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Abstract

Let K be a field. We show that every countable subgroup ofGL(n, K)

is uniformly embeddable in a Hilbert space. This implies that Novikov’s
higher signature conjecture holds for these groups. We also show that every
countable subgroup ofGL(2, K) admits a proper, affine isometric action on
a Hilbert space. This implies that the Baum-Connes conjecture holds for
these groups. Finally, we show that every subgroup ofGL(n, K) is exact, in
the sense ofC∗-algebra theory.

Introduction

The purpose of this paper is to prove Novikov’s higher signature conjecture for
linear groups, that is, for subgroups of the general linear group of a field:

Theorem. LetM be a smooth, closed and oriented manifold, letn be any positive
integer, and letρ : π1(M) → GL(n, K) be a homomorphism from the fundamental
group ofM into the general linear group of a field. Ifc ∈ H∗(GL(n, K), Q) is
any cohomology class then the higher siganture

Signc(M) = 〈L(M) ∪ ρ∗(c), [M]〉

is an oriented homotopy invariant ofM.

∗The authors were partially supported by grants from the U.S. National Science Foundation.
This work was completed during visits of the first two authors to the University of Chicago. The
first two authors thank the third for his hospitality.
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The groupGL(n, K) in the statement should be viewed as adiscretegroup.
The Novikov conjecture in the case where the image ofρ is a closed subgroup

of GL(n, R) was settled by Kasparov [20]. Subsequently Kasparov and Skandalis
dealt with (products of) linear groups over local fields [21]. The main difficulty
in extending these results to the present setting is visible in very simple examples.
The subgroup ofGL(2, R) generated by( π 0

0 1 ) and( 1 1
0 1 ) contains an infinite-rank,

free abelian subgroup and therefore admits no properly discontinuous action on a
finite dimensional complex. As a result, the methods developed by Kasparov and
Skandalis do not readily apply. However this particular subgroup is solvable, and
in particular amenable, and it was shown by Higson and Kasparov [19] how to
deal with arbitrary (countable) amenable groups by replacing finite-dimensional
complexes with infinite-dimensional Hilbert spaces.1 To prove the theorem, we
shall show thateverycountable subgroup ofGL(n, K) admits a uniform embed-
ding into a Hilbert space, in the sense of Gromov [13]. According to recent work
in C∗-algebraK-theory (see [17], [28], [32]), if a discrete groupΓ is uniformly em-
beddable into Hilbert space, and ifA is anyΓ -C∗-algebra, then the Baum-Connes
assembly map

(0.1) µA : KΓ
∗(EΓ ; A) → K∗(C

∗
red(Γ, A))

is split injective. Finally, injectivity of the Baum-Connes assembly map implies
the Novikov conjecture (see [5]).

The topic of uniform embedding into Hilbert space is closely related to the
C∗-algebraic notion ofexactnessof groupC∗-algebras [29]. For example, every
countable exact group is uniformly embeddable (the converse is not known, al-
though there is at present no known example of a uniformly embeddable group
which is not exact). We shall exploit this relationship to prove the following the-
orem:

Theorem. Let K be a field and letn be a positive integer. The reduced group
C∗-algebra of every subgroup ofGL(n, K) is exact.

Our construction of uniform embeddings of subgroups ofGL(n, K) uses some
elementary properties of valuations on fields. In the special case of subgroups of
GL(2, K) we use more specialized properties of real hyperbolic space and of the
tree associated to a discrete valuation to prove the following stronger result.

Theorem. Let K be a field. The Baum-Connes assembly map(0.1) is an isomor-
phism for any countable subgroup ofGL(2, K) and anyA.

1An alternate argument is based on the work of Pimsner and Voiculescu [26].
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Indeed we show that a groupΓ as in the statement admits a metrically proper,
isometric action on a Hilbert space (Higson and Kasparov showed in [18, 19]
that if Γ is a group which admits such an action then the Baum-Connes assembly
map (0.1) is an isomorphism for anyA). Zimmer showed that every propertyT
subgroup ofGL(2, C) is necessarily finite [33]. Our theorem improves on this,
since every propertyT group which admits a proper, isometric action on Hilbert
space is necessarily finite

In the final section we apply our results on the Novikov conjecture to the
problem of homotopy invariance of relative eta invariants. The following theorem
strengthens an earlier result of the third author [31].

Theorem. LetM andM ′ be homotopy equivalent smooth, closed, oriented, odd-
dimensional manifolds with fundamental groupπ and letρ : π → U(k) be a finite
dimensional unitary representation. The differenceη̃ρ(M) − η̃ρ(M

′) lies in the
subring ofQ generated byZ, the inverses of the orders of torsion elements inρ[π]

and1/2.

For an interesting and related analysis of linear groups via valuation theory the
reader is referred to Alperin and Shalen [1].

1 Valuations

In this section we record some elementary facts concerning fields and valuations;
a basic reference for this material is [8]. LetK be a field. For our purposes, a
valuationonK is a mapd : K → [0,∞) such that

(i) d(x) = 0 ⇔ x = 0,

(ii) d(xy) = d(x)d(y),

(iii) d(x + y) ≤ d(x) + d(y).

A valuation isarchimedeanif there is an embedding ofK into C for which the
valuation is given by the formula

d(x) = |x|, for all x ∈ K

(this is in slight variance with the reference [8], which also allows the formula
d(x) = |x|α). A valuation isdiscreteif the triangle inequality (iii) can be replaced
by the stronger inequality
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(iii) ′ d(x + y) ≤ max{d(x), d(y)},

and if, in addition, the range ofd onK× is a discrete subgroup of the multiplicative
group of positive real numbers. Ifd is a discrete valuation onK, then the set

O = {x ∈ k : d(x) ≤ 1} ⊆ K

is a subring ofK, called thering of integersin K, and the set

m = {x ∈ K : d(x) < 1}

is a principal ideal ofO. A generatorπ of m is called auniformiser. If we set
aside thetrivial valuation, for whichd ≡ 1 onK×, then the function

v(x) =
log(d(x))

log(d(π))
, for x ∈ K×

is a discrete valuation in the sense of commutative algebra; in other wordsv is a
surjective, integer-valued function onK× satisfying

(iv) v(xy) = v(x) + v(y),

(v) v(x + y) ≥ min{v(x), v(y)} (one setsv(0) = ∞).

If R is a unique factorization domain, and ifp ∈ R is prime, then the formula

d(pn a

b
) = 2−n, (p, a) = (p, b) = 1

defines a nontrivial discrete valuation on the field of fractions ofR. (The number
2 could be replaced by any number greater than1.)

