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Abstract

Let K be a field. We show that every countable subgrougbfn, K)
is uniformly embeddable in a Hilbert space. This implies that Novikov’s
higher signature conjecture holds for these groups. We also show that every
countable subgroup @i (2, K) admits a proper, affine isometric action on
a Hilbert space. This implies that the Baum-Connes conjecture holds for
these groups. Finally, we show that every subgrou@bofn, K) is exact, in
the sense of*-algebra theory.

Introduction

The purpose of this paper is to prove Novikov’s higher signature conjecture for
linear groups, that is, for subgroups of the general linear group of a field:

Theorem. LetM be a smooth, closed and oriented manifoldpldte any positive
integer, and lep: 7;(M) — GL(n, K) be ahomomorphism from the fundamental
group of M into the general linear group of a field. ¢ € H*(GL(n,K),Q) is
any cohomology class then the higher siganture

Sign.(M) = (L(M) U p*(c), [MI)

is an oriented homotopy invariant of.

*The authors were partially supported by grants from the U.S. National Science Foundation.
This work was completed during visits of the first two authors to the University of Chicago. The
first two authors thank the third for his hospitality.



The groupGL(n, K) in the statement should be viewed adiscretegroup.

The Novikov conjecture in the case where the image isfa closed subgroup
of GL(n, R) was settled by Kasparov [20]. Subsequently Kasparov and Skandalis
dealt with (products of) linear groups over local fields [21]. The main difficulty
in extending these results to the present setting is visible in very simple examples.
The subgroup o6L(2,R) generated by 7 ¢) and(} 1) contains an infinite-rank,
free abelian subgroup and therefore admits no properly discontinuous action on a
finite dimensional complex. As a result, the methods developed by Kasparov and
Skandalis do not readily apply. However this particular subgroup is solvable, and
in particular amenable, and it was shown by Higson and Kasparov [19] how to
deal with arbitrary (countable) amenable groups by replacing finite-dimensional
complexes with infinite-dimensional Hilbert spade3o prove the theorem, we
shall show thaeverycountable subgroup @il (n, K) admits a uniform embed-
ding into a Hilbert space, in the sense of Gromov [13]. According to recent work
in C*-algebraK-theory (see [17], [28], [32]), if a discrete groljs uniformly em-
beddable into Hilbert space, andAfis anyl’-C*-algebra, then the Baum-Connes
assembly map

(0.1) pa: KL(ETA) = Ko(Creg([A))

is split injective. Finally, injectivity of the Baum-Connes assembly map implies
the Novikov conjecture (see [5]).

The topic of uniform embedding into Hilbert space is closely related to the
C*-algebraic notion oexactnes®f group C*-algebras [29]. For example, every
countable exact group is uniformly embeddable (the converse is not known, al-
though there is at present no known example of a uniformly embeddable group
which is not exact). We shall exploit this relationship to prove the following the-
orem:

Theorem. Let K be a field and leth be a positive integer. The reduced group
C*-algebra of every subgroup &L (n, K) is exact.

Our construction of uniform embeddings of subgroup&bfn, K) uses some
elementary properties of valuations on fields. In the special case of subgroups of
GL(2,K) we use more specialized properties of real hyperbolic space and of the
tree associated to a discrete valuation to prove the following stronger result.

Theorem. LetK be a field. The Baum-Connes assembly if@ap)is an isomor-
phism for any countable subgroup@t_ (2, K) and anyA.

1An alternate argument is based on the work of Pimsner and Voiculescu [26].
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Indeed we show that a grodipas in the statement admits a metrically proper,
isometric action on a Hilbert space (Higson and Kasparov showed in [18, 19]
that if I' is a group which admits such an action then the Baum-Connes assembly
map (0.1) is an isomorphism for ay). Zimmer showed that every property
subgroup ofGL(2,C) is necessarily finite [33]. Our theorem improves on this,
since every property group which admits a proper, isometric action on Hilbert
space is necessarily finite

In the final section we apply our results on the Novikov conjecture to the
problem of homotopy invariance of relative eta invariants. The following theorem
strengthens an earlier result of the third author [31].

Theorem. LetM and M’ be homotopy equivalent smooth, closed, oriented, odd-
dimensional manifolds with fundamental grompind letp : T — U(k) be a finite
dimensional unitary representation. The differemgéM) — 11,(M’) lies in the
subring ofQ generated by, the inverses of the orders of torsion elementgiri
and1/2.

For an interesting and related analysis of linear groups via valuation theory the
reader is referred to Alperin and Shalen [1].

