section 8 we

describe how to adjust the right hand side of the Baum-Connes conjecture by replacing

the reduced C∗-algebraic crossed product with a new crossed product functor having better

functorial properties and in Section 9 we explain how and why this reformulated conjecture

outperforms the original by verifying it in the setting of the counterexamples from Section 7.

In Section 10 we give an application of the reformulated conjecture to the Kadison-Kaplansky

conjecture for the `1-algebra of a group.

2. Exact groups and crossed products

Throughout, G will be a countable discrete group. Much of what follows makes sense for

arbitrary (second countable) locally compact groups, and indeed this is the level of generality

we worked at in our original paper [10]. Here, we restrict to the discrete case because it is

the most relevant for non-exact groups, and because it simplifies some details.

A G-C∗-algebra is a C∗-algebra equipped with an action α of G by ∗-automorphisms. The

natural representations for G-C∗-algebras are the covariant representations : these consist of

a C∗-algebra representation of A as bounded linear operators on a Hilbert space H, together

with a unitary representation of G on the same Hilbert space,

π : A→ B(H) and u : G→ B(H),
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satisfying the covariance condition π(αg(a)) = ugπ(a)ug−1 . Essentially, a covariant represen-

tation spatially implements the action of G on A.

Crossed products of a G-C∗-algebra A encode both the algebra A and the G-action into

a single, larger C∗-algebra. We introduce the notation A oalg G for the algebra of finitely

supported A-valued functions on G equipped with the following product and involution:

f1 ? f2(g) =
∑
h∈G

f1(h)αg(f2(h
−1g)) and f ∗(t) = αg(f(g−1)∗).

The algebra A oalg G is functorial for G-equivariant ∗-homomorphisms in the obvious way.

We shall refer to A oalg G as the algebraic crossed product of A by G. Finally, a covariant

representation integrates to a ∗-representation of Aoalg G according to the formula

π o u(f) =
∑
g∈G

π(f(g))ug .

Two completions of the algebraic crossed product to a C∗-algebra are classically studied:

the maximal and reduced crossed products. The maximal crossed product is the completion

of Aoalg G for the maximal norm, defined by

‖f‖max = sup{ ‖π o u(f)‖ : (π, u) a covariant pair }.

Thus, the maximal crossed product has the universal property that every covariant repre-

sentation integrates (uniquely) to a representation of A omax G; indeed, it is characterized

by this property. The reduced crossed product is defined to be the image of the maximal

crossed product in the integrated form of a particular covariant representation. Precisely,

fix a faithful and non-degenerate representation π of A on a Hilbert space H and define a

covariant representation

π̃ : A→ B(H⊗ `2(G)) and λ : G→ B(H⊗ `2(G))

by

π̃(a)(v ⊗ δg) = π(αg−1(a))v ⊗ δg and λh(v ⊗ δg) = v ⊗ δhg.

The reduced crossed product AoredG is the image of AomaxG under the integrated form

of this covariant representation. In other words, Aored G is the completion of Aoalg G for

the norm

‖f‖red = ‖π̃ o λ(f)‖.
The reduced crossed product (and its norm) are independent of the choice of faithful and

non-degenerate representation of A. Incidentally, one may check that π̃ o λ is injective

on A oalg G. It follows that the maximal norm is in fact a norm on the algebraic crossed

product—no non-zero element has maximal norm equal to zero. In particular, we may view
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the algebraic crossed product as contained in each of the maximal and reduced crossed

products as a dense ∗-subalgebra.

Kirchberg and Wassermann introduced, in their work on continuous fields of C∗-algebras,

the notion of an exact group [42]. They define a group G to be exact if, for every short exact

sequence of G-C∗-algebras

(2.1) 0 // I // A // B // 0

the corresponding sequence of reduced crossed products

0 // I ored G // Aored G // B ored G // 0

is itself short exact. Several remarks are in order here. First, the map to B ored G is always

surjective, the map from I ored G is always injective, and the composition of the two non-

trivial maps is always zero. In other words, exactness of the sequence can only fail in that

the image of the map into AoredG may be properly contained in the kernel of the following

map. Second, the sequence obtained by using the maximal crossed product (instead of the

reduced) is always exact; this follows essentially from the universal property of the maximal

crossed product.

There is a parallel theory of exact C∗-algebras in which one replaces the reduced crossed

products by the spatial tensor products . In particular, a C∗-algebra D is exact if for every

short exact sequence of C∗-algebras (2.1)—now without group action—the corresponding

sequence

0 // I ⊗D // A⊗D // B ⊗D // 0

is exact. Here, we use the spatial tensor product; the analogous sequence defined using the

maximal tensor products is always exact, for any D. In the present context, the theories of

exact (discrete) groups and exact C∗-algebras are related by the following result of Kirchberg

and Wassermann [42, Theorem 5.2].

2.1. Theorem. A discrete group is exact (as a group) precisely when its reduced C∗-algebra

is exact (as a C∗-algebra).

A central notion for us will be that of a crossed product functor . By this we shall mean,

for each G-C∗-algebra A a completion Aoτ G of the algebraic crossed product fitting into a

sequence

Aomax G→ Aoτ G→ Aored G,

in which each map is the identity when restricted to Aoalg G (a dense ∗-subalgebra of each

of the three crossed product C∗-algebras). This is equivalent to requiring that the τ -norm

dominates the reduced norm on the algebraic crossed product. Further, we require that
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Aoτ G be functorial, in the sense that if A→ B is a G-equivariant ∗-homomorphism then

the associated map on algebraic crossed products extends (uniquely) to a ∗-homomorphism

Aoτ G→ B oτ G.

We shall call a crossed product functor τ exact if, for every short exact sequence of G-C∗-

algebras (2.1) the associated sequence

0 // I oτ G // Aoτ G // B oτ G // 0

is itself short exact. For example, the maximal crossed product is exact for every group, but

the reduced crossed product is exact only for exact groups. We shall see other examples of

exact (and non-exact) crossed products later.

3. Some properties of groups, spaces, and actions

In this section, we shall discuss some properties that are important for the study of the

Baum-Connes conjecture, and for issues related to exactness: a-T-menability of groups and

coarse embeddability of metric spaces, and their relation to various forms of amenability.

The following definition—due to Gromov [26, Section 7.E]—is fundamental for work on

the Baum-Connes conjecture.

3.1. Definition. A countable discrete group G is a-T-menable if it admits an affine isometric

action on a Hilbert space H such that the orbit of every v ∈ H tends to infinity; precisely,

‖g · v‖ → ∞⇐⇒ g →∞

Note here that the forward implication is always satisfied; the essential part of the definition

is the reverse implication which asserts that as g leaves every finite subset of G the orbit g ·v
must leave every bounded subset of H.

To discuss the coarse geometric properties relevant for the Novikov conjecture, we must

view the countable discrete group G as a metric space. Let us for the moment imagine that

G is finitely generated. We fix a finite generating set S, so that every element of G is a

finite product, or word, of elements of S and their inverses. We define the associated word

length by declaring the length of an element g to be the minimal length of such a word; we

denote this by |g|. This word length function is a proper length function, meaning that it is

a non-negative real valued function with the following properties:

|g| = 0 iff g = identity, |g−1| = |g|, |gh| ≤ |g|+ |h|;
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and infinite subsets of G have unbounded image in [0,∞). Returning to the general setting,

it is well kown (and not difficult to prove) that a countable discrete group admits a proper

length function.

We now equip G with a proper length function, for example a word length, and define

the associated metric on G by d(g, h) = |g−1h|. This metric has bounded geometry , meaning

that there is a uniform bound on the number of elements in a ball of fixed radius. It is also

left-invariant , meaning that the the left action of G on itself is by isometries. This metric

is not intrinsic to G, but depends on the particular length function chosen. Nevertheless,

the identity map is a coarse equivalence between any two bounded geometry, left invariant

metrics on G. We shall expand on this fact below. Thus, it makes sense to attribute metric

properties to G as long as these properties are insentive to coarse equivalence.

Having equipped G with a metric, we are ready to state the following definition, also due

to Gromov [26, Section 7.E].1

3.2. Definition. A countable discrete group G is coarsely embeddable (in Hilbert space) if

it admits a map f : G→ H to a Hilbert space such

‖f(g)− f(h)‖ → ∞⇐⇒ d(g, h)→∞.

In this case, f is a coarse embedding.

3.3. Remark. To relate coarse embeddability and a-T-menability, suppose that G acts on a

Hilbert space H as in Definition 3.1. Fix v ∈ H and notice that

‖g · v − h · v‖ = ‖g−1h · v − v‖ ∼ ‖g−1h · v‖

(where ∼ means differing at most by a universal additive constant). Thus, forgetting the

action and recalling that the metric on G has bounded geometry, we see that the orbit map

f(g) = g · v is a coarse embedding as in Definition 3.2.

3.4. Remark. Only the metric structure of H enters into the definition of coarse embed-

dability; the same definition applies equally well to maps from one metric space to another.

In this more general setting, a coarse embedding f : X → Y of metric spaces is a coarse

equivalence if for some universal constant C every element of Y is a distance at most C from

f(X). It is in this sense that the identity map on G is a coarse equivalence between any

two bounded geometry, left invariant metrics. The key point here is that the balls centered

at the identity in each metric are finite, so that the length function defining each metric is

bounded on the balls for the other.