If R is an integral domain, and ifd is a non-negative, real-valued function on
R satisfying the axioms (i), (ii) and (iii)′ of a discrete valuation, thend extends
uniquely to a valuation on the fraction field ofR; the extension is given by

d
(r

s

)
=

d(r)

d(s)
.

Henceforth we will use this fact without mention.
If K is a subfield of a finitely generated fieldL, and if d is a valuation onK,

thend extends to a valuation onL (usually in more than one way).
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2 Discrete Embeddability

The purpose of this section is to show that every (finitely generated) field has
plenty of valuations, in the following sense:

2.1 Definition. A finitely generated fieldK is discretely embeddableif, for ev-
ery finitely generated subringR ⊆ K, there is a countable family{d1, d2, . . . }

of valuations onK, each either archimedean or discrete, with the property that if
N1,N2, . . . are any positive numbers then the set

{ r ∈ R : dj(r) < Nj, for all j }

is finite. Given a subringR ⊆ K, a family of valuations with this property is called
R-proper.

2.2 Theorem.Every finitely generated field is discretely embeddable.

Proof. This follows from the subsequent Lemmas 2.3, 2.4 and 2.5 by an obvious
induction argument.

2.3 Lemma.Finite fields and the rational number field are discretely embeddable.

Proof. The result is trivial for finite fields. As forQ, the countable family of
valuations consisting of the unique archimedean valuation, together with thep-
adic valuations

d(pn a

b
) = p−n, (p, a) = (p, b) = 1,

is R-proper, for every finitely generated subringR ⊆ Q.

2.4 Lemma. If a field K is discretely embeddable then so is any extensionK(X)

which is generated by a single transcendental element.

Proof. Let S ⊆ K(X) be a finitely generated subring. There is a finitely generated
subringR ⊆ K, and there are finitely many monic irreducible polynomialspi ∈
K[X], with coefficients inR, such thatS is included in the ring obtained fromR[X]

by inverting the elementspi.
Let {dj} be anR-proper family of valuations onK. We extend each valuation

dj to K(X), as follows. Ifdj is discrete then we employ the formula

dj(a) = max
k

{ dj(ak) }, a = a0 + a1X + · · ·+ anXn ∈ K[X].
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If dj is archimedean, corresponding to an embeddingK ⊆ C, then we extend this
to an embedding ofK(X) into C in countably many distinct ways, and extenddj

accordingly to countably many valuationsdij onK(X).
To the collection of all these extended valuations we add the valuation defined

by the formula
d∞(a) = 2deg(a), a ∈ K[X],

along with the valuations

dpi
(pn

i

a

b
) = 2−n

associated to the primespi ∈ K[X]. We claim that the countable family of valua-
tions that we have now assembled isS-proper. Suppose thats ∈ S satisfies bounds
d(s) < Nd, as in Definition 2.1. Every element ofS has the form

s =
a

p
ki1
i1
· · ·pkil

il

,

wherea ∈ R[X], nopij dividesa and thekij > 0. We see right away by consider-
ing the valuationsdpi

that the degreeski1 , . . . , kil are bounded. Usingd∞ we then
see that the degree of numeratora is bounded, by saym. If dj was one of the dis-
crete valuations onK with which we started, thendj(a) is bounded, which means
that if ak is a coefficient of the polynomiala, thendj(ak) is bounded. Suppose
dj is one of the archimedean valuations onK with which we started, determined
by an inclusionK ⊆ C, and suppose that the extensionsdij of dj to K(X) are
determined by extensions of this inclusion which sendX to ti. The valuesdij(a)

are bounded, which means that them + 1 complex numbers

bi = a0 + a1ti + a2t
2
i + · · ·+ amtm

i (i = 1, . . . ,m + 1)

are bounded. Solving for theai in terms of thebi we see that theai are bounded
too.

We have shown that eachdj in the originalR-proper family, applied to each
coefficient of the polynomiala, is bounded. As a result, it follows from the def-
inition of anR-proper family that the coefficients of the polynomiala belong to
a finite subset ofR. Therefore the set of possible numeratorsa is finite, and we
conclude that the set of alls ∈ S satisfying boundsd(s) < Nd is finite, as re-
quired.

2.5 Lemma. Every finite extension of a discretely embeddable field is discretely
embeddable.
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Proof. Let K be discretely embeddable and letL be a finite extension ofK. We
must show thatL is discretely embeddable. Since a subfield of a discretely em-
beddable field is itself discretely embeddable, by enlargingL if necessary, we may
assume thatL is a finite normal extension ofK.

Let S be a finitely generated subring ofL. Fix a basis{x1, . . . , xn} for L over
K. Multiplication bys ∈ S is an endomorphism of theK-vector spaceL which is
represented with respect to the basis{xi} as a matrix with elements fromK. Let
R ⊆ K be the subring generated by the (finitely many) matrix elements of a finite
generating set forS. Let {dj} be anR-proper family of valuations onK. Each
valuationdj on K admits between1 andn extensionsdij to L. We show that for
all positive numbersNj the set

S = { s ∈ S : dij(s) < Nj }

is finite. Observe that the collection of valuations{dij} is stable under the action of
the Galois group Gal(L|K) (this is because ifdij is a valuation onL which extends
a given valuationdj onK, then so is the composition ofdij with any automorphism
of L overK). Consequently, ifs ∈ S, and ifs ′ is a conjugate ofs under Gal(L|K),
thens ′ satisfies the inequalities definingS too.

Let s ∈ S. Because of the wayR is defined, the coefficients of the character-
istic polynomial ofs (considerings as an endomorphism of theK-vector space
L by multiplication) are elements ofR. The roots of this polynomial ares and
its conjugates (each counted with some multiplicity between1 andn). Since the
coefficients are elementary symmetric functions of the roots, it follows that the
coefficientsr ∈ R satisfy inequalities of the form

dj(r) < Mj,

whereMj is some function of theNj andn. It follows that if s ∈ S then the
coefficients of the characteristic polynomial ofs lie in a finite set. As a result,
the number of different characteristic polynomials is finite. Hence the number of
distinct roots of these polynomials is finite, and so the setS is finite, as required.

3 Hilbert Space Preliminaries

Our proofs of the Novikov and Baum-Connes conjectures will rely on the notions
of uniform embeddability and a-T-menability, respectively. In this section we shall
recall the basic definitions.
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3.1 Definition. A discrete groupΓ is uniformly embeddable(into Hilbert space)
if there is a functionf : Γ → H such that:

(i) For every finite setF ⊆ Γ there is a constantAF > 0 such that

g−1
1 g2 ∈ F ⇒ ‖f(g1) − f(g2)‖ < AF.