1 \Valuations

In this section we record some elementary facts concerning fields and valuations;
a basic reference for this material is [8]. Uetbe a field. For our purposes, a
valuationonK is a mapd: K — [0, co) such that
(i) dix)=0 & x=0,
(i) dixy) = d(x)d(y),
(i) d(x+y) < d(x)+ dy).

A valuation isarchimedeanf there is an embedding & into C for which the
valuation is given by the formula

d(x) =1x|, forallx € K

(this is in slight variance with the reference [8], which also allows the formula
d(x) = [x|*). A valuation isdiscreteif the triangle inequality (iii) can be replaced
by the stronger inequality



(iii) " d(x +y) < maXd(x), d(y)},

and if, in addition, the range @fon K> is a discrete subgroup of the multiplicative
group of positive real numbers. dfis a discrete valuation oK, then the set

O={xek:dx)<1}C K
is a subring ok, called thering of integeran K, and the set
m={xeK:dx) <1}

is a principal ideal of9. A generatort of m is called auniformiser If we set
aside therivial valuation, for whichd = 1 onK*, then the function

_ log(d(x))

—m, fOfXEK

v(x)
is a discrete valuation in the sense of commutative algebra; in other wasds
surjective, integer-valued function & satisfying

(iv) vixy) =v(x) +v(y),
(V) v(x +y) > min{v(x),v(y)} (one sets(0) = o).

If R is a unique factorization domain, andpifc R is prime, then the formula

dp"s)=2" (p,a)=(p,b) =1

b
defines a nontrivial discrete valuation on the field of fractionB.ofThe number
2 could be replaced by any number greater than
If R is an integral domain, and i is a non-negative, real-valued function on
R satisfying the axioms (i), (i) and (iif)of a discrete valuation, thed extends
uniquely to a valuation on the fraction field Rf the extension is given by

a(f) =40

Henceforth we will use this fact without mention.
If K is a subfield of a finitely generated field and if d is a valuation or¥,
thend extends to a valuation dn(usually in more than one way).



2 Discrete Embeddability

The purpose of this section is to show that every (finitely generated) field has
plenty of valuations, in the following sense:

2.1 Definition. A finitely generated fielK is discretely embeddabliié for ev-

ery finitely generated subrin C K, there is a countable familyd,, d,, ...}

of valuations orK, each either archimedean or discrete, with the property that if
N1, N,, ... are any positive numbers then the set

{reR: dj(r) <Ny, forallj}

is finite. Given a subrin@® C K, a family of valuations with this property is called
R-proper.

2.2 Theorem. Every finitely generated field is discretely embeddable.

Proof. This follows from the subsequent Lemmas 2.3, 2.4 and 2.5 by an obvious
induction argument. O

2.3 Lemma. Finite fields and the rational number field are discretely embeddable.

Proof. The result is trivial for finite fields. As fofQ, the countable family of
valuations consisting of the unique archimedean valuation, together with-the
adic valuations

a
d(png) :p_n) (p)a) - (p)b) :1)
is R-proper, for every finitely generated subriRgC Q. ]

2.4 Lemma. If a field K is discretely embeddable then so is any extenkiox)
which is generated by a single transcendental element.

Proof. LetS C K(X) be a finitely generated subring. There is a finitely generated
subringR C K, and there are finitely many monic irreducible polynomiajs=
K[X], with coefficients irR, such thas is included in the ring obtained froRIX]
by inverting the elements;.

Let{d;} be anR-proper family of valuations oK. We extend each valuation
d; to K(X), as follows. Ifd; is discrete then we employ the formula

d]-(a):mka){dj(ak)}, a:ao+a1X+---+anX“€K[X].



If d; is archimedean, corresponding to an embeddirig C, then we extend this
to an embedding oK (X) into C in countably many distinct ways, and extegd
accordingly to countably many valuatiodg on K(X).
To the collection of all these extended valuations we add the valuation defined
by the formula
do (@) = 24¢9@) ¢ e K[X],

along with the valuations
a

d‘pi (pl’lg) — 27“
associated to the primes € K[X]. We claim that the countable family of valua-
tions that we have now assembledproper. Suppose thate S satisfies bounds
d(s) < Ng, as in Definition 2.1. Every element Sfhas the form

a

Ky K
pi] .. .‘pil

S =

wherea € R[X], nop;, dividesa and thek;, > 0. We see right away by consider-
ing the valuationsl,,, thatthe degreds,, , ..., k; are bounded. Using., we then
see that the degree of numeratois bounded, by say. If d; was one of the dis-
crete valuations ol with which we started, thed;(a) is bounded, which means
that if ay is a coefficient of the polynomial, thend;(ay) is bounded. Suppose
d; is one of the archimedean valuationsnvith which we started, determined
by an inclusionK C C, and suppose that the extensiahs of d; to K(X) are
determined by extensions of this inclusion which s&no t;. The valuesi;;(a)
are bounded, which means that tihe+ 1 complex numbers

bi=aot+ati+ati+--+ant™  (i=1,...,m+1)

are bounded. Solving for the, in terms of theb; we see that the; are bounded
too.