1Gromov originally used the terminology uniformly embeddable and uniform embedding ; this usage has

fallen out of favor since it conflicts with terminology from Banach space theory.
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To motivate the relevance of these properties for the Baum-Connes and Novikov conjec-

tures suppose, for example, that G acts on a finite dimensional Hilbert space as in Defini-

tion 3.1. It is then a discrete subgroup of some Euclidean isometry group RnoO(n) (at least

up to taking a quotient by a finite subgroup). That such groups satisfy the Baum-Connes

conjecture follows already from Kasparov’s 1981 conspectus [41, Section 5, Lemma 4], which

predates the conjecture itself!

The relevance of the general, infinite dimensional version of a-T-menability, and of coarse

embeddability, was apparent to some authors more than twenty years ago. See for example

[51, Problems 3 and 4] of Gromov and [68, Problem 3] of Connes. The key technical advance

that allowed progress is the infinite dimensional Bott periodicity theorem of Higson, Kas-

parov, and Trout [36]. One has the following theorem: the part dealing with a-T-menability

is due to Higson and Kasparov [34, 35], while the part dealing with coarse embeddability

is due in main to Yu [77], although with subsequent improvements of Higson [33] and of

Skandalis, Tu, and Yu [64].

3.5. Theorem. Let G be a countable discrete group. The Baum-Connes assembly map with

coefficients in any G-C∗-algebra A

K top
∗ (G;A)→ K∗(Aored G)

is an isomorphism if G is a-T-menable, and is split injective if G is coarsely embeddable.

The class of a-T-menable groups is large: it contains all amenable groups as well as

free groups, and classical hyperbolic groups; see [22] for a survey. A-T-menability admits

many equivalent formulations: the key results are those of Akemann and Walter studying

positive definite and negative type functions [1], and of Bekka, Cherix and Valette relating

a-T-menabilty as defined above to the properties studied by Akemann and Walter [12] (the

latter are usually called the Haagerup property due to their appearance in important work

of Haagerup [31] on C∗-algebraic approximation results). There are, however, many non

a-T-menable groups: the most important examples are those with Kazhdan’s property (T )

such as SL(3,Z): see the monograph [13].

The class of coarsely embeddable groups is huge: as well as all a-T-menable groups,

it contains for example all linear groups (over any field) [29] and all Gromov hyperbolic

groups [60]. Indeed, for a long time it was unknown whether there existed any group that

did not coarsely embed: see for example [26, Page 218, point (b)]. Thanks to expander

based techniques which we will explore in later sections, it is now known that non coarsely

embeddable groups exist; it is enormously useful here that coarse emeddability makes sense

for arbitrary metric spaces, and not just groups.
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Before we turn to a discussion of expanders in the next section, we shall describe the

close relationship of coarse embeddability to exactness and some other properties of metric

spaces, groups and group actions. The key additional idea is that of Property A, which was

introduced by Yu to be a relatively easily verified criterion for coarse embeddability [77,

Section 2]. Property A was quickly realized to be relevant to exactness: see for example [43,

Added note, page 556].

All the properties we have discussed so far can be characterized in terms of positive definite

kernels , and doing so brings the distinctions among them into sharp focus. Recall that a

(normalized) positive definite kernel on a set X is a function f : X ×X → C satisfying the

following properties:

(i) k(x, x) = 1 and k(x, y) = k(y, x), for all x, y ∈ X;

(ii) for all finite subsets {x1, ..., xn} of X and {a1, ..., an} of C,

n∑
i,j=1

aiajk(xi, xj) ≥ 0.

If we are working with a countable discrete group G we may additionally require the kernel

to be left invariant, in the sense that k(g1g, g1h) = k(g, h) for every g1, g and h ∈ G.

3.6. Theorem. Let X be a bounded geometry, uniformly discrete metric space. Then X has

Property A if and only if for every R (large) and ε (small), there exists a positive definite

kernel k : X ×X → C such that

(i) |1− k(x, y)| < ε whenever d(x, y) < R;

(ii) the set { d(x, y) ∈ [0,∞) : k(x, y) 6= 0 } is bounded;

X is coarsely embeddable if and only if for every R and ε there exists a positive definite

kernel k satisfying (i) above, but instead of (ii) the following weaker condition:

(ii)’ for every δ > 0 the set { d(x, y) ∈ [0,∞) : |k(x, y)| ≥ δ } is bounded.

A countable discrete group G is amenable if and only if for every R and ε there exists a left

invariant positive definite kernel satisfying (i) and (ii) above; it is a-T-menable if and only

if for every R and ε there exists a left invariant positive definite kernel satisfying (i) and

(ii)’ above.

The characterization of Property A for bounded geometry, uniformly discrete metric spaces

in this theorem is due to Tu [66]. It is particularly useful for studying C∗-algebraic approx-

imation properties, in particular exactness, as it can be used to construct so-called Schur
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multipliers. The characterization of coarse embeddability can be found in [59, Theorem

11.16]; that of a-T-menability comes from combining [1] and [12]; that of amenability is well

known.

The following diagram, in which all the implications are clear from the previous theorem,

summarizes the properties we have discussed:

(3.1) amenability

��

+3 Property A≡ exactness

��
a-T-menability +3 coarse embeddability .

The class of groups with Property A covers all the examples of coarsely embeddable

groups mentioned earlier. Indeed, proving the existence of groups without Property A is as

difficult as proving the existence groups that do not coarsely embed. Nonetheless, Osajda

has recently shown the existence of coarsely embeddable (and even a-T-menable) groups

without Property A [56]. In particular, there are no further implications between any of the

properties in the diagram.

The following theorem summarizes some of the most important implications relating Prop-

erty A to C∗-algebra theory.

3.7. Theorem. Let G be a countable discrete group. The following are equivalent:

(i) G has Property A;

(ii) G admits an amenable action on a compact space;

(iii) G is an exact group;

(iv) the group C∗-algebra C∗red(G) is an exact C∗-algebra.

The reader can see the survey [72] or [17, Chapter 5] for proofs of most of these results,

as well as the definitions that we have not repeated here. The original references are: [38]

for the equivalence of (i) and (ii); [30] (partially) and [58] for the equivalence of (i) and (iv);

[43, Theorem 5.2] for (iv) implies (iii) as we already discussed in Section 2; and (iii) implies

(iv) is easy.

Almost all these implications extend to second countable, locally compact groups with

appropriately modified versions of Property A [2, 24, 16]; the exception is (iv) implies (iii),

which is an open question in general. Finally, note that Theorem 3.7 has a natural analog

in the setting of discrete metric spaces: see Theorem 4.5 below.
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3.8. Remark. There is an analog of the equivalence of (i) and (ii) for coarsely embeddable

groups appearing in [64, Theorem 5.4]: a group is coarsely embeddable if and only if it

admits an a-T-menable action on a compact space in the sense of Definition 9.2 below.

4. Expanders

In this section, we study expanders : highly connected, sparse graphs. Expanders are the

easiest examples of metric spaces that do not coarsely embed. They are also connected to

K-theory through the construction of Kazhdan projections ; this construction is at the root

of the counterexamples to the Baum-Connes conjecture.

For our purposes, a graph is a simplicial graph, meaning that we allow neither loops nor

multiple edges. More precisely, a graph Y comprises a (finite) set of vertices, which we also

denote Y , and a set of 2-element subsets of the vertex set, which are the edges. Two vertices

x and y are incident if there is an edge containing them, and we write x ∼ y in this case.

The number of vertices incident to a given vertex x is its degree, denoted deg(x).

A central object for us is the Laplacian of a graph Y , the linear operator `2(Y )→ `2(Y )

defined by

∆f(x) = deg(x)f(x)−
∑
y : y∼x

f(y) =
∑
y : y∼x

f(x)− f(y).

A straightforward calculation shows that ∆ is a positive operator; in fact

(4.1) 〈∆f, f 〉 =
∑

(x,y) : x∼y

|f(x)− f(y)|2 ≥ 0.

The kernel of the Laplacian on a connected graph is precisely the space of constant functions.

Indeed, it follows directly from the definition that constant functions belong to the kernel;

conversely, it follows from (4.1) that if ∆f = 0 and x ∼ y then f(x) = f(y), so that f is a

constant function (using the connectedness). Thus, the second smallest eigenvalue (including

multiplicity) of the Laplacian on a connected graph is strictly positive. We shall denote this

eigenvalue by λ1(Y ).

An expander is a sequence (Yn) of finite connected graphs with the following properties:

(i) the number of vertices in Yn tends to infinity, as n→∞;

(ii) there exists d such that deg(x) ≤ d, for every vertex in every Yn;

(iii) there exists c > 0 such that λ1(Yn) ≥ c, for every n.

From the discussion above, we see immediately that the property of being an expander is

about having both the degree bounded above, and the first eigenvalue bounded away from 0,
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independent of n. The existence of expanders can be proven with routine counting arguments

which in fact show that in an appropriate sense most graphs are expanders: see [47, Section

1.2]. Nevertheless, the explicit construction of expanders was elusive. The first construction

was given by Margulis [49]. Shortly thereafter the close connection with Kazhdan’s Property

(T) was understood—the collection of finite quotients of a residually finite discrete group

with Property (T) are expanders, when equipped with the (Cayley) graph structure coming

from a fixed finite generating set of the parent group, and ordered so that their cardinalities

tend to infinity [47, Section 3.3]. In particular, the congruence quotients of SL(3,Z) are an

expander.