(ii) For everyA > 0 there exists a finite setFA ⊆ Γ such that

‖f(g1) − f(g2)‖ < A ⇒ g−1
1 g2 ∈ FA.

The functionf is auniform embedding(even though it need not be one-to-one).

Remark.A uniformly embeddable discrete group is necessarily countable.

Remark.In the case of a finitely generated groupΓ it suffices to check condition
(i) on a finite generating setS ⊆ Γ . Indeed ifF ⊆ Γ is finite, then there existsk
such that every element ofF can be written as a product of at mostk elements from
S, and it follows easily from the triangle inequality that we may takeAF = kAS

in condition (i).

3.2 Definition. Let G be a group. Alength functionon G is function` : G →
[0,∞) such that

(i) `(e) = 0,

(ii) `(g) = `(g−1), and

(iii) `(g1g2) ≤ `(g1) + `(g2).

We donot require that̀ be proper, nor do we require that if`(g) = 1 theng = e.

3.3 Definition. A groupG with length functioǹ is `-uniformly embeddable(into
Hilbert space) if there is a functionf : G → H such that

(i) For everyB > 0 there is a constantAB > 0 such that

`(g−1
1 g2) < B ⇒ ‖f(g1) − f(g2)‖ < AB.

(ii) For everyA > 0 there existsBA > 0 such that

‖f(g1) − f(g2)‖ < A ⇒ `(g−1
1 g2) < BA.
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The functionf is an`-uniform embedding.

Remark.Uniform embeddability is equivalent tò-uniform embeddability for a
singleproper length functioǹ . Also, `-uniform embeddability (as defined above)
is equivalent to uniform embeddability (as defined by Gromov [13]) with respect
to the left invariant pseudo-metric defined by`.

There are various equivalent formulations of the condition of uniform embed-
dability, and it is convenient to work with some of them in this paper. We shall
rely primarily on Propositions 3.7 and 3.8. For a similar discussion see [14]; for a
different perspective on the proofs of these propositions see [10].

3.4 Definition. Let X be a set. A functionδ : X×X → R is anegative-type kernel
onX if

(i) δ(x, x) = 0, for everyx ∈ X,

(ii) δ(x1, x2) = δ(x2, x1), for everyx1, x2 ∈ X, and

(iii) if n ∈ N, x1, . . . , xn ∈ X, andλ1, . . . , λn ∈ R, then

n∑
i=1

λi = 0 ⇒ n∑
i,j=1

λiλjδ(xi, xj) ≤ 0.

If f : X → H is anyfunction from a setX into a Hilbert space then the function

(3.1) δ(x1, x2) = ‖f(x1) − f(x2)‖2

is a negative-type kernel. Conversely ifδ : X × X → R is a negative-type kernel
then there is an essentially unique Hilbert space functionf : X → H which is re-
lated toδ as in equation (3.1). See [11]. As a result of this, it is easy to reformulate
the definition of uniform embeddability in terms of negative-type kernels:

3.5 Proposition. A groupΓ is `-uniformly embeddable into Hilbert space if and
only if there exists a negative type kernelδ : Γ × Γ → R with the following prop-
erties:

(i) For everyB > 0 there is someAB > 0 such that

`(g−1
1 g2) ≤ B ⇒ δ(g1, g2) ≤ AB.
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(ii) For everyA > 0 there is someBA > 0 such that

δ(g1, g2) ≤ A ⇒ `(g−1
1 g2) ≤ BA.

Uniform embeddability can be further characterized in terms of kernels which
arepositive-definite, in the sense of the following definition.

3.6 Definition. A functionφ : X×X → R is a (real-valued, normalized)positive-
definite kernelonX if

(i) φ(x, x) = 1, for everyx ∈ X,

(ii) φ(x1, x2) = φ(x2, x1), for everyx1, x2 ∈ X, and

(iii) if n ∈ N, λ1, . . . , λn ∈ R, andx1, . . . , xn ∈ X, then

n∑
i,j=1

λiλjφ(xi, xj) ≥ 0.

Remark.A positive-definite kernelφ automatically satisifiesφ(x, y) ≤ 1.

A kernelδ(x1, x2) is of negative-type if and only if the kernels

φt(x1, x2) = e−tδ(x1,x2)

are positive-definite, for allt > 0 (this is Schoenberg’s Theorem; see for example
[11]). In the other direction, ifφ is a positive-definite kernel thenδ(x1, x2) =

1−φ(x1, x2) is a negative-type kernel. Using these facts we obtain the following:

3.7 Proposition. A groupG with length functioǹ is `-uniformly embeddable into
Hilbert space if and only if, for everyε > 0 and everyA > 0, there is a positive-
definite kernelφ : G×G → R with the following properties:

(i) `(g−1
1 g2) < A ⇒ |1 − φ(g1, g2)| < ε.

(ii) For everyδ > 0 there is aB > 0 such that

|φ(g1, g2)| ≥ δ ⇒ `(g−1
1 g2) < B.

Specializing to the case of a proper length function we obtain the following:
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3.8 Proposition.A countable discrete groupΓ is uniformly embeddable into Hilbert
space if and only if for everyε > 0 and every finite setF there is a positive-definite
kernelφ : Γ × Γ → R with the following properties:

(i) g−1
1 g2 ∈ F ⇒ |1 − φ(g1, g2)| < ε.

(ii) For everyδ > 0 there is a finite setFδ ⊆ Γ such that

|φ(g1, g2)| ≥ δ ⇒ g−1
1 g2 ∈ Fδ.

It is useful to consider kernels on a groupG which which areG-invariant,
meaning thatk(gg1, gg2) = k(g1, g2), for all g, g1, g2 ∈ G. A G-invariant
kernel k(g1, g2) determines a one-variable fundtionk(g) = k(1, g), which in
turn determines the kernel by the formulak(g1, g2) = k(g−1

1 g2). A function onG

is negative-typeor positive-definiteif the associatedG-invariant kernel is. These
functions are related to group actions on Hilbert space, as follows:

3.9 Lemma. Let G be a group. A functionδ : G → R is of negative-type if and
only if there exists an affine-isometric action ofG onH, and a vectorv ∈ H, such
that

δ(g) = ‖g · v − v‖2, ∀g ∈ G.

A functionφ : G → R is positive-definite if and only if there exists an isometric
linear action ofG onH and a unit vectorv ∈ H such that

φ(g) = 〈g · v, v〉, ∀g ∈ G.