We have shown that eacl) in the originalR-proper family, applied to each
coefficient of the polynomiadi, is bounded. As a result, it follows from the def-
inition of an R-proper family that the coefficients of the polynomiabelong to
a finite subset oR. Therefore the set of possible numerataris finite, and we
conclude that the set of &l € S satisfying boundsli(s) < Ny is finite, as re-
quired. H

2.5 Lemma. Every finite extension of a discretely embeddable field is discretely
embeddable.



Proof. Let K be discretely embeddable and lebe a finite extension of. We
must show that is discretely embeddable. Since a subfield of a discretely em-
beddable field is itself discretely embeddable, by enlargirigiecessary, we may
assume that is a finite normal extension .

Let S be a finitely generated subring bf Fix a basigxy, ..., x,} for L over
K. Multiplication by s € S is an endomorphism of thie-vector spacé which is
represented with respect to the bgsig as a matrix with elements froid. Let
R C K be the subring generated by the (finitely many) matrix elements of a finite
generating set fof. Let{d;} be anR-proper family of valuations of. Each
valuationd; on K admits between andn extensionsl;; to L. We show that for
all positive number®; the set

§={seS: dy(s) <Nj}

is finite. Observe that the collection of valuatidds;} is stable under the action of
the Galois group G&L|K) (this is because id;; is a valuation orL. which extends
agiven valuationd; onK, then so is the composition df; with any automorphism
of L overK). Consequently, i§ € 8, and ifs’ is a conjugate of under GalL|K),
thens’ satisfies the inequalities definiggoo.

Lets € 8. Because of the waR is defined, the coefficients of the character-
istic polynomial ofs (considerings as an endomorphism of tHévector space
L by multiplication) are elements &. The roots of this polynomial are and
its conjugates (each counted with some multiplicity betwkandn). Since the
coefficients are elementary symmetric functions of the roots, it follows that the
coefficientsr € R satisfy inequalities of the form

dj(r) < M;,

whereM,; is some function of théN; andn. It follows that if s € § then the
coefficients of the characteristic polynomial ©ofie in a finite set. As a result,
the number of different characteristic polynomials is finite. Hence the number of
distinct roots of these polynomials is finite, and so theSsistfinite, as required.

O

3 Hilbert Space Preliminaries

Our proofs of the Novikov and Baum-Connes conjectures will rely on the notions
of uniform embeddability and a-T-menability, respectively. In this section we shall
recall the basic definitions.



3.1 Definition. A discrete grougd" is uniformly embeddablénto Hilbert space)
if there is a functiorf: I' — H such that:

(i) For every finite set C I" there is a constamt ¢ > 0 such that

97'g2€F = |f(g1) —f(g2)] < Ar.

(ii) For everyA > 0 there exists a finite séty C I" such that

If(g1) —f(g2)| <A = g7'g2€Fa.

The functionf is auniform embeddingeven though it need not be one-to-one).

Remark.A uniformly embeddable discrete group is necessarily countable.

Remark.In the case of a finitely generated groujit suffices to check condition
(i) on a finite generating s&t C I'. Indeed ifF C T is finite, then there exists
such that every element bican be written as a product of at mastlements from
S, and it follows easily from the triangle inequality that we may tdke= kAs
in condition (i).

3.2 Definition. Let G be a group. Alength functionon G is function{ : G —
[0, 00) such that

(i) £(e) =0,
(i) €(g) =¢(g™ "), and
(i) €(g192) < (g1) +€(g2).

We donotrequire that be proper, nor do we require thatlifg) = 1 theng =e.

3.3 Definition. A group G with length functiorf is £-uniformly embeddablénto
Hilbert space) if there is a functiof: G — JH such that

(i) For everyB > 0 there is a constamtg > 0 such that

Ug7'g2) <B = |[[f(g1) — flga)| < As.

(i) ForeveryA > 0 there exist8 > 0 such that

1f(g1) — f(g2)[| <A = {(g7'g2) < Ba.