In the present context, the first counterexamples provided by expanders are to questions

in coarse geometry. Given a sequence Yn of graphs comprising an expander, we consider the

associated box space, which is a metric space Y with the following properties:

(i) as a set, Y is the disjoint union of the Yn;

(ii) the restriction of the metric to each Yn is the graph metric;

(iii) d(Yn, Ym)→∞ for n 6= m and n+m→∞.

Here, the distance between two vertices in the graph metric is the smallest possible number

of edges on a path connecting them. It is not difficult to construct a box space; one simply

declares that the distance from a vertex in Ym to a vertex in the union of the Yn for n < m is

sufficiently large. Further, the identity map provides a coarse equivalence (see Remark 3.4)

between any two box spaces, so that their coarse geometry is well defined.

4.1. Proposition. A box space associated to an expander sequence is not coarsely embeddable,

and hence does not have property A.

This proposition was originally stated by Gromov, and proofs were later supplied by several

authors including Higson and Dranishnikov: see for example [59, Proposition 11.29]. More

recently, many results of this type have been proven, primarily, negative results about the

impossibility of coarsely embedding various types of expanders in various types of Banach

space, and other non-positively curved spaces. See for example [46, 50, 44].

On the analytic side, expanders have also proven useful for counterexamples, essentially

because of the presence of Kazhdan type projections . On a single, connected, finite graph Y ,

we have the projection p onto the constant functions, which is to say, onto the kernel of the

Laplacian. This projection can be obtained as a spectral function of the Laplacian; precisely,

p = f(∆) provided that f(0) = 1 and that f ≡ 0 on the remaining eigenvalues of ∆.
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Now suppose that Y is the box space of a sequence Yn of finite graphs with uniformly

bounded vertex degrees. We can then consider the operators

(4.2) p =


p1 0 0 . . .

0 p2 0 . . .

0 0 p3 . . .
...

...
...

. . .

 and ∆ =


∆1 0 0 . . .

0 ∆2 0 . . .

0 0 ∆3 . . .
...

...
...

. . .


acting on `2(Y ), identified with the direct sum of the spaces `2(Yn). While p will not generally

be a spectral function of ∆, it will be when Yn is an expander sequence. Indeed, in this case if

f is a continuous function on [0,∞) satisfying f(0) = 1 and f ≡ 0 on [c,∞) then p = f(∆).

We shall refer to p as the Kazhdan projection of the expander.

The importance of the Kazhdan projection is difficult to overstate: one can often show

that Kazhdan projections are not in the range of Baum-Connes type assembly maps, and

are therefore fundamental for counterexamples. This is best understood in the context of

metric spaces, and to proceed we need to introduce the coarse geometric analog of the group

C∗-algebra. For convenience, we consider here only the uniform Roe algebra of a (discrete)

metric space X. A bounded operator T on `2(X) has finite propagation if there exists R > 0

such that T cannot propagate signals over a distance greater than R: precisely, for every

finitely supported function f on X, the support of T (f) is contained in the R-neighborhood

of the support of f . The collection of all bounded operators having finite propagation is

a ∗-algebra, and its closure is the uniform Roe algebra of X. We denote the uniform Roe

algebra of X by C∗(X), and remark that it contains the compact operators on `2(X) as an

ideal.

4.2. Proposition. Let Y be the box space of an expander sequence. The Kazhdan projection

p is not compact, and belongs to C∗(Y ).

Proof. The Kazhdan projection has infinite rank; it projects onto the space of functions that

are constant on each Yn. Further, the Laplacian propagates signals a distance at most 1, so

that both ∆ and its spectral function p = f(∆) belong to the C∗-algebra C∗(Y ). �

The Kazhdan projection of an expander Y has another significant property: it is a ghost .

Here, returning to a discrete metric space X, a ghost is an element T ∈ C∗(X) whose ‘matrix

entries tend to 0 at infinity’; precisely, the suprema

sup
z∈X
|Txz| and sup

z∈X
|Tzx|
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of matrix entries over the ‘xth row’ and ‘xth column’ tend to zero as x tends to infinity. With

this definition it is immediate that compact operators are ghosts, and easy to see that a

finite propagation operator is a ghost precisely when it is compact. The Kazhdan projection

in C∗(Y ) is a (non-compact!) ghost because the elements pn in its matrix representation

(4.2) are

pn =
1

card(Yn)


1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

 .

To understand the importance of ghostliness we recast the definition slightly. We shall

denote the Stone-Cech compactification of X by βX, and shall identify its elements with

ultrafilters on X. Each element of X gives rise to an ultrafilter, so that X ⊂ βX. We shall

be primarily concerned with the free ultrafilters, that is, the elements of the Stone-Cech

corona β∞X = βX \ X. A bounded function φ on X has a limit against each ultrafilter.

If an ultrafilter corresponds to a point of X this limit is simply the evaluation of φ at that

point; if ω is a free ultrafilter, we shall denote the limit by ω-lim(φ).

Suppose now we are given a (free) ultrafilter ω ∈ β∞X. We define a linear functional on

C∗(X) by the formula

Ω(T ) = ω-lim(x 7→ Txx).

Here, the Txx are the diagonal entries of the matrix representing the operator T in the stan-

dard basis of `2(X). We check that Ω is a state on C∗(X). Indeed, one checks immediately

that Ω(1) = 1, and a simple calculation shows that the diagonal entries of T ∗T are given by

(4.3) (T ∗T )xx =
∑
z

|Tzx|2 ;

thus they are non-negative so their limit is as well. Finally, we define C∗∞(X) to be the

image of C∗(X) in the direct sum of the Gelfand-Naimark-Segal representations of the states

defined in this way from free ultrafilters ω; this is a quotient of C∗(X). While the following

proposition is well known, not being able to locate a proof in the literature we provide one

here.

4.3. Proposition. The kernel of the ∗-homomorphism C∗(X) → C∗∞(X) is the set of all

ghosts.

Proof. Suppose T is a ghost. Since the ghosts form an ideal in C∗(X) we have that for every

R and S ∈ C∗(X) the product RTS is also a ghost. In particular, its on-diagonal matrix

entries (RTS)xx tend to zero as x → ∞, so that their limit against every free ultrafilter is
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also zero. This mean that the norm of T in the GNS representation associated to every free

ultrafilter is zero, so that T maps to zero in C∗∞(X).

Conversely, suppose that T maps to zero in C∗∞(X), so that T ∗T does as well. Hence the

limit of the on-diagonal matrix entries (T ∗T )xx is zero against every free ultrafilter, so that

they converge to zero in the ordinary sense as x→∞. Now, according to (4.3) we have

(T ∗T )xx =
∑
z

|Tzx|2 ≥ sup
z
|Tzx|2,

so that supz |Tzx|2 → 0 as x→∞ as well. Applying the same argument to TT ∗ shows that

supz |Txz|2 tends to 0 as x→∞, and thus T is a ghost. �

Putting everything together, we have for the box space Y of an expander a short sequence

(4.4) 0 // K // C∗(Y ) // C∗∞(Y ) // 0.

The sequence is not exact because the Kazhdan projection belongs to the kernel of the

quotient map, although it is not compact. As we shall now show, it is possible to detect the

K-theory class of the Kazhdan projection and to see that the sequence is not exact even at

the level of K-theory. We shall see in Section 7 that this is the phenomenon underlying the

counterexamples to the Baum-Connes conjecture.

4.4. Proposition. The K-theory class of the Kazhdan projection is not in the image of the

map K0(K)→ K0(C
∗(Y )).

Proof. We have, for each ‘block’ Yn a contractive linear map C∗(Y )→ B(`2(Yn)) defined by

cutting down by the appropriate projection. These are asymptotically multiplicative on the

algebra of finite propagation operators, and we obtain a ∗-homomorphism

(4.5) C∗(Y )→
∏

n B(`2(Yn))

⊕nB(`2(Yn))
.

Taking the rank in each block (equivalently, taking the map on K-theory induced by the

canonical matrix trace on B(`2(Yn))) gives a homomorphism

(4.6) K0

(∏
n

B(`2(Yn))

)
→
∏
n

Z.

AsK1(⊕nB(`2(Yn)) = 0, the six term exact series inK-theory specializes to an exact sequence

K0(⊕nB(`2(Yn))) // K0(
∏

n B(`2(Yn))) // K0

(∏
n B(`2(Yn))
⊕nB(`2(Yn))

)
// 0 .
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Composing the ‘rank homomorphism’ in line (4.6) with the quotient map
∏

n Z→
∏

n Z/⊕nZ
clearly annihilates the image of K0(⊕nB(`2(Yn))), and thus from the sequence above gives

rise to a homomorphism

K0

(∏
n B(`2(Yn))

⊕nB(`2(Yn))

)
→
∏

n Z
⊕nZ

.

Finally, combining with the K-theory map induced by the ∗-homomorphism in line (4.5)

gives a group homomorphism

K0(C
∗(Y ))→

∏
n Z
⊕nZ

.