3.10 Definition. A discrete groupΓ is a-T-menableor has theHaagerup property
if there exists an affine-isometric action ofΓ onH with the property that ifv ∈ H

then limg→∞ ‖g · v‖ = ∞. An action with this property ismetrically proper.

The following characterization of a-T-menability follows immediately from
the first part of Lemma 3.9. For details and additional information consult [9].

3.11 Proposition. A discrete groupΓ is a-T-menable if and only if there exists a
proper, negative-type functionδ : Γ → R.

4 Uniform Embeddability of Linear Groups

In this section we shall prove the following theorem:

11



4.1 Theorem. Let K be a field. Every countable subgroup ofGL(n, K) is uni-
formly embeddable into Hilbert space.

Appealing to results of Skandalis, Tu and Yu [17, 28] we conclude, as de-
scribed in the Introduction, that the higher signatures associated to a homomor-
phismρ : π1(M) → G are homotopy invariants whenever the image ofρ is uni-
formly embeddable into Hilbert space. We thereby obtain from Theorem 4.1 the
first theorem of the Introduction. Moreover, we have the following theorem:

4.2 Theorem.LetK be a field and letΓ be a countable subgroup ofGL(n, K). The
Baum-Connes assemby map(0.1) is split injective for every coeffecientΓ − C∗-
algebraA.

A countable discrete groupΓ is uniformly embeddable if and only if all its
finitely generated subgroups are (this follows from Proposition 3.8; compare [10]).
In proving Theorem 4.1 we may therefore assume thatΓ is finitely generated. Hav-
ing done so we may assume that the fieldK is finitely generated.

Thus,we shall now assume thatK is a finitely generated field and thatΓ is a
finitely generated subgroup ofGL(n, K). To construct the required uniform em-
bedding ofΓ we shall first construct many embeddings ofGL(n, K) into Hilbert
space which are uniform with respect to valuations onK, in a sense which we now
make precise.

Let d be a discrete valuation onK. If g = [gab] is a matrix inGL(n, K) and if
[gab] denotes the inverse matrix then the formula

(4.1) `d(g) = log max
a,b

{d(gab), d(gab)}

defines a length function onGL(n, K). If d is an archimedean valuation onK
(coming from an embedding ofK into C) then the formula

(4.2) `d(g) = log max{‖g‖, ‖g−1‖},

which involves the usual operator norm of a matrix inGL(n, C), defines a length
function.

4.3 Definition. Let d be a discrete or archimedean valuation onK and let`d be
the associated length function onGL(n, K), given by (4.1) or (4.2). Ad-uniform
embeddingof a groupG ⊆ GL(n, K) is an `d-uniform embedding ofG in the
sense of Definition 3.3.
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4.4 Proposition. If d is an archimedean valuation onK then there exists ad-
uniform embedding ofGL(n, K) into Hilbert space.

Proof. The length function we are using is the restriction toGL(n, K) of a length
function onGL(n, C) via an embeddingK ⊆ C. Therefore, it suffices to show
thatGL(n, C) is d-uniformly embeddable.

The groupG = GL(n, C) may be written as a productG = PH, whereH =

U(n) (a maximal compact subgroup ofG) andP is the group of upper triangular
matrices with positive diagonal entries. The length function`d is bi-H-invariant
in the sense that

(4.3) `d(h1gh2) = `d(g), for all h1, h2 ∈ H andg ∈ G.

As a consequence, the functiong = ph 7→ p mappingG → P is isometric in the
sense that ifg1 = p1h1 andg2 = p2h2 then`d(g−1

1 g2) = `d(p−1
1 p2). It follows

that the formulaf(ph) = f(p) extends ad-uniform uniform embeddingf of P to
one ofG. Indeed,G is d-uniformly embeddable if and only ifP is.

Finally, it is well known how tod-uniformly embed the solvable groupP
(compare [6]). SinceP is amenable there is a sequence{φm} of compactly sup-
ported, positive-definite functions onP which converges to1 uniformly on com-
pact sets. Now, the length functioǹd on G, and also onP, has the property
that bounded subsets are precisely those with compact closure. Combined, these
observations show, according to Proposition 3.7, thatP is d-uniformly embed-
dable.

The case of discrete valuations is just a little more complicated. Before dealing
with it we make some preliminary observations.

Let K be a field, letd be a discrete valuation onK and letπ be a uniformiser.
Let G = GL(n, K). We define several subgroups ofG. Let H be the subgroup
consisting of those matricesg for which the entries of bothg andg−1 belong to
the ring of integersO; let A be the subgroup of diagonal matrices whose diagonal
entries are integer powers of the uniformiserπ; let N be the subgroup comprised
of the unipotent upper triangular matrices (that is, their diagonal entries are all1);
let P = AN, which is again a subgroup ofG.

4.5 Lemma. G = PH.

Proof. The decomposition is accomplished using elementary column operations,
taking care that onlyO-multiples of one column are added to other columns. Let
g ∈ G. Apply an exchange of columns operation to put into the(n, n) position an
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elementx whose valuation is maximal along thenth row. Every element of this
row is then anO-multiple of x, so we can then add appropriate integer multiples
of the last column to the other columns to clear the other entries of the last row.
Having done so, we obtain a decomposition

g =


? ? . . . ? ?
...

...
...

...
...

? ? . . . ? ?
0 0 . . . 0 x

 · h,

whereh ∈ H. Now repeat the process on the upper(n − 1) × (n − 1) block of
gh−1, and continue. After having eventually obtainedh for which gh−1 is upper
triangular, a final right-multiplication by a diagonal matrix inH will reduce each
diagonal entry of the upper triangular matrix to a power ofπ.

4.6 Lemma.There is a sequence{φm}∞m=1 of positive-definite functions onP such
that:

(i) For all C > 0 and allε > 0 there existsMC such that for allg ∈ P

m > MC and `d(g) < C ⇒ |φm(g) − 1| < ε.

(ii) For all m there existsM such that for allg ∈ P

`d(g) > M ⇒ φm(g) = 0.

Proof. We shall construct the required positive definite functions as matrix coef-
fecients of quasiregular representations ofP.

Let Nm be the subgroup ofN generated by the elements of length not greater
thanm. We claim thatNm is bounded. Indeed, it is contained in the subgroup of
N consisting of those matrices[gab] for which

gab ∈ π(a−b)m ′
O,

providedm ′ ≥ m · | logd(π)|−1. Moreover, every element of this subgroup has
length≤ nm ′ · | logd(π)|.

Let P act on`2(P/Nm) by the quasiregular representation. Denote byAm the
finite subset of the diagonal groupA consisting of those matricesa for which
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`d(a) ≤ m
4

. Let vm ∈ `2(P/Nm) be the normalized characteristic function of
Am. Finally, define

φm(g) = 〈vm, g · vm〉`2(P/Nm).