The functionf is an{-uniform embedding

Remark.Uniform embeddability is equivalent #@uniform embeddability for a
singleproperlength functior!. Also, {-uniform embeddability (as defined above)
is equivalent to uniform embeddability (as defined by Gromov [13]) with respect
to the left invariant pseudo-metric defined by

There are various equivalent formulations of the condition of uniform embed-
dability, and it is convenient to work with some of them in this paper. We shall
rely primarily on Propositions 3.7 and 3.8. For a similar discussion see [14]; for a
different perspective on the proofs of these propositions see [10].

3.4 Definition. Let X be a set. A function: X x X — R is anegative-type kernel
onX if

() 6(x,x) =0, for everyx € X,
(i) o(x1,x2) = d(x2,x1), for everyx;,x, € X, and
(i) if n e N, xq,...,x, € X,andAq,..., A, € R, then

> A=0 = i AN (x4, %) < 0.

i=1 i,j=1
If f: X — Hisanyfunction from a seX into a Hilbert space then the function
(3.1) 5(x1,%2) = [[f(x1) — f(x2)||?

is a negative-type kernel. Converselytf X x X — R is a negative-type kernel
then there is an essentially unique Hilbert space fundtiod — H which is re-
lated tod as in equation (3.1). See [11]. As aresult of this, it is easy to reformulate
the definition of uniform embeddability in terms of negative-type kernels:

3.5 Proposition. A groupT is £-uniformly embeddable into Hilbert space if and
only if there exists a negative type kerdell’ x ' — R with the following prop-
erties:

(i) For everyB > 0O there is som&\ g > 0 such that

Ug7'g2) <B = &(g1,92) < Ag.



(i) For everyA > 0 there is som& » > 0 such that
5(g1,92) <A = {(g7'92) < Ba.

]

Uniform embeddability can be further characterized in terms of kernels which
arepositive-definitein the sense of the following definition.

3.6 Definition. A function¢d: X x X — R is a (real-valued, normalizegpsitive-
definite kernebn X if

() ¢(x,x) =1, foreveryx € X,
(i) P(xq,%x2) = d(x2,x1), for everyxq,x, € X, and
@) if ne N, A, ..., A, € R, andxq,...,x, € X, then

D AAD(xi, %) > 0.

i,j=1

Remark.A positive-definite kernep automatically satisifies(x,y) < 1.
A kerneld(x1,x3) is of negative-type if and only if the kernels

Bulx,xz) = e P12

are positive-definite, for all > 0 (this is Schoenberg’s Theorem; see for example
[11]). In the other direction, ith is a positive-definite kernel the(x;,x,) =
1—d(x1,x3) is a negative-type kernel. Using these facts we obtain the following:

3.7 Proposition. A groupG with length functiori is £-uniformly embeddable into
Hilbert space if and only if, for every > 0 and everyA > 0, there is a positive-
definite kernelb: G x G — R with the following properties:

(i) Lg7'g) <A = [T—dlgr, )l <e.
(i) For everyd > 0 there is aB > 0 such that

lb(g1,92)[ >0 = f(gfgz) < B. O
Specializing to the case of a proper length function we obtain the following:

10



3.8 Proposition. A countable discrete groupis uniformly embeddable into Hilbert
space if and only if for every > 0 and every finite sdtthere is a positive-definite
kerneld: ' x I' — R with the following properties:

M) g7'g26€F = [1—dlgn gl <e.
(i) For everyd > 0 there is a finite sef; C I" such that

d(g91,02)|>86 = g7'gaeFs. O

It is useful to consider kernels on a gro@which which areG-invariant,
meaning that(ggs, gg2) = k(g1,92), for all g,g1,92 € G. A G-invariant
kernelk(g, g;) determines a one-variable fundtidaig) = k(1, g), which in
turn determines the kernel by the formideys, g2) = k(g;"'g2). A function onG
is negative-typer positive-definitaf the associateds-invariant kernel is. These
functions are related to group actions on Hilbert space, as follows:

3.9 Lemma. Let G be a group. A function: G — R is of negative-type if and
only if there exists an affine-isometric action@bn H, and a vectow € H, such
that

8(g) =llg-v—v|%, VgeG.

A functiond: G — R is positive-definite if and only if there exists an isometric
linear action of G on H and a unit vectow € H such that

d(g) ={(g-v,v), VgeGQG. O

3.10 Definition. A discrete groug' is a-T-menabler has theHaagerup property
if there exists an affine-isometric actionlobn H with the property that ity € H
then limy_, ||g - v|| = co. An action with this property isnetrically proper

The following characterization of a-T-menability follows immediately from
the first part of Lemma 3.9. For details and additional information consult [9].