Any K-theory class in the image of the map K0(K) → K0(C
∗(Y )) goes to zero under the

map in the line above. On the other hand, the Kazhdan projection restricts to a rank one

projection on each `2(Yn) and therefore its image is [1, 1, 1, 1, ...], and so is non-zero. �

The failure of the above sequence (4.4) to be exact is at the base of many failures of

exactness and other approximation properties in operator theory and operator algebras. See

for example the results of Voiculescu [70] and Wassermann [71]. More recently, the results

in the following theorem (an analog of Theorem 3.7 for metric spaces) have been filled in,

clarifying the relationship between Property A, ghosts, amenability and exactness. Note

that the box space of an expander, or a countable discrete group with proper, left invariant

metric, satisfy the hypotheses.

4.5. Theorem. Let X be a bounded geometry uniformly discrete metric space. Then the

following are equivalent:

(i) X has Property A;

(ii) the coarse groupoid associated to X is amenable;

(iii) the uniform Roe algebra C∗(X) is an exact C∗-algebra;

(iv) all ghost operators are compact.

These results can be found in the following references: [64, Theorem 5.3] for the equivalence

of (i) and (ii), and the definition of the coarse groupoid; [62] for the equivalence of (i) and

(iii); [59, Proposition 11.4.3] for (i) implies (iv); and [61] for (iv) implies (i).

5. Gromov monster groups

As mentioned in the introduction, the search for counterexamples to the Baum-Connes

conjecture began in earnest with the provocative remarks found in the last section of [52].

There, Gromov describes a model for a random presentation of a group and asserts that under

certain conditions such a random group will almost surely not be coarsely embeddable in
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Hilbert space, or in any `p-space for finite p. The non-embeddable groups arise by randomly

labeling the edges of a suitable expander family with labels that correspond to the generators

of a given, for example, free group. For the method to work, it is necessary that the expander

have large girth: the length of the shortest cycle in the nth constituent graph tends to infinity

with n. Thus labeled, cycles in the expander graphs give words in the generators which are

viewed as relators in an (infinite) presentation of a random group. Gromov then goes on

to state that a further refinement of the method would reveal that certain of these random

and non-embeddable groups are themselves subgroups of finitely presented groups, which are

therefore also non-embeddable. More details appeared in the subsequent paper of Gromov

[27], and in the further work of Arzhantseva and Delzant [3].

From the above sketch given by Gromov, it is immediately clear that the original expander

graphs Yn would in some sense be ‘contained’ in the Cayley graph of the random group

G. And groups ‘containing expanders’ became known as Gromov monsters . As is clearly

explained in a recent paper of Osajda [56], it is an inherent limitation of Gromov’s method

that the expanders will not themselves be coarsely embedded in the random group. Rather,

they will be ‘contained’ in the following weaker sense: there exist constants a, b and cn such

that cn is much smaller than the diameter of Yn, and such that for each n there exists a map

fn : Yn → G satisfying

bd(x, y)− cn ≤ d(f(x), f(y)) ≤ ad(x, y).

In other words, each Yn is quasi-isometrically embedded in the Cayley graph of G, but

the additive constant involved in the lower bound decays as n → ∞. This is nevertheless

sufficient for the non-embeddability of G, and for the counterexamples of Higson, Lafforgue

and Skandalis [37] (who in fact use a still weaker form of ‘containment’).

In part as a matter of convenience, and in part out of necessity, we shall adopt the following

more restricted notion of Gromov monster group.

5.1. Definition. A Gromov monster (or simply monster) group is a discrete group G,

equipped with a fixed finite generating set and which has the following property: there

exists a subset Y of G which is isometric to a box space of a large girth, constant degree,

expander.

Here, it is equivalent to require that each of the individual graphs Yn comprising the expander

are isometrically embedded inG; using the isometric action ofG on itself, it is straightforward

to arrange the Yn (rather, their images in G) into a box space.

Building on earlier work with Arzhantseva [5], groups as in this definition were shown to

exist by Osajda: see [56, Theorem 3.2]. We recall in rough outline the method. The basic
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data is a sequence of finite, connected graphs Yn of uniformly finite degree satisfying the

following conditions:

(i) diam(Yn)→∞;

(ii) diam(Yn) ≤ A girth(Yn), for some constant A independent of n;

(iii) girth(Yn) ≤ girth(Yn+1), and girth(Y1) > 24.

Here, recall that the girth of a graph is the length of the shortest simple cycle. While

the method is more general, in order to construct monster groups the Yn will, of course,

be taken to be a suitable family of expanders. These conditions are less restrictive than

those originally proposed by Gromov, and in his paper Osajda describes an explicit set of

expanders that satisfy them.

Using a combination of combinatorial and probabilistic arguments, Osajda produces two

labelings of the edges in the individual Yn with letters from a finite alphabet: one satisfies a

small cancellation condition for pieces from different blocks and the other for pieces from a

common block. He then combines these in a straightforward way to obtain a labeling that

globally satisfies the C ′(1/24) small cancellation condition. The monster group G is the

quotient of the free group on the letters used in the final labeling by the normal subgroup

generated by the relations read along the cycles of the graphs Yn. It was known from

previous work that the C ′(1/24) condition implies that the individual Yn will be isometrically

embedded in the Cayley graph of G [5, 55].

The infinitely presented Gromov monsters described here may seem artificial. After all,

in the introduction we formulated the Baum-Connes conjecture for fundamental groups of

closed aspherical manifolds, and one may prefer to confine attention to finitely presented

groups. Fully realizing Gromov’s original statement, Osajda remarks that a general method

developed earlier by Sapir [63] leads to the existence of closed, aspherical manifolds whose

universal covers exhibit similar pathologies. Summarizing, we have the following result.

5.2. Theorem. Gromov monster groups (in the sense of Definition 5.1) exist. Further,

there exist closed aspherical manifolds whose fundamental groups contain quasi-isometrically

embedded expanders.

While groups as in the second statement of this theorem would not qualify as Gromov

monster groups under our restricted definition above, their existence is very satisfying.

We shall close this section with a more detailed discussion of the relationship between the

properties introduced in Section 3. As we mentioned previously, none of the implications

in diagram (3.1) is reversible. The most difficult point concerns the existence of discrete

groups (or even bounded geometry metric spaces) that are coarsely embeddable but do not
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have Property A. The first example of such a space was given by Arzhantseva, Guentner and

Spakula [4] (non-bounded geometry examples were given earlier by Nowak [54]); their space

is the box space in which the blocks are the iterated Z/2-homology covers of the figure-8

space, i.e. the wedge of two circles.

In the case of groups, a much more ambitious problem is the existence of a discrete

group which is a-T-menable, but does not have Property A. Building on earlier work with

Arzhantseva, this problem was recently solved by Osajda [5, 56]. The strategy is similar

to the construction of Gromov monsters: use a graphical small cancellation technique to

embed large girth graphs with uniformly bounded degree (at least 3) into the Cayley graph

of a finitely generated group. Again, under the C ′(1/24) hypothesis the graphs will be

isometrically embedded. The large girth hypothesis and the assumption that each vertex

has degree at least 3 ensure, by a result of Willett [73], that the group will not have Property

A.

The remaining difficulty is to show that the group constructed is a-T-menable under

appropriate hypotheses on the graphs and the labelling. The key idea is due to Wise, who

showed that certain finitely presented classical small cancellation groups are a-T-menable,

by endowing their Cayley graphs with the structure of a space with walls for which the wall

pseudometric is proper [76].

6. The Baum-Connes conjecture with coefficients

When discussing the Baum-Connes conjecture in the introduction, we considered it as a

higher index map

(6.1) K∗(M)→ K∗(C
∗
red(G)),

which takes the K-homology class defined by an elliptic differential operator D on a closed

aspherical manifold M with fundamental group G to the higher index of D in the K-theory

of the reduced group C∗-algebra of G. This point of view is perhaps the most intuitive

way to view the conjecture and also leads to some of its most important applications. Here

however, we need to get ‘under the hood’ of the Baum-Connes machinery, and give enough

definitions so that we can explain our constructions.

To formulate the conjecture more generally, and in particular to allow coefficients in a

G-C∗-algebra, it is usual to use bivariant K-theory and the notion of descent. Even if one is

only interested in the classical conjecture of (6.1), the extra generality is useful as it grants

access to many powerful tools, and has much better naturality and permanence properties

under standard operations on groups. There are two standard bivariant K-theories available:
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the KK-theory of Kasparov, and the E-theory of Connes and Higson. These two theories

have similar formal properties, and for our purposes, it would not make much difference

which theory we use (see Remark 8.2 below). However, at the time we wrote our paper

[10] it was only clear how to make our constructions work in E-theory, and for the sake of

consistency we use E-theory here as well.

We continue to work with a countable discrete group G. We shall denote the category

whose objects are G-C∗-algebras and whose morphisms are equivariant ∗-homomorphisms by

GC*; similarly, C* denotes the category whose objects are C∗-algebras and whose morphisms

are ∗-homomorphisms. Further, we shall assume that all C∗-algebras are separable.

The equivariant E-theory category, defined in [28] and which we shall denote EG, is ob-

tained from the category GC* by appropriately enlarging the morphism sets. More precisely,

the objects of EG are the G-C∗-algebras. An equivariant ∗-homomorphism A → B gives

a morphism in EG and further, there is a covariant functor from GC* to EG that is the

identity on objects. We shall denote the morphisms sets in EG by EG(A,B). These are

abelian groups, and it follows that for a fixed G-C∗-algebra B, the assignments

A 7→ EG(A,B) and A 7→ EG(B,A)

are, respectively, a contravariant and a covariant functor from GC* to the category of abelian

groups.