We check that the sequence{φm} has the required properties.
For the first claim in the proposition it suffices to show that

(iii) If n ∈ N and`d(n) ≤ C thenn · vm = vm for all m > 2C.

(iv) ∀C > 0 φm(a) → 1 uniformly on{ a ∈ A : `d(a) < C }.

Indeed, assuming these letg = an ∈ P with `d(g) ≤ C. We then have

`d(a) ≤ `d(g) and `d(n) ≤ `d(a) + `d(g) ≤ 2C.

It follows from (iii) that φm(g) = φm(a) for m > 4C. The first claim in the
proposition now follows easily from (iv).

The proofs of (iii) and (iv) are straightforward. For (iii) we show that suchn

fixes every coset appearing invm. Indeed, ifa ∈ Am thennaNm = a(a−1na)Nm

so that the cosetaNm is fixed if a−1na ∈ Nm. But,

`d(a−1na) ≤ 2`d(a) + `d(n) ≤ m
2

+ C ≤ m.

Item (iv) amounts to the fact that an increasing sequence of balls gives a Følner
sequence for the amenable groupA ∼= Zn; note thata ∈ Am if and only if the
diagonal entries ofa are of the formπk with |k · logd(π)| ≤ m

4
.

For the final claim in the proposition fixm. We show that ifg = an ∈ P is
such thatφm(g) 6= 0 then`d(g) ≤ m + diam(Nm). Indeed, ifφm(g) 6= 0 there
existsa1 ∈ Am such thatga1Nm represents a coset appearing invm. We have

ga1Nm = aa1(a
−1
1 na1)Nm, with aa1 ∈ A anda−1

1 na1 ∈ N.

If follows thata ∈ Ama−1
1 andn ∈ a1Nma−1

1 . Hence

`d(g) ≤ `d(a) + `d(n) ≤ m

2
+

m

2
+ diam(Nm).

4.7 Proposition. If d is a discrete valutation onK then there exists ad-uniform
embedding ofG = GL(n, K) into Hilbert space.
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Proof. Let K be a field with a discrete valuation. The length function we are using
is bi-H-invariant in the sense of (4.3). Indeed, ifh ∈ H then`d(h) = 0 since the
entries ofh andh−1 are all inO and hence each hasd ≤ 1. It follows that forh1,
h2 ∈ H andg ∈ G we have

`d(h1gh2) ≤ `d(h1) + `d(g) + `d(h2) = `d(g).

The reverse inequality follows similarly.
As a consequence the mapG → P, obtained by fixing, for eachg ∈ G a

decompositiong = ph and assigningg = ph 7→ p, is isometric andG is d-
uniformly embeddable if and only ifP is.

Finally,P isd-uniformly embeddable. Indeed, the sequence of positive-definite
functions{φm} constructed in Lemma 4.6 lift to positive-definite kernels onP that
satisfy the conditions of Proposition 3.7.

Proof of Theorem 4.1.Let K be a finitely generated field and letΓ be a finitely
generated subgroup ofGL(n, K). (We reduced to this case earlier.) Fix a finite,
symmetric generating set forΓ . According to Theorem 2.2 the fieldK is discretely
embeddable. LetR ⊆ K be the ring generated by the matrix entries of the elements
of Γ . Observe thatR is a finitely generated ring and let{dj} be anR-proper family
of valuations onK. Let fj be adj-uniform embedding ofGL(n, K) into a Hilbert
spaceHj. We shall build a uniform embedding ofΓ as an appropriate weighted
sum of thefj.

According to Definition 3.3 there existAj > 0 such that‖fj(g1) − fj(g2)‖ <

Aj wheneverg−1
1 g2 is a generator. Choose a sequence{εj} of positive numbers

with the property that

(4.4)
∑

j

ε2
j ‖fj(s)‖2 < ∞,

for every generators, and such that
∑

j ε
2
j A

2
j < ∞. Suppose now that an element

g ∈ G is ak-fold product of generators, sayg = s1 · · · sk. Then

‖fj(g) − fj(s1)‖ = ‖fj(s1 · · · sk) − f(s1)‖
≤ ‖fj(s1 · · · sk) − fj(s1 · · · sk−1)‖+ · · ·+ ‖fj(s1s2) − fj(s1)‖
≤ (k − 1)Aj.

It follows easily that the inequality (4.4) holds not just for every generators but
for everyg ∈ Γ , and we can define a mapf from Γ into the direct sum Hilbert
space⊕Hj by the formula

f(g) = ⊕εjfj(g).
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The functionf is the required uniform embedding.
Let us check thatf satisfies the conditions of Definition 3.1. To verify item (i)

it suffices to consider the case wheng−1
1 g2 is a generator. In this case we have

‖f(g1) − f(g2)‖2 =
∑

j

ε2
j ‖fj(g1) − fj(g2)‖2 ≤ B =

∑
j

ε2
j A

2
j .

To verify item (ii) let A > 0 and suppose that‖f(g1) − f(g2)‖ < A. We then
of course have‖fj(g1) − fj(g2)‖ < ε−1

j A, for everyj. Sincefj is adj-uniform
embedding, it follows that there exist constantsBj such that̀ j(g

−1
1 g2) < Bj, for

every j. This means, in particular, that the entries of the matrixg−1
1 g2 aredj-

bounded, for everyj, and hence belong to a finite set in the ringR. Henceg−1
1 g2

belongs to a finite subset ofΓ , as required.

5 The Haagerup Approximation Property

We are going to strengthen the main theorems of the last section, as they apply to
GL(2, K):

5.1 Theorem. Let K be a field. Every countable subgroup ofGL(2, K) has the
Haagerup property.

Higson and Kasparov showed that the Baum-Connes conjecture holds for
groups with the Haagerup property [18, 19]. Therefore we obtain the following
theorem:

5.2 Theorem. Let K be a field. Every countable subgroup ofGL(2, K) satisfies
the Baum-Connes conjecture.

A countable discrete group has the Haagerup property if and only if all of
its finitely generated subgroups do [9]. In proving Theorem 5.1 we may there-
fore assume thatΓ is finitely generated. Having confined our attention to finitely
generatedΓ we may assume that the fieldK is finitely generated.

Moreover it suffices to consider the case of subgroups ofSL(2, K). Indeed, if
Γ ⊆ GL(2, K) thenΓ ∩ SL(2, K) is a normal subgroup ofΓ with abelian quotient.
Since the class of groups with the Haagerup property is closed under extensions
with amenable quotient [9]Γ has the Haagerup property ifΓ ∩ SL(2, K) does.