3.11 Proposition. A discrete grougd” is a-T-menable if and only if there exists a
proper, negative-type functian I — R. O

4 Uniform Embeddability of Linear Groups

In this section we shall prove the following theorem:
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4.1 Theorem. Let K be a field. Every countable subgroup @i (n, K) is uni-
formly embeddable into Hilbert space.

Appealing to results of Skandalis, Tu and Yu [17, 28] we conclude, as de-
scribed in the Introduction, that the higher signatures associated to a homomor-
phismp: ;(M) — G are homotopy invariants whenever the image @ uni-
formly embeddable into Hilbert space. We thereby obtain from Theorem 4.1 the
first theorem of the Introduction. Moreover, we have the following theorem:

4.2 Theorem.LetK be afield and lef’ be a countable subgroup GfL.(n, K). The
Baum-Connes assemby m@pl) is split injective for every coeffeciefit— C*-
algebraA.

A countable discrete group is uniformly embeddable if and only if all its
finitely generated subgroups are (this follows from Proposition 3.8; compare [10]).
In proving Theorem 4.1 we may therefore assumelthafinitely generated. Hav-
ing done so we may assume that the fil finitely generated.

Thus,we shall now assume th#tis a finitely generated field and thétis a
finitely generated subgroup &fL(n, K). To construct the required uniform em-
bedding ofl" we shall first construct many embeddings®if(n, K) into Hilbert
space which are uniform with respect to valuation&kom a sense which we now
make precise.

Let d be a discrete valuation df If g = [g) IS @ matrix inGL(n, K) and if
[g°®] denotes the inverse matrix then the formula

(4.1) talg) = logmaxd(gas), d(9™")}

defines a length function 06L(n,K). If d is an archimedean valuation dh
(coming from an embedding &f into C) then the formula

(4.2) la(g) = logmax]|gll,[lg"[I},

which involves the usual operator norm of a matrixdh(n, C), defines a length
function.

4.3 Definition. Let d be a discrete or archimedean valuationkoand let{y be
the associated length function @1i.(n, K), given by (4.1) or (4.2). Ad-uniform
embeddingf a groupG C GL(n,K) is an{4-uniform embedding ofs in the
sense of Definition 3.3.
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4.4 Proposition. If d is an archimedean valuation oK then there exists d-
uniform embedding d&L(n, K) into Hilbert space.

Proof. The length function we are using is the restrictiorGtb(n, K) of a length
function onGL(n,C) via an embedding C C. Therefore, it suffices to show
thatGL(n, C) is d-uniformly embeddable.

The groupG = GL(n,C) may be written as a produ& = PH, whereH =
U(n) (a maximal compact subgroup 6f) andP is the group of upper triangular
matrices with positive diagonal entries. The length functigms bi-H-invariant
in the sense that

(4.3) la(highy) =L4(g), forallhq, h, € Handg € G.

As a consequence, the functign= ph — p mappingG — P is isometric in the
sense that ifjy; = pihy andg, = poh, thenly(gi'ga) = La(p7'p2). It follows
that the formulaf(ph) = f(p) extends al-uniform uniform embedding of P to
one ofG. Indeed G is d-uniformly embeddable if and only R is.

Finally, it is well known how tod-uniformly embed the solvable group
(compare [6]). Sinc® is amenable there is a sequends,} of compactly sup-
ported, positive-definite functions dhwhich converges td uniformly on com-
pact sets. Now, the length functidy on G, and also orP, has the property
that bounded subsets are precisely those with compact closure. Combined, these
observations show, according to Proposition 3.7, thad d-uniformly embed-
dable. O

The case of discrete valuations is just a little more complicated. Before dealing
with it we make some preliminary observations.

Let K be a field, letd be a discrete valuation ddand letrt be a uniformiser.
Let G = GL(n,K). We define several subgroups 6f Let H be the subgroup
consisting of those matricesfor which the entries of botla andg~' belong to
the ring of integer®); let A be the subgroup of diagonal matrices whose diagonal
entries are integer powers of the uniformisetet N be the subgroup comprised
of the unipotent upper triangular matrices (that is, their diagonal entries dre all
let P = AN, which is again a subgroup &f.