Let now EG denote a universal space for proper actions of G; this means that EG is

a metrizable space equipped with a proper G-action such that the quotient space is also

metrizable, and moreover that any metrizable proper G-space admits a continuous equivari-

ant map into EG, which is unique up to equivariant homotopy. Such spaces always exist

[8]. Suppose X ⊆ EG is a G-invariant and cocompact subset; this means that X is closed

and that there is a compact subset K ⊆ EG such that X ⊆ G · K. Such an X is locally

compact (and Hausdorff), and if X ⊆ Y are two such subsets of EG there is an equivariant

∗-homomorphism C0(Y ) → C0(X) defined by restriction. In this way the various C0(X),

with X ranging over the G-invariant and cocompact subsets of EG, becomes a directed set

of G-C∗-algebras and equivariant ∗-homomorphisms.

It follows from this discussion that for any G-C∗-algebra A we may form the direct limit

Ktop
0 (G;A) := lim

X⊆EG

X cocompact

EG(C0(X);A),

and similarly for K1 using suspensions. The universal property of EG together with ho-

motopy invariance of the E-theory groups implies that Ktop
∗ (G;A) does not depend on the
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choice of EG up to unique isomorphism. It is called the topological K-theory of G. This

group will be the domain of the Baum-Connes assembly map.

To define the assembly map, we need to discuss descent. Specializing the construction of

the equivariant E-theory category to the trivial group gives the E-theory category, which

we shall denote by E. The objects in this category are the C∗-algebras, and the morphisms

from A to B are an abelian group denoted E(A,B). A ∗-homomorphism A → B gives a

morphism in this category, and there is a covariant functor from the category of C∗-algebras

and ∗-homomorphisms to E that is the identity on objects. Moreover for any C∗-algebra B,

the group E(C, B) identifies naturally with the K-theory group K0(B).

Recall from Section 2 that the maximal crossed product defines a functor from the cate-

gory GC* to the category C*. The following theorem asserts that it is possible to extend

this functor to the category EG, so that it becomes defined on the generalized morphisms

belonging to EG but not to GC*: see [28, Theorem 6.22] for a proof.

6.1. Theorem. There is a (maximal) descent functor omax : EG → E which agrees with

the usual maximal crossed product functor both on objects and on morphisms in EG coming

from equivariant ∗-homomorphisms.

To complete the definition of the Baum-Connes assembly map, we need to know that if

X is a locally compact, proper and cocompact G-space, then C0(X)omaxG contains a basic

projection, denoted pX , with properties as in the next result: see [28, Chapter 10] for more

details.

6.2. Proposition. Let X be a locally compact, proper, cocompact G-space. The K-theory

class of the basic projection [pX ] ∈ K0(C0(X)omaxG) = E(C, C0(X)omaxG) has the following

properties:

(i) [pX ] depends only on X (and not on choices made in the definition of pX);

(ii) [pX ] is functorial for equivariant maps.

Here, functoriality means that if X → Y is an equivariant map of spaces as in the statement

of the proposition, then the classes [pX ] and [pY ] correspond under the functorially induced

map on K-theory.
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Now, let X be a proper, locally compact G-space and let A be a G-C∗-algebra. The

assembly map for X with coefficients in A is defined as the composition

EG(C0(X), A)→ E(C0(X) omax G,Aomax G)

→ E(C, Aomax G)

→ E(C, Aored G),

in which the first arrow is the descent functor, the second is composition in E with the basic

projection, and the third is induced by the quotient map A omax G → A ored G. It follows

now from property (ii) in Proposition 6.2 that if X → Y is an equivariant inclusion of locally

compact, proper, cocompact G-spaces, then the diagram

E(C0(X) omax G,Aomax G) //

��

E(C, Aomax G)

E(C0(Y ) omax G,Aomax G) // E(C, Aomax G)

commutes. Here, the horizontal arrows are given by composition with the appropriate ba-

sic projections, and the left hand vertical arrow is composition with the ∗-homomorphism

C0(Y )omaxG→ C0(X)omaxG induced by the inclusion X → Y . Hence the assembly maps

are compatible with the direct limit defining Ktop
0 (G;A), and give a well-defined homomor-

phism

Ktop
0 (G;A)→ E(C, Aored G) = K0(Aored G).

Everything works similarly on the level of K1 using suspensions, and thus we get a homo-

morphism

µ : Ktop
∗ (G;A)→ K∗(Aored G),

which is, by definition, the Baum-Connes assembly map. The Baum-Connes conjecture

states that this map is an isomorphism.

6.3. Remark. Following through the construction above without passing through the quotient

to the reduced crossed product gives the maximal Baum-Connes assembly map

µ : Ktop
∗ (G;A)→ K∗(Aomax G).

It plays an important role in the theory, but is known not to be an isomorphism in general

thanks to obstructions that exist whenever G has Kazhdan’s property (T ) [13]; we will come

back to this point later.
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7. Counterexamples to the Baum-Connes conjecture

In this section, we discuss a class of counterexamples to the Baum-Connes conjecture with

coefficients. These are based on [37, Section 7] and [74, Section 8], but are a little simpler

and more concrete than others appearing in the literature. The possibility of a simpler

construction comes down to the straightforward way the monster groups constructed by

Osajda contain expanders.

The existence of counterexamples depends on the following key fact: the left and right hand

sides of the Baum-Connes conjecture see short exact sequences of G-C∗-algebras differently.

To see this, note that the properties of E-theory as discussed in Section 6 imply that the

Baum-Connes assembly map is functorial in the coefficient algebra: precisely, an equivariant

∗-homomorphism A→ B induces a commutative diagram

Ktop
∗ (G;A)

��

// K∗(Aored G)

��
Ktop
∗ (G;B) // K∗(B ored G),

in which the horizontal maps are the Baum-Connes assembly maps, and the vertical maps

are induced from the associated morphism A → B in the equivariant E-theory category.

The following lemma gives a little more information when the maps come from a short exact

sequence.

7.1. Lemma. Let

0 // I // A // B // 0

be a short exact sequence of separable G-C∗-algebras. There is a commutative diagram of

Baum-Connes assembly maps

K top
0 (G; I) //

��

K top
0 (G;A) //

��

K top
0 (G;B)

��
K0(I ored G) // K0(Aored G) // K0(B ored G),

in which the horizontal arrows are the functorially induced ones. Moreover, the top row is

exact in the middle.

Proof. The existence and commutativity of the diagram follows from our discussion of E-

theory. Exactness of the top row follows from exactness properties of E-theory (see [28,

Theorem 6.20]) and the fact that exactness is preserved under direct limits. �
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The following consequence of the Baum-Connes conjecture with coefficients is immediate

from the lemma.

7.2. Corollary. Let

0 // I // A // B // 0

be a short exact sequence of separable G-C∗-algebras. If the Baum-Connes conjecture for G

with coefficients in all of I, A, and B is true then the corresponding sequence of K-groups

K0(I ored G) // K0(Aored G) // K0(B ored G)

is exact in the middle.

We will now use Gromov monster groups to give a concrete family of examples where

this fails, thus contradicting the Baum-Connes conjecture with coefficients. Assume that

G is a monster as in Definition 5.1. In particular, there is assumed to be a subset Y ⊆ G

which is (isometric to) a large girth, constant degree expander. The essential idea is to relate

Proposition 4.4 to appropriate crossed products.

To do this, equip `∞(G) with the action induced by the right translation action of G

on itself. Consider the (non-unital) G-invariant C∗-subalgebra of `∞(G) generated by the

functions supported in Y ; as this C∗-algebra is commutative, we may as well write it as

C0(W ) where W is its spectrum, a locally compact G-space. Note that as G acts on itself

by isometries on the left, the right action of g ∈ G moves elements by distance exactly the

length |g|: in symbols, d(x, xg) = |g| for all x ∈ G. Hence C0(W ) is the closure of the

∗-subalgebra of `∞(G) consisting of all functions supported within a finite distance from Y .

It follows that C0(W ) contains C0(G) as an essential ideal, whence G is an open dense subset

of W . Defining ∂W := W \G, it follows that C0(∂W ) = C0(W )/C0(G).

Let ρ denote the right regular representation of G on `2(G) and M the multiplication action

of `∞(G) on `2(G). Then the pair (M,ρ) is a covariant representation of `∞(G) for the right

G-action. Moreover, it is well-known (compare for example [17, Proposition 5.1.3]) that this

pair integrates to a faithful representation of `∞(G)oredG on `2(G) that takes C0(G)oredG

onto the compact operators. As the reduced crossed product preserves inclusions, it makes

sense to restrict this representation to C0(W )oredG, thus giving a faithful representation of

C0(W ) ored G on `2(G).

The key facts we need to build our counterexamples are contained in the following lemma.

To state it, let C∗(Y ) denote the uniform Roe algebra of Y and C∗∞(Y ) the quotient as in

Section 4. Represent C∗(Y ) on `2(G) by extending by zero on the orthogonal complement

`2(G \ Y ) of `2(Y ).
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7.3. Lemma. The faithful representations of C0(W )oredG and C∗(Y ) on `2(G) defined above

give rise to a commutative diagram

K(`2(Y ))

��

// C∗(Y )

��

// C∗∞(Y )

��
C0(G) ored G // C0(W ) ored G // C0(∂W ) ored G

where the vertical arrows are all inclusions of subsets of the bounded operators on `2(G).