In light of these remarkswe assume thatK is a finitely generated field and
that Γ is a finitely generated subgroup ofSL(2, K). Our strategy for proving the
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Haagerup property is to build a proper negative-type function onΓ from an appro-
priate family of negative-type functions, each one obtained from a valuation onK.
The individual functions comprising the family will be geometric in origin.

The following lemma is essentially due to Haagerup [15]; for a detailed proof
see [11]. For a proof of the second lemma see [11].

5.3 Lemma. LetT be a simplicial tree and let

distanceT (v1, v2) =

{
the number of edges on the shortest
edge path inT fromv1 to v2.

LetG be a group acting by isometries onT . For every vertexv in T the function

δ(g) = distanceT (v, g · v)

is of negative-type onG.

5.4 Lemma.LetX be the symmetric spaceSL(2, C)/SU(2) (namely3-dimensional
real hyperbolic space), equipped with the unique(up to overall scale factor)
SL(2, C)-invariant Riemannian structure. Let

distanceX(x1, x2) =

{
length of the shortest path
in X fromx1 to x2.

LetG be a group acting by isometries onX. For every pointx ∈ X the function

δ(g) = distanceX(x, g · x)

is of negative-type onG.

Let K be a field and letd be a discrete valuation onK. A well-known con-
struction associates to this data a simplicial treeT . We require several facts about
the action ofSL(2, K) onT and pause briefly to recall its definition (for additional
information and details we refer to [27] or [7]). A vertex ofT is by definition
a homothety class ofO-lattices in the vector spaceK × K (two O-latticesL and
L ′ are homothetic if there existsx ∈ K× such thatxL = L ′). Two vertices are
adjacent if there are representative lattices for whichπL ′ ⊆ L ⊆ L ′. In the treeT
there is a distinguished vertex, namely the class of the latticeL = O×O. It is (the
unique vertex) fixed bySL(2,O).
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5.5 Lemma. Let K be a field with discrete valuationd. Let T be the associated
simplicial treeT andv0 its distinguished vertex. Ifg = [gab] ∈ SL(2, K), then

distanceT (v0, g · v0) = 2 max
a,b

−
logd(gab)

logd(π)
.

Proof. Both sides of the formula are both left and rightSL(2,O)-invariant, as
functions ofg, so it suffices to prove the formula for one element in each double
SL(2,O)-coset. Now ifg ∈ SL(2,O) then there existh1, h2 ∈ SL(2,O) such that
h1gh2 is a diagonal matrix of the form

(
πn 0
0 π−n

)
. This follows by a row and col-

umn reduction argument similar to the one employed in the proof of Lemma 4.5.
It therefore suffices to show that

distanceT (v0,
(

πn 0
0 π−n

)
v0) = 2|n|.

Fork = 0, . . . , 2n the lattices

Lk = O-span of

{(
1

0

)
,

(
0

π−k

)}
.

define distinct vertices inT and a geodesic path of length2|n| from v0 to the vertex(
πn 0
0 π−n

)
· v0.

We now apply Lemma 5.4. LetK be a field with an archimedean valuationd,
obtained from an embeddingK ⊆ C. Using this embedding we embedSL(2, K)

into SL(2, C). The groupSL(2, C) acts on3-dimensional real hyperbolic space,
as in Lemma 5.4.

5.6 Lemma. Denote byx0 the unique point inSL(2, C)/SU(2) which is fixed by
the subgroupSU(2). If g = [gab] ∈ SL(2, C) then

cosh
(
distance(x0, g · x0)

)
=

1

2
Trace(g∗g) =

1

2

∑
a,b

|gab|
2.

Proof. All parts of the formula are left and rightSU(2)-invariant, as functions
of g, so it suffices to check the formula on positive diagonal matrices. But these
constitute a one-parameter group which acts by translation along a geodesic pass-
ing throughx0. The formula follows (up to an overall constant factor which we
eliminate by scaling the metric on the symmetric space).
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Thanks to Lemmas 5.3 through 5.6, ifK is a field, and ifK is equipped with
many valuations, then the groupG = SL(2, K) is equipped with many negative-
type functions, whose growth behaviour onG we can moreover estimate in terms
of the growth behaviour of the given valuations onK. We can now prove Theo-
rem 5.1 by following the argument used to prove Theorem 4.1.

Proof of Theorem 5.1.Let K be a finitely generated field, and letΓ be a finitely
generated subgroup ofSL(2, K). (We reduced to this case earlier.)

Let R be the subring ofK generated by the (finitely many) matrix entries of a
finite generating set forΓ and observe thatΓ ⊆ SL(2, R). Let {dj} be anR-proper
family of valuations onK, as in Definition 2.1. Associated to each valuationdj

there is a negative-type functionδj on SL(2, K); if dj is a discrete valuation then
δj is defined as in Lemma 5.3, whereas ifdj is an archimedean valuation thenδj

is defined as in Lemma 5.4.
Define a negative-type functionδ onG by

δ(g) =
∑

j

εjδj(g),

where{εj} is a fixed sequence of positive real numbers decreasing at a rate suffi-
cient to guarantee that the sum converges for everyg ∈ G (such a sequence exists
because the individualδj satisfyδj(g1g2) ≤ δj(g1) + δj(g2), so that convergence
for everyg ∈ G is guaranteed by convergence for elements of a (finite) generating
set). The restriction ofδ to G is proper. Indeed ifδ(g) ≤ C then

(5.1) δj(g) ≤ εjC, for all j,

and applying Lemmas 5.5 and 5.6 we see that the entries ofg are thereforedj-
bounded, for everyj (by some quantity depending onC andεj) . Considering
the definition of discrete embeddability, it follows that the set of possible matrix
entries of thoseg ∈ G for whichδ(g) ≤ C is finite. Therefore the set of allg ∈ G

for whichδ(g) < C is finite, as required.

6 Exactness of Linear Groups

In this section we strengthen Theorem 4.1 by proving that every countable linear
group isexactin the sense ofC∗-algebra theory. As a consequence we prove that
the Novikov conjecture holds for subgroups of almost connected Lie groups.
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The exactness condition is closely related to uniform embeddability. Indeed,
every exact group is uniformly embeddable (see [25], [14]) and at present there
is no example of a uniformly embeddable group which is not exact. However,
exactness has some advantages over uniform embeddability — for example the
class of exact groups is closed under group extensions (see [22]), whereas closure
under extensions for uniformly embeddable groups is not known at present (but
see [10]).