45 Lemma. G = PH.

Proof. The decomposition is accomplished using elementary column operations,
taking care that only)-multiples of one column are added to other columns. Let
g € G. Apply an exchange of columns operation to put into(then) position an
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elementx whose valuation is maximal along timgh row. Every element of this
row is then an9-multiple of x, so we can then add appropriate integer multiples
of the last column to the other columns to clear the other entries of the last row.
Having done so, we obtain a decomposition

* kK ... K ok

g= 'h'v

RO G S g
00 ... 0 x
whereh € H. Now repeat the process on the upper— 1) x (n — 1) block of
gh~', and continue. After having eventually obtainedor which gh~' is upper

triangular, a final right-multiplication by a diagonal matrixlhwill reduce each
diagonal entry of the upper triangular matrix to a powertof O

4.6 Lemma. There is a sequende ., }>°_, of positive-definite functions dhsuch
that:

(i) Forall C > 0and alle > 0 there existsVl¢ such that for allg € P

m>Mc and (g)<C = |bml(g)—1|<ce.

(i) For all m there existsVl such that for allg € P

lalg) >M = dnlg) =0.

Proof. We shall construct the required positive definite functions as matrix coef-
fecients of quasiregular representation® of

Let N,,, be the subgroup dN generated by the elements of length not greater
thanm. We claim thatN,,, is bounded. Indeed, it is contained in the subgroup of
N consisting of those matricég,] for which

Jab € T[(a_b)m/o)
providedm’ > m - [logd(7)|~'. Moreover, every element of this subgroup has
length< nm’ - |log d()|.

Let P act on{?(P/N,,) by the quasiregular representation. Denoté\ythe
finite subset of the diagonal group consisting of those matricas for which
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lala) < 7. Letv, € ¢2(P/N,,) be the normalized characteristic function of
A . Finally, define
dm(g) = (Vin, g 'Vm>eZ(P/Nm)-
We check that the sequengg,,} has the required properties.
For the first claim in the proposition it suffices to show that

(i) If n € Nand{4(n) < Cthenn-v,, = v, forallm > 2C.
(iv) VC >0 ¢m(a) — Tuniformlyon{a € A: £4(a) < C}.

Indeed, assuming these gt= an € P with £4(g) < C. We then have
la(a) <lalg) and La(n) <{ala)+La(g) < 2C.

It follows from (iii) that ¢..(g) = ¢m(a) for m > 4C. The first claim in the
proposition now follows easily from (iv).

The proofs of (iii) and (iv) are straightforward. For (iii) we show that such
fixes every coset appearingun.. Indeed, ifa € A,,thenmaN,, = a(a 'na)N,,

so that the cosatN,,, is fixed if a 'na € N,,,. But,
lala™'na) < 20g(a) +La(n) < ZF+C < m.

Item (iv) amounts to the fact that an increasing sequence of balls gives a Fglner
sequence for the amenable grolip= Z™; note thata € A, if and only if the
diagonal entries ofi are of the formy® with |k - log d(m)| < T

For the final claim in the proposition fim.. We show that iff = an € P is
such thatp,,(g) # 0 thenly(g) < m + diam(N,,,). Indeed, ifd,.(g) # 0 there
existsa; € A,, such thaga;N,, represents a coset appearing i We have

ga N, = aa1(a1’]na1)Nm, with aa; € A andaf’nm € N.

If follows thata € A,a;' andn € a;N,a;"'. Hence

Lalg) < lala) +La(n) < % + %L + diam(N,,). O

4.7 Proposition. If d is a discrete valutation o then there exists d-uniform
embedding o6 = GL(n, K) into Hilbert space.
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Proof. Let K be a field with a discrete valuation. The length function we are using
is bi-H-invariant in the sense of (4.3). Indeedhife H then{4(h) = 0 since the
entries ofh andh~" are all in©® and hence each has< 1. It follows that forh,,

h, € Handg € G we have

La(highy) < La(hy) + Lalg) + La(ha) = Lalg).

The reverse inequality follows similarly.

As a consequence the m&p — P, obtained by fixing, for eacly € G a
decompositiong = ph and assigningy = ph — p, is isometric ands is d-
uniformly embeddable if and only R is.

Finally, P is d-uniformly embeddable. Indeed, the sequence of positive-definite
functions{¢ ..} constructed in Lemma 4.6 lift to positive-definite kernelshaihat
satisfy the conditions of Proposition 3.7. ]

Proof of Theorem 4.1Let K be a finitely generated field and I[Etbe a finitely
generated subgroup &L(n, K). (We reduced to this case earlier.) Fix a finite,
symmetric generating set fér According to Theorem 2.2 the fieKlis discretely
embeddable. L& C K be the ring generated by the matrix entries of the elements
of I'. Observe thaR is a finitely generated ring and lgt;} be anR-proper family
of valuations orK. Letf; be ad;-uniform embedding oGL(n, K) into a Hilbert
spacel(;. We shall build a uniform embedding 6fas an appropriate weighted
sum of thef;.