Moreover, the vertical arrows are all inclusions of full corners.

Proof. Let χ denote the characteristic function of Y , considered as an element of C0(W ).

Our first goal is to identify the C∗-algebras in the top row of the diagram with the corners

of those in the botom row corresponding to the projection χ. We begin with the C∗-algebra

C0(W )oredG, which is generated by operators of the form fρg, where f ∈ C0(W ) and g ∈ G.

The compression of such an operator

(7.1) χ(fρg)χ : `2(Y )→ `2(Y )

has matrix coefficients

(7.2) 〈 δx, χfρgχ(δy) 〉 = 〈 δx, fρg(δy) 〉 = (fδyg−1)(x) =

{
f(x), y = xg

0, else,

for x, y ∈ Y . As discussed above d(x, xg) = |g|, so that the operator in line (7.1) has finite

propagation (at most |g|). Hence the corner χ(C0(W ) ored G)χ is contained in C∗(Y ).

Conversely, suppose T is a finite propagation operator on `2(Y ). For each g ∈ G define a

complex valued function fg on G by

fg(x) =

{
〈 δx, T δxg 〉, x, xg ∈ Y
0, else.

Now, fg is identically = 0 if |g| is greater than the propagation of T , and an elementary

check of matrix coefficients using line (7.2) shows that T is given by the (finite) sum

T =
∑
g

χ(fgρg)χ.

In particular, T belongs to the corner χ(C0(W ) ored G)χ. Since this corner contains all the

finite propagation operators on Y , we see that it contains C∗(Y ) as well.

The C∗-algebra C0(∂W ) ored G is handled by analogous computations, regarding χ as an

element of C0(∂W ). Finally, under the identification of C0(G) ored G with K(`2(G)), it is

clear that K(`2(Y )) = χ(C0(G) ored G)χ.
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Having identified the C∗-algebras in the top row of the diagram with corners of those in

the bottom row corresponding to the projection χ it remains to see that these corners are

full. Again, we begin with the C∗-algebra C0(W ) ored G. This crossed product is generated

by operators of the form fρg where f is a bounded function with support in the set Y h,

for some h ∈ G. Thus, it suffices to show that each such operator belongs to the ideal of

C0(W )oredG generated by χ. Now, the characteristic function of Y h, viewed as an operator

on `2(G), is ρ∗hχρh. It follows that

fρg = f(ρ∗hχρh)ρg = (fρh−1)χρhg

belongs to the ideal generated by χ, and we are through.

In a similar way, the image of χ is a full projection in C0(∂W )oredG. Finally, any non-zero

projection on `2(G), and in particular χ, is a full multiplier of C0(G)oredG = K(`2(G)). �

Now, consider the diagram

(7.3) K0(K)

��

// K0(C
∗(Y ))

��

// K0(C
∗
∞(Y ))

��
K0(C0(G) ored G) // K0(C0(W ) ored G) // K0(C0(∂W ) ored G)

functorially induced by the diagram in the above lemma. We showed in Proposition 4.4 that

the top line is not exact: the class of the Kazhdan projection in K0(C
∗(Y )) is not the image

of a class from K0(K), but gets sent to zero in K0(C
∗
∞(Y )). As the vertical maps are induced

by inclusions of full corners, they are isomorphisms on K-theory, and so the bottom line is

also not exact in the middle: again, the failure of exactness is detected by the class of the

Kazhdan projection.

Unfortunately, we cannot appeal directly to Corollary 7.2 to show that Baum-Connes with

coefficients fails for G, as the C∗-algebras C0(W ) and C0(∂W ) are not separable. To get

separable C∗-algebras with similar properties, let C0(Z) be any G-invariant C∗-subalgebra

of C0(W ) that contains C0(G); it follows that Z contains G as a dense open subset, and

writing ∂Z = Z \G gives a short exact sequence of G-C∗-algebras.

0 // C0(G) // C0(Z) // C0(∂Z) // 0

We want to guarantee that the crossed product C0(Z)oredG contains the Kazhdan projection.

There is a straightforward way to do this: our efforts in this section culminate in the following

theorem.
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7.4. Theorem. With notation as above, let C0(Z) denote any separable G-invariant C∗-

subalgebra of C0(W ) that contains C0(G) and the characteristic function χ of the expander

Y . Then

(i) the crossed product C0(Z) ored G contains the Kazhdan projection associated to Y ;

(ii) the sequence

K0(C0(G) ored G) // K0(C0(Z) ored G) // K0(C0(∂Z) ored G)

is not exact in the middle;

(iii) the Baum-Connes conjecture with coefficients is false for G.

Proof. For (i), let d ∈ N be the degree of all the vertices in Y . The Laplacian on Y (compare

line (4.2) above) is then given by

∆ = dχ−
∑

g∈G, |g|=1

χρgχ

and is thus in C0(Z) ored G. As both ∆ and χ are elements of C0(Z) ored G, the Kazhdan

projection p is as well, by the functional calculus.

Part (ii) follows from part (i), our discussion of C0(W ) above, and the commutative

diagram

K0(C0(G) ored G) // K0(C0(Z) ored G) //

��

K0(C0(∂Z) ored G)

��
K0(C0(G) ored G) // K0(C0(W ) ored G) // K0(C0(∂W ) ored G) ,

where the vertical arrows are all induced by the canonical inclusions. Part (iii) is immediate

from part (ii) and Corollary 7.2. �

At this point, we do not know exactly for which of the coefficients C0(Z) or C0(∂Z)

Baum-Connes fails. Indeed, the fact that Baum-Connes is true with coefficients in C0(G)

and a chase of the diagram from Lemma 7.1 shows that either surjectivity fails for C0(Z),

or injectivity fails for C0(∂Z). A more detailed analysis in Theorem 9.7 below shows that

in fact the assembly map is an isomorphism with coefficients in C0(∂Z), so that surjectivity

fails for G with coefficients in C0(Z).
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8. Reformulating the conjecture: exotic crossed products

In this section, we discuss how to adapt the Baum-Connes conjecture to take the coun-

terexamples from Section 7 into account. The counterexamples to the conjecture stem from

analytic properties of the reduced crossed product: a natural way to adapt the conjecture is

then to change the crossed product to one with ‘better’ properties.

Indeed, it is quite simple to define a ‘conjecture of Baum-Connes type’ for an arbitrary

crossed product functor oτ . Define the τ -Baum-Connes assembly map to be the composition

Ktop
∗ (G;A)→ K∗(Aomax G)→ K∗(Aoτ G)

of the maximal assembly map, and the map induced on K-theory by the quotient map

A omax G → A oτ G; it follows from the discussion in Section 6 that this is the usual

Baum-Connes assembly map when τ is the reduced crossed product. And one may hope

that the τ -Baum-Connes assembly map is an isomorphism under favorable conditions for

well behaved τ .

One certainly cannot expect all of these ‘τ -Baum-Connes assembly maps’ to be isomor-

phisms, however: indeed, we have already observed that isomorphism fails for some groups

when τ is the reduced crossed product. There are even examples of a-T-menable groups

and associated crossed products τ for which the τ -Baum-Connes assembly map (with trivial

coefficients) is not an isomorphism: see [10, Appendix A]. Considering these examples as

well as naturality issues, one is led to the following desirable properties of a crossed product

functor τ that might be used to ‘fix’ the Baum-Connes conjecture.

Exactness. It should fix the exactness problems: that is, for any short exact sequence

0 // I // A // B // 0

of G-C∗-algebras, the induced sequence of C∗-algebras

0 // I oτ G // Aoτ G // B oτ G // 0

should be exact.

Compatibility with Morita equivalences. Two G-C∗-algebras are equivariantly stably isomor-

phic if A ⊗ KG is equivariantly ∗-isomorphic to B ⊗ KG. Here, KG denotes the compact

operators on the direct sum ⊕∞1 `2(G), equipped with the conjugation action arising from

the direct sum of copies of the regular representation. It follows directly from the definition

of E-theory that the domain of the Baum-Connes assembly map cannot detect the difference

between equivariantly stably isomorphic coefficient algebras. Therefore we would like our
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crossed product to have the same property: see [10, Definition 3.2] for the precise condition

we use.

This is a manifestation of Morita invariance. Indeed, separable G-C∗-algebras are equiv-

ariantly stably isomorphic if and only if they are equivariantly Morita equivalent, as follows

from results in [23] and [53], which leads to a general Morita invariance result in E-theory

[28, Theorem 6.12]. See also [18, Sections 4 and 7] for the relationship to other versions of

Morita invariance.

Existence of descent. There should be a descent functor oτ : EG → E, which agrees with

oτ : GC* → C* on G-C∗-algebras and ∗-homomorphisms. This is important for proving the

conjecture: indeed, following the paradigm established by Kasparov [40], the most powerful

known approaches to the Baum-Connes conjecture proceed by proving that certain identities

hold in EG (or in the KKG-theory category, or some related more versatile setting as in

Lafforgue’s work [45]), and then using descent to deduce consequences for crossed products.