Rather than give a detailed account of exactness we shall present just one of
several equivalent formulations of exactness (see [25]). For a fuller treatment of
the topic the reader is referred to [2] or [29].

6.1 Definition. A countable discrete group isexactif there exists a sequence of
positive-definite kernelsφn : Γ × Γ → R with the following two properties:

(i) For every finite setF ⊂ Γ and everyε > 0 there is anN such that

g−1
1 g2 ∈ F ⇒ φn(g1, g2) > 1 − ε, ∀n > N.

(ii) For everyn there is a finite setF ⊂ Γ such that

φn(g1, g2) 6= 0 ⇒ g−1
1 g2 ∈ F.

6.2 Theorem.LetK be a field. Every countable subgroup ofGL(n, K) is exact.

Remark.It makes sense to consider the exactness of non-countable groups. The
previous theorem holds foranysubgroup, countable or not.

A countable discrete group is exact if and only if all of its finitely gener-
ated subgroups are exact ([29], [10]). Therefore it suffices to prove Theorem 6.2
for finitely generated subgroups ofGL(n, K). Having restricted our attention to
finitely generated subgroups we may also assume that the fieldK is finitely gen-
erated. Thereforewe assume thatK is a finitely generated field and thatΓ is a
finitely generated subgroup ofGL(n, K).

The characterization of exactness we are using (which we are taking as the def-
inition) is formally very similar to the characterization of uniform embeddability
given in Proposition 3.8. It is therefore not surprising that the proof of Theo-
rem 6.2 has much in common with that of Theorem 4.1. We begin by recalling
the necessary facts from Section 4.

Let K be a field and letd be a discrete valuation onK. We decompose the
groupG = GL(n, K) as a product

G = PH,
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and fix, for eachg ∈ G, a decompositiong = ph. We define a mapG → P by
g = ph 7→ p; as explained in the proof of Proposition 4.7 this map is isometric. In
Lemma 4.6 we constructed certain positive-definite functionsφm : P → R. These
lift to P-invariant positive-definite kernels, which we extend to positive definite
kernels onG using the mapG → P above:

φm(p1h1, p2h2) = φm(p−1
1 p2).

According to the properties of theφm described in Proposition 4.7, and the fact
that the mapG → P is isometric, the positive-definite kernels onG = GL(n, K)

so constructed have the following properties:

(i) For everyC > 0 andε > 0 there existsm such that

`d(g−1
1 g2) ≤ C ⇒ |1 − φm(g1, g2)| < ε.

(ii) For everym there existsB > 0 such that

φm(g1, g2) 6= 0 ⇒ `d(g−1
1 g2) < B.

(In fact any sufficiently largem will work in (i).)
We proceed similarly in the case of an archimedean valuationd on K. The

proof of Proposition 4.4 exhibits a sequence of positive-definite functionsφm on
the solvable groupP ⊆ GL(n, C) which we again convert to positive-definite
kernels onGL(n, K) ⊆ GL(n, C), using the fact thatGL(n, C) is the product of
P and the compact groupU(n). We obtain positive-definite kernels onGL(n, K)

with same properties (i) and (ii) above.
Putting the two constructions together we obtain the following result:

6.3 Lemma. Let {dj} be a sequence valuations onK, each either discrete or
archimedean. Let{εj} and{Aj} be positive sequences. There exist positive-definite
kernelsφj onGL(n, K) such that

(i) If `j(g
−1
1 g2) ≤ Aj, then|1 − φj(g1, g2)| < εj.

(ii) For everyj there exists a constantBj such that if`j(g
−1
1 g2) > Bj, then

φj(g1, g2) = 0.

We now construct new positive-definite kernels on finitely generated sub-
groups ofGL(n, K) by combining the positive-definite kernels associated to a
sequence of valuations onK. To do so we need the following fact:

22



6.4 Lemma. LetX be any set.

(i) The pointwise productφ1(x1, x2)φ2(x1, x2) of two positive-definite ker-
nels is again a positive-definite kernel.

(ii) Should it converge, the product
∏∞

j=1 φj(x1, x2) of a countable family of
positive-definite kernels is again positive-definite.

Remark.The convergence hypothesis is that for everyx1, x2 ∈ X the finite prod-
ucts

∏J
j=1 φj(x1, x2) converge pointwise asJ → ∞. It is permissible that the limit

be zero.

Proof. The first statement is proved in [11, Corollary 5.5]. The second state-
ment follows from the first, since a pointwise limit of positive-definite kernels is
positive-definite.

Remark.Thanks to the first part of the lemma, we can square the positive-definite
functions which appear in Lemma 6.3 and thereby assume that they have the addi-
tional propertyφj(g1, g2) ≥ 0. This we shall do without further comment below.

Proof of Theorem 6.2.Let K be a finitely generated field and letΓ ⊆ GL(n, K) be
a finitely generated subgroup. (We reduced to this case earlier.) LetR ⊆ K be the
ring generated by the coefficients of the matrices inΓ , and let{dj} be anR-proper
family of valuations onK. Let F be a finite subset ofΓ and letε > 0. For eachj,
let Aj be a constant such that

g−1
1 g2 ∈ F ⇒ `j(g

−1
1 g2) ≤ Aj,

and let{εj} be a positive sequence such that
∏

j(1 − εj) ≥ 1 − ε. Now let {φj} be
a sequence of positive-definite kernels onGL(n, K) with the properties described
in Lemma 6.3. Form the product

φ(g1, g2) =
∏

j

φj(g1, g2),

which in view of Lemma 6.4 is a positive-definite kernel onGL(n, K). If g−1
1 g2 ∈

F thenφj(g1, g2) > 1 − εj, for all j, and therefore

g−1
1 g2 ∈ F ⇒ φ(g1, g2) > 1 − ε.

If φ(g1, g2) 6= 0 then of courseφj(g1, g2) 6= 0, for all j, and from this it follows
that `j(g

−1
1 g2) < Bj, for all j, where the constantsBj are as in Lemma 6.3. As
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a result, it follows from the definition of the length functions and of anR-proper
family that there is a finite setFB ⊆ Γ such that

φ(g1, g2) 6= 0 ⇒ g−1
1 g2 ∈ FB.

Inspecting Definition 6.1, we see that we have proved the exactness ofΓ .

As an application of Theorem 6.2 we obtain the following counterpart to Kas-
parov’s proof of the Novikov conjecture for discrete subgroups of Lie groups [20].

6.5 Theorem. Every countable subgroup of an almost connected Lie group is
exact, and therefore uniformly embeddable into Hilbert space. As a result, the
Novikov conjecture holds for all countable subgroups of almost connected Lie
groups.