According to Definition 3.3 there exigt; > 0 such thai|f;(gq) — f;(g2)| <
A; wheneverg; g, is a generator. Choose a sequefé of positive numbers
with the property that

(4.4) > Elfi(s)]|* < oo,
j

for every generatog, and such tha[]. ejzA].Z < 0o. Suppose now that an element
g € G is ak-fold product of generators, say= s; - - - s. Then

1T5(9) — (1)l = [[f5(s1-- - sxc) — fsq)]]
< |Mfj(s1---s) = fi(s1- - sa)|| + -+ [[fi(s182) — fi(s1)|
< (k=T)A;.
It follows easily that the inequality (4.4) holds not just for every generatout
for everyg € TI', and we can define a m&pfrom I into the direct sum Hilbert

spaced(; by the formula
f(g) = @eifi(g).
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The functionf is the required uniform embedding.
Let us check thaf satisfies the conditions of Definition 3.1. To verify item (i)
it suffices to consider the case whe' g, is a generator. In this case we have

If(g1) = fg2)l* = 3~ &flIf(91) — ()P < B =) A},
j j

To verify item (ii) let A > 0 and suppose thatf(g;) — f(g2)|| < A. We then
of course have|f;(g;) — fj(g2)|| < sﬂA, for everyj. Sincefj; is a d;-uniform
embedding, it follows that there exist constaB{ssuch that;(g;'g,) < Bj, for
everyj. This means, in particular, that the entries of the magriXg, are d;-
bounded, for every, and hence belong to a finite set in the rRLgHencegﬂgz
belongs to a finite subset &f as required. O

5 The Haagerup Approximation Property

We are going to strengthen the main theorems of the last section, as they apply to
GL(2,K):

5.1 Theorem. Let K be a field. Every countable subgroup ®f (2, K) has the
Haagerup property. ]

Higson and Kasparov showed that the Baum-Connes conjecture holds for
groups with the Haagerup property [18, 19]. Therefore we obtain the following
theorem:

5.2 Theorem. Let K be a field. Every countable subgroup®f (2, K) satisfies
the Baum-Connes conjecture.

A countable discrete group has the Haagerup property if and only if all of
its finitely generated subgroups do [9]. In proving Theorem 5.1 we may there-
fore assume thdt is finitely generated. Having confined our attention to finitely
generated we may assume that the fiekdis finitely generated.

Moreover it suffices to consider the case of subgroudd ¢2, K). Indeed, if
' C GL(2,K) thenl"n SL(2,K) is a normal subgroup df with abelian quotient.
Since the class of groups with the Haagerup property is closed under extensions
with amenable quotient [9] has the Haagerup propertyliin SL(2, K) does.

In light of these remarksve assume tha is a finitely generated field and
that T is a finitely generated subgroup 8% (2, K). Our strategy for proving the
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Haagerup property is to build a proper negative-type functioll fsam an appro-
priate family of negative-type functions, each one obtained from a valuati&n on
The individual functions comprising the family will be geometric in origin.

The following lemma is essentially due to Haagerup [15]; for a detailed proof
see [11]. For a proof of the second lemma see [11].

5.3 Lemma. Let T be a simplicial tree and let

the number of edges on the shortest

distance(vi,v2) = {edge path ifT fromv; to v..

Let G be a group acting by isometries dn For every vertex in T the function
d(g) = distance(v, g - v)
is of negative-type of. O

5.4 Lemma. LetX be the symmetric spaéé (2, C)/SU(2) (namely3-dimensional
real hyperbolic space equipped with the uniquéup to overall scale factqr
SL(2, C)-invariant Riemannian structure. Let

length of the shortest path

distance(x1,x2) = {in X fromx; to x,.