Consistency with property (T ). The three properties above hold for the maximal crossed

product. However, it is well-known that the maximal crossed product is not the right

thing to use for the Baum-Connes conjecture: the Kazhdan projections (see [67] or [39,

Section 3.7]) in C∗max(G) = C omax G are not in the image of the maximal assembly map

Ktop
∗ (G;C) → K∗(C omax G) (see [32, Discussion below 5.1]). We would thus like that all

Kazhdan projections get sent to zero under the quotient map Comax G→ Coτ G.

Summarizing the above discussion, any crossed product that ‘fixes’ the Baum-Connes

conjecture should have the following properties:

(i) it is exact ;

(ii) it is Morita compatible;

(iii) it has a descent functor in E-theory;

(iv) it annihilates Kazhdan projections.

Such crossed products do indeed exist! In order to prove this, we introduced in [10, Section

3] a partial order on crossed product functors by saying that oτ ≥ oσ if the norm on AoalgG

coming from Aoτ G is at least as large as that coming from AoσG. The following theorem

is one of the main results of [10]; the part dealing with exactness is due to Kirchberg.

8.1. Theorem. With respect to the partial order above, there is a (unique) minimal crossed

product oE with properties (i) and (ii). This crossed product automatically also has proper-

ties (iii) and (iv).
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Summarizing, our reformulation of the Baum-Connes conjecture is that the E-Baum-

Connes assembly map

Ktop
∗ (G;A)→ K∗(Aomax G)→ K∗(AoE G)

is an isomorphism; we shall refer to this assertion as the E-Baum-Connes conjecture.

It is quite natural to consider the minimal crossed product satisfying (i) and (ii) above:

indeed, it is in some sense the ‘closest’ to the reduced crossed product among all the crossed

products with properties (i) to (iv) above and, for exact groups it is the reduced crossed

product. Consequently, for exact groups the reformulated conjecture is nothing other than

the original Baum-Connes conjecture.

8.2. Remark. As mentioned above, we chose to work with E-theory, instead of the more

common KK-theory to formulate the Baum-Connes conjecture. It is natural to ask whether

the development above can be carried out in KK-theory, and in particular whether oE
admits a descent functor oE : KKG → KK. The answer is yes, as long as we restrict as

usual to countable groups and separable G-C∗-algebras [18].

9. The counterexamples and the reformulated conjecture

In this section we shall revisit the counterexamples presented in Section 7 to the origi-

nal Baum-Connes conjecture, and study them from the point of view of the reformulated

conjecture of Section 8. In particular, we shall continue with the notation of Section 7: G

is a Gromov monster group, containing an expander Y ; C0(W ) is the minimal G-invariant

C∗-subalgebra of `∞(G) that contains `∞(Y ); and ∂W = W \G.

In Theorem 7.4 we saw that if C0(Z) is any separable G-invariant C∗-subalgebra of C0(W )

containing both C0(G) and the characteristic function of Y , then the original Baum-Connes

conjecture fails for G with coefficients in at least one of C0(Z) and C0(∂Z), where again

∂Z = Z \G. The key point was the failure of exactness of the sequence

K0(C0(G) ored G) // K0(C0(Z) ored G) // K0(C0(∂Z) ored G)

in the middle, as evidenced by the Kazhdan projection of Y .

In the case of the reformulated conjecture, however, we would be working with the anal-

ogous sequence involving the E-crossed product, which is exact (even at the level of C∗-

algebras). Thus, at this point we know that the proof of Theorem 7.4 will not apply to show

the existence of counterexamples to the E-Baum-Connes conjecture. However, something

much more interesting happens: in this section, we shall show that for any Z as above, the

E-Baum-Connes conjecture is true for G with coefficients in both C0(Z) and C0(∂Z)! This
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is a stronger result than in our original paper [10], where we just showed that there exists

some Z with the property above.

There are two key-ingredients. First, we need a ‘two out of three’ lemma, which will allow

us to deduce the E-Baum-Connes conjecture for C0(Z) from the E-Baum-Connes conjecture

for C0(G) and C0(∂Z). Second, we need to show that the action of G on ∂Z is always a-T-

menable: this implies via work of Tu [65] that a strong form of the Baum-Connes conjecture

holds in the equivariant E-theory category, and allows us to deduce the E-Baum-Connes

conjecture for G with coefficients in C0(∂Z). The crucial geometric assumption needed for

the second step is that the expander Y has large girth, and therefore looks ‘locally like a

tree’.

The first ingredient is summarized in the following lemma, which is a more precise version

of Lemma 7.1. See [10, Proposition 4.6] for a proof. See also [19, Section 4] for a proof for

the original formulation of the Baum-Connes conjecture using the reduced crossed product,

and the additional assumption that G is exact on the level of K-theory.

9.1. Lemma. Let

0 // I // A // B // 0

be a short exact sequence of separable G-C∗-algebras. There is a commutative diagram of six
term sequences

Ktop
0 (G; I)

&&

// Ktop
0 (G;A) //

&&

Ktop
0 (G;B)

��

&&
K0(I oE G) // K0(A oE G) // K0(B oE G)

��

Ktop
1 (G;B)

OO

&&

Ktop
1 (G;A)oo

&&

Ktop
1 (G; I)oo

&&
K1(B oE G)

OO

K1(A oE G)oo K1(I oE G),oo

in which the front and back rectangular six term sequences are exact, and the maps from the

back sequence to the front are E-Baum-Connes assembly maps. In particular, if the Baum-

Connes conjecture holds with coefficients in two out of three of I, A, and B, then it holds

with coefficients in the third.

We now move on to the second key ingredient, the a-T-menability of the action of a

Gromov monster group G on any of the spaces ∂Z.
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9.2. Definition. Let G be a discrete group acting on the right on a locally compact space

X by homeomorphisms. The action is a-T-menable if there is a continuous function

h : X ×G→ [0,∞)

with the following properties.

(i) The restriction of h to X × {e} is 0.

(ii) For all x ∈ X and g ∈ G, h(x, g) = h(xg, g−1).

(iii) For any finite subset {g1, ..., gn} of G, any finite subset {t1, ..., tn} of R such that∑n
i=1 ti = 0, and any x ∈ X, we have that

n∑
i,j=1

titjh(xgi, g
−1
i gj) ≤ 0.

(iv) For any compact subset K of X, the restriction of h to the set

{(x, g) ∈ X ×G | x ∈ K, xg ∈ K}

is proper.

The following result is essentially [10, Theorem 7.9].

9.3. Theorem. Let G be a Gromov monster group with isometrically embedded expander Y ,

and let W and ∂W be as in Section 7 (and as explained at the beginning of this section). Let

π : G→ Y be any function such that d(x, π(x)) = d(x, Y ) for all x ∈ G.

Define a function h : G × G → [0,∞) by h(x, g) = d(π(x), π(xg)). Then h extends by

continuity to a function h : W ×G→ [0,∞), and the restriction h : ∂W ×G→ [0,∞) has

all the properties in Definition 9.2. In particular, the action of G on ∂W is a-T-menable.

The crucial geometric input into the proof is the fact that Y has large girth. This means

that as one moves out to infinity in Y , then Y ‘looks like a tree’ on larger and larger sets.

One can then use the negative type property of the distance function on a tree to prove that

h has the right properties.

Now, let C0(Z) be any separable G-invariant subalgebra of C0(W ) containing C0(G) and

the characteristic function χ of Y . Set ∂Z = Z \G. We would like to show that the action

of G on ∂Z is also a-T-menable; as ∂Z is a quotient of ∂W , it suffices from Theorem 9.3 to

show that the function h : G×G→ [0,∞) extend to h : Z ×G→ [0,∞) (at least for some

choice of function π : G → Y with the properties in the statement). We will do this via a

series of lemmas.
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9.4. Lemma. For each r > 0, let Nr(Y ) = {g ∈ G | d(g, Y ) ≤ r} denote the r-neighborhood

of Y in G. If Nr(Y ) denotes the closure of Nr(Y ) in Z, then {Nr(Y )}r∈N is a cover of Z by

an increasing sequence of compact, open subsets.

Proof. For g ∈ G, let χY g denote the characteristic function of the right translate of Y by

g, which is in C0(Z) by definition of this algebra. Hence f =
∑
|g|≤r χY g is in C0(Z). The

closure of Nr(Y ) is equal to f−1(0,∞) and to f (−1)([1,∞)), and is thus compact and open

as f is an element of C0(Z). Finally, note that finitely supported elements of `∞(G) and

translates of χ by the right action of G are supported in Nr(Y ) for some r > 0; as such

elements generate Z, it follows that {Nr(Y )}r∈N is a cover of Z. �

Choose now an order g1, g2, ... on the elements of G such that g1 = e and so that the

function N → R defined by n 7→ |gn| is non-decreasing. For each x ∈ G, let n(x) be the

smallest integer such that xgn(x) is in Y , and define a map π : G→ Y by setting π(x) = xgn(x).

Note that d(π(x), x) = d(x, Y ) for all x ∈ G.

9.5. Lemma. Fix g ∈ G and r ∈ N, and define a function

hr,g : Nr(Y )→ [0,∞), x 7→ d(π(x), π(xg)).

Then hr,g extends continuously to the closure Nr(Y ) of Nr(Y ) in Z.