Proof. Assume first thatΓ ′′ is a countable subgroup of aconnectedLie group.
Using the adjoint representation ofG we see that there is an extension of groups

1 → Z → Γ ′′ → Γ ′ → 1

whereZ is abelian (in fact central inΓ ′′) andΓ ′ is linear [16]. Since the class
of exact groups is closed under extensions, and since bothZ andΓ ′ are exact, it
follows thatΓ ′′ is exact.

In the general case, ifΓ is a subgroup of an almost connected Lie group then
there is an extension

1 → Γ ′′ → Γ → F → 1,

whereF is a finite group and whereΓ ′′ is a subgroup of a connected Lie group.
SinceF andΓ ′′ are exact it follows thatΓ is exact too.

7 An Application to Relative Eta Invariants

Atiyah, Patodi and Singer [4] introduced a real-valued invariantη̃ρ(M) of an odd-
dimensional, smooth, closed and oriented manifoldM, equipped with a finite-
dimensional unitary representationρ : π1(M) → U(k) of its fundamental group.
Although this invariant isnothomotopy invariant, the third author has shown [31],
using the Novikov Conjecture for subgroups ofGLn(Q), that for homotopy equiv-
alent manifoldsM andM ′ the differencẽηρ(M

′) − η̃ρ(M) is arational number.
In this section we shall use the main result of this paper to improve this result.
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7.1 Theorem. Let M and M ′ be homotopy equivalent smooth, closed and ori-
ented, odd-dimensional manifolds with fundamental groupπ and letρ : π →
U(k) be a finite-dimensional unitary representation. Let

R = { p a prime: ρ[π] has an element of orderp }.

There is a positive integerS, all of whose odd prime factors belong toR, such that
η̃ρ(M) − η̃ρ(M

′) ∈ 1
S
Z.

Remark.WhenR is empty, or ifπ is torsion-free, the third author has conjectured
that η̃ρ is a homotopy invariant [30]. IfR is non-empty, then the “integrality”
statement above is, in some sense, the best possible, aside from the special role of
the prime2.

Proof. The idea of the proof of Theorem 7.1 is as follows. DefineΓ to be the
linear groupρ[π]. We shall realize the invariant̃ηρ(M) (in R moduloZ[1

2
]) as the

image of[M] ∈ KOn(BΓ)[1
2
] (theK-homology class determined by the signature

operator ofM) under a map

(7.1) KOn(BΓ)[1
2
] −→ R

/
Z[1

2
].

We shall also construct a map

(7.2) KOn(BΓ)[ 1
2R

] −→ Kn(C∗
red(Γ))[ 1

2R
]

with the following properties:

(i) Thanks to Theorem 4.1, the map is (split) injective.

(ii) The image of theK-homology class[M] ∈ KOn(BΓ)[ 1
2R

] under this map
is a homotopy invariant.

(Here and subsequently, ifA is an abelian group thenA[ 1
2R

] denotes the tensor
product with the ring obtained fromZ by inverting2 and the elements ofR.) Af-
ter invertingR in (7.1) we see right away that ifM andM ′ are homotopy equiva-
lent then the relative eta-invariantsη̃ρ(M) andη̃ρ(M

′) are equal inR / Z[ 1
2R

], as
required.

The map (7.1) is constructed as follows. LetΩm(X) denote them-dimensional,
smooth, oriented bordism group of the spaceX (thus classes inΩm(X) are repre-
sented by mapsφ : N → X whereN is a closed, oriented,m-dimensional, smooth
manifold). The direct sumΩ∗(X) = ⊕mΩm(X) is a module overΩ∗(pt), which

25



is itself a ring. The map which sends[N] ∈ Ω4k(pt) to Sign(N), and which is
zero on all componentsΩm(pt), wherem is not divisible by4, is a ring homo-
morphism fromΩ∗(pt) to Z[1

2
]. Using it, we can form the tensor product

Ω∗(X)⊗Ω∗(pt) Z[1
2
].

The tensor product is naturally aZ/4Z-graded abelian group, and according to
Sullivan’s “Conner-Floyd theorem” [24] the signature operator provides an iso-
morphism

(7.3) Ω∗(X)⊗Ω∗(pt) Z[1
2
] ∼= KO∗(X)⊗ Z[1

2
] ⊆ K∗(X)⊗ Z[1

2
].

Now let X = BΓ . According to the APS index theorem [3], the relative eta-
invariantη̃ρ defines a homomorphism

(7.4) Ω∗(BΓ)⊗Ω∗(pt) Z[1
2
] → R/Z[1

2
].

This is because if[N] = [N ′] in the left hand side then there is a compact manifold
mapping toBΓ whose boundary is the disjoint union of2a copies ofN, the same
number of copies of−N ′ and product manifoldsAi × Bi with Sign(Ai) = 0.
Sinceη̃ρ(A×M) = Sign(A) · η̃ρ(M) (see [12]) the product manifolds have triv-
ial relative eta-invariant, and since the relative eta-invariants of all the boundary
components add up to an integer (by the APS index theorem) we see that

η̃ρ(N) = η̃ρ(N
′) ∈ R/Z[1

2
],

as required. Putting together (7.3) and (7.4) we obtain the map (7.1) that we need.
It remains to define the map (7.2). There is a natural map

(7.5) KOn(BΓ)[1
2
] −→ Kn(BΓ)[1

2
]

which is split injective.2 Now the left-hand side of the Baum-Connes assembly
map (0.1) (in the case of trivial coefficientC∗-algebraA = C) is the Kasparov
equivariantK-homology of the classifying spaceEΓ for properΓ -actions (we shall
denote this byKΓ

n(EΓ)). See [5]. There is a natural map

(7.6) Kn(BΓ) −→ KΓ
n(EΓ)

2We already invoked this when we associated classes inKOn(BΓ)[1
2 ] to elliptic operators.
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and after invertingR this map becomes a split-injection. Indeed ifBΓ is the quo-
tient of EΓ by Γ then there is a map fromKΓ

n(EΓ) to Kn(BΓ) for which the com-
position

Kn(BΓ) → KΓ
n(EΓ) → Kn(BΓ)

is induced by the natural map fromBΓ to BΓ . Standard arguments show that
the induced map is an isomorphism after inverting the primes inR (compare
Lemma 2.8 in [23]). Putting together (7.5) and (7.6) we obtain the split injec-
tion (7.2). The fact that the class[M] is homotopy invariant in the image follows
from the homotopy invariance of theK-theoretic index of the signature operator
(see [5] again for references).
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