Let G be a group acting by isometries & For every pointx € X the function
d(g) = distancg(x, g - x)
is of negative-type of. ]

Let K be a field and letl be a discrete valuation od. A well-known con-
struction associates to this data a simplicial ffe&Ve require several facts about
the action ofSL(2, K) onT and pause briefly to recall its definition (for additional
information and details we refer to [27] or [7]). A vertex ©fis by definition
a homothety class df-lattices in the vector spadé x K (two O-latticesL and
L’ are homothetic if there exists € K* such thatxL = L’). Two vertices are
adjacent if there are representative lattices for whithC L C L. In the treel
there is a distinguished vertex, namely the class of the lditicg) x O. Itis (the
unique vertex) fixed bgL(2,0).
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5.5 Lemma. Let K be a field with discrete valuatiod. LetT be the associated
simplicial treeT andvy its distinguished vertex. ff = [gap] € SL(2,K), then

|Og d(gab)

distance(vo, g - vo) = ZT%X_ logd(m)

Proof. Both sides of the formula are both left and righit(2, O)-invariant, as
functions ofg, so it suffices to prove the formula for one element in each double
SL(2,0)-coset. Now ifg € SL(2, O) then there exish;, h, € SL(2,0) such that
high; is a diagonal matrix of the forfd™y _°.. ). This follows by a row and col-
umn reduction argument similar to the one employed in the proof of Lemma 4.5.
It therefore suffices to show that

distance(vo, (7 ,.% ) vo) = 2n|.

Fork =0,...,2n the lattices

L=osanof{ (1), (2}

define distinct vertices ih and a geodesic path of lengtim| fromv, to the vertex
(Tt“ 0 ) V. O]

(O s

We now apply Lemma 5.4. L&t be a field with an archimedean valuatidn
obtained from an embeddiri C C. Using this embedding we embé&d (2, K)
into SL(2,C). The groupSL(2,C) acts on3-dimensional real hyperbolic space,
asinLemmab5.4.

5.6 Lemma. Denote byx, the unique point irL(2,C)/SU(2) which is fixed by
the subgrouU(2). If g = [gaw] € SL(2,C) then

. ] o
cosh(distancéxo, g - xo)) = iTraCE(Q g) = 7 E |gavl®.
a,b

Proof. All parts of the formula are left and rigl&U(2)-invariant, as functions

of g, so it suffices to check the formula on positive diagonal matrices. But these
constitute a one-parameter group which acts by translation along a geodesic pass-
ing throughx,. The formula follows (up to an overall constant factor which we
eliminate by scaling the metric on the symmetric space). ]
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Thanks to Lemmas 5.3 through 5.6 Kifis a field, and ifK is equipped with
many valuations, then the growp = SL(2,K) is equipped with many negative-
type functions, whose growth behaviour Grwe can moreover estimate in terms
of the growth behaviour of the given valuations knWe can now prove Theo-
rem 5.1 by following the argument used to prove Theorem 4.1.

Proof of Theorem 5.1Let K be a finitely generated field, and [Btbe a finitely
generated subgroup 61.(2, K). (We reduced to this case earlier.)

Let R be the subring oK generated by the (finitely many) matrix entries of a
finite generating set far and observe thdt C SL(2,R). Let{d;} be anR-proper
family of valuations orK, as in Definition 2.1. Associated to each valuatiyn
there is a negative-type functi@n on SL(2, K); if d; is a discrete valuation then
d; is defined as in Lemma 5.3, whereasljfis an archimedean valuation thén
is defined as in Lemma 5.4.

Define a negative-type functiagnon G by

5(g) = )_¢85(9),

where{e;} is a fixed sequence of positive real numbers decreasing at a rate suffi-
cient to guarantee that the sum converges for egeryG (such a sequence exists
because the individual; satisfyd;(g1g2) < 8;(g1) + 8;(g2), So that convergence

for everyg € G is guaranteed by convergence for elements of a (finite) generating
set). The restriction af to G is proper. Indeed i6(g) < C then

(5.1) 8i(g) < gC, forallj,

and applying Lemmas 5.5 and 5.6 we see that the entrigsané therefored;-
bounded, for every (by some quantity depending dh ande;) . Considering

the definition of discrete embeddability, it follows that the set of possible matrix
entries of thosg € G for whichd(g) < Cis finite. Therefore the setof all € G

for whichd(g) < C is finite, as required. O

6 Exactness of Linear Groups

In this section we strengthen Theorem 4.1 by proving that every countable linear
group isexactin the sense of *-algebra theory. As a consequence we prove that
the Novikov conjecture holds for subgroups of almost connected Lie groups.
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The exactness condition is closely related to uniform embeddability. Indeed,
every exact group is uniformly embeddable (see [25], [14]) and at present there
is no example of a uniformly embeddable group which is not exact. However,
exactness has some advantages over uniform embeddability — for example the
class of exact groups is closed under group extensions (see [22]), whereas closure
under extensions for uniformly embeddable groups is not known at present (but
see [10]).

Rather than give a detailed account