Proof. Write the elements of {x ∈ G | |x| ≤ r} as g1, ..., gn with respect to the order used to

define π. For each m ∈ {1, ..., n}, let

Em = {x ∈ Nr(Y ) | xgm ∈ Y }

and note that the characteristic function χEm of Em is equal to χY gm · χNr(Y ) and is thus in

C0(Z) by Lemma 9.4. On the other hand, if we let

Fm = {x ∈ Nr(Y ) | π(x) = xgm}

then the characteristic function of Fm equals χEm

(
1−

∑m−1
i=1 χEi

)
and is thus also in C0(Z).

Similarly, if we write the elements of {h ∈ G | |h| ≤ r + |g|} as g1, ..., gn′ and for each

m ∈ {1, ..., n′} let

F ′m = {x ∈ Nr(Y ) | π(xg) = xgm},
then the characteristic function of F ′m is in C0(Z).

For each (k, l) ∈ {1, ..., n}×{1, ..., n′}, let χk,l denote the characteristic function of Fk∩F ′l ,
which is in C0(Z) by the above discussion. Note that the restriction of hr,g to Fk ∩ F ′l sends

x ∈ Nr(Y ) to

d(π(x), π(xg)) = d(xgk, xggl) = |g−1k ggl|.



34 PAUL BAUM, ERIK GUENTNER, AND RUFUS WILLETT

Hence

hr,g =
n∑
k=1

n′∑
l=1

|g−1k ggl|χk,l,

and thus hr,g is in C0(Z) as claimed. �

9.6. Corollary. The function

h : G×G→ [0,∞), x 7→ d(π(x), π(xg))

extends by continuity to h : Z × G → [0,∞). In particular, the action of G on ∂Z is

a-T-menable.

Proof. For each fixed g ∈ G, Lemma 9.5 implies that the restriction of the function

hg : G→ [0,∞), x 7→ d(π(x), π(xg))

to Nr(Y ) extends continuously to Nr(Y ); as {Nr(Y )}r∈N is a compact, open cover of Z, it

follows that hg extends to a continuous function on all of Z. Hence the function

h : G×G→ [0,∞), (x, g) 7→ d(π(x), π(xg))

extends to a continuous function on all of Z ×G. The result now follows from Theorem 9.3

as ∂Z is a quotient of ∂W . �

The following corollary is the culmination of our efforts in this section. First, it gives us

more information about what goes wrong with the Baum-Connes conjecture than Section

7 does. More importantly for our current work, it shows that the E-Baum-Connes conjec-

ture is true for this counterexample: we thus have a concrete class of example where our

reformulated conjecture ‘out-performs’ the original one.

9.7. Theorem. Let G be a Gromov monster group with isometrically embedded expander Y .

Equip `∞(G) with the action induced by the right translation action of G on itself, and let

C0(W ) denote the G-invariant C∗-subalgebra of `∞(G) generated by `∞(Y ). Let C0(Z) be

any separable G-invariant C∗-subalgebra of C0(W ) that contains C0(G) and the characteristic

function χ of Y . Then:

(i) the usual Baum-Connes assembly map for G with coefficients in C0(Z) is injective;

(ii) the usual Baum-Connes assembly map for G with coefficients in C0(Z) fails to be

surjective;

(iii) the E-Baum-Connes assembly map for G with coefficients in C0(Z) is an isomor-

phism.
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Proof. The essential point is that work of Tu [65] shows that a-T-menability of the action of

G on ∂Z implies that a strong version of the Baum-Connes conjecture for G with coefficients

in C0(∂Z) holds in the equivariant E-theory category EG. This in turn implies the τ -Baum-

Connes conjecture for G with coefficients in C0(∂Z) for any crossed product τ that admits

a descent functor. See [10, Theorem 6.2] for more details.

The result follows from this, Lemma 9.1, and the fact that the Baum-Connes conjecture

is true for any crossed product with coefficients in a proper G-algebra like C0(G). �

10. The Kadison-Kaplansky conjecture for `1(G)

The Kadison-Kaplansky conjecture states that for a torsion free discrete group G, there

are no idempotents in C∗red(G) other than the ‘trivial’ examples given by 0 and 1. It is well-

known that the usual Baum-Connes conjecture implies the Kadison-Kaplansky conjecture.

As `1(G) is a subalgebra of C∗red(G), the Kadison-Kaplansky conjecture implies that `1(G)

contains no idempotents other than 0 or 1. In this section, we show that the E-Baum-

Connes conjecture, and in fact any ‘exotic’ Baum-Connes conjecture, implies that `1(G) has

no non-trivial idempotents. Thus the E-Baum-Connes conjecture implies a weak form of

the Kadison-Kaplansky conjecture. Compare [14, Corollary 1.6] for a similar result in the

context of the Bost conjecture.

10.1. Theorem. Let G be a countable torsion free group and let σ be a crossed product

functor for G. If the σ-Baum-Connes conjecture holds for G with trivial coefficients then the

only idempotents in the Banach algebra `1(G) are zero and the identity.

Recall that there is a canonical tracial state

τ : C∗red(G)→ C, τ(a) = 〈 δe, aδe 〉.

The trace τ is well known to be faithful in the sense that a non-zero positive element of

C∗red(G) has strictly positive trace: see, for example [17, Proposition 2.5.3]. One has the

following standard C∗-algebraic lemma.

10.2. Lemma. Let e ∈ C∗red(G) be an idempotent. If τ(e) is an integer then e = 0 or e = 1.

Proof. The idempotent e is similar in C∗red(G) to a projection p [15, Proposition 4.6.2] so

that τ(p) = τ(e) ∈ Z. Positivity of τ and the operator inequality 0 ≤ p ≤ 1 imply that

0 ≤ τ(p) ≤ 1 and so τ(p) = 0 or τ(p) = 1. Since τ is faithful, we conclude p = 0 or p = 1,

and the same for e. �
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Recall that the trace τ defines a map τ∗ : K0(C
∗
red(G)) → R which sends the K-theory

class of an idempotent e ∈ C∗red(G) to τ(e) [15, Section 6.9]. The key point in the proof of

Theorem 10.1 is the following result concerning the image under τ∗ of elements in the range

of the Baum-Connes assembly map.

10.3. Proposition. Let G be a countable torsion free group. If x ∈ K0(C
∗
red(G)) is in the

image of the Baum-Connes assembly map with trivial coefficients then τ∗(x) is an integer.

Proof. This is a corollary of Atiyah’s covering index theorem [6] (see also [20]). The most-

straightforward way to connect Atiyah’s covering index theorem to the Baum-Connes con-

jecture, and thus to prove the proposition, is via the Baum-Douglas geometric model for

K-homology [9, 11]: this is explained in [69, Section 6.3] or [7, Proposition 6.1]. See also

[48], particularly Theorem 0.3, for a slightly different approach (and a more general statement

that takes into account the case when G has torsion). �

Proof of Theorem 10.1. Let e be an idempotent in `1(G). Since `1(G) is a subalgebra of both

C∗red(G) and C∗σ(G) := Coσ G, we may consider the K-theory classes [e]red and [e]σ defined

by e for each of these C∗-algebras. The usual (reduced) Baum-Connes assembly map factors

through the quotient map C∗σ(G)→ C∗red(G), and this quotient map is the identity on `1(G),

so takes [e]σ to [e]red. Thus, since [e]σ is in the range of the σ-Baum-Connes assembly map,

[e]red is in the range of the reduced Baum-Connes assembly map. Proposition 10.3 implies

now that τ(e) is an integer, and Lemma 10.2 implies that e is equal to either 0 or 1. �

11. Concluding remark

In our reformulated version of the Baum-Connes conjecture, the left side is unchanged,

that is, is the same as in the original conjecture as stated by Baum and Connes [8]. At first

glance, it may seem surprising that in the reformulated conjecture only the right hand side

is changed. In this section we shall motivate, via the Bost conjecture, precisely why the left

side should remain unchanged.

Recall that the original Baum-Connes assembly map for the group G with coefficients in

a G-C∗-algebra A factors as

Ktop
∗ (G,A)→ K∗(`

1(G,A))→ K∗(Aored G),

where `1(G,A) is the Banach algebra crossed product. According to the Bost conjecture, the

first arrow in this display is an isomorphism; the second arrow is induced by the inclusion

`1(G,A)→ Aored G.
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The Bost conjecture is known to hold in a great many cases, in particular, for fundamental

groups of Riemannian locally symmetric spaces; see [45]. In these cases, the Baum-Connes

conjecture is equivalent to the assertion that the K-theory of the Banach algebra `1(G,A)

is isomorphic to the K-theory of the C∗-algebra A ored G, and in fact that the inclusion

`1(G,A)→ Aored G induces an isomorphism.

While the Bost conjecture may seem more natural because it has the appropriate functori-

ality in the group G, it does not have the important implications for geometry and topology

that the Baum-Connes conjecture does. In particular, it is not known to imply either the

Novikov higher signature conjecture or the stable Gromov-Lawson-Rosenberg conjecture

about existence of positive scalar curvature metrics on spin manifolds. As described here,

our reformulation, which involves an appropriate C∗-algebra completion of `1(G,A) retains

these implications.

From this point of view, an attempt to reformulate the Baum-Connes conjecture should

involve finding a pre-C∗-norm on `1(G,A) with the property that the K-theory of the Banach

algebra `1(G,A) equals the K-theory of its C∗-algebra completion. This problem involves

in a fundamental way the harmonic analysis of the group, and this paper can be viewed as

indicating a possible solution.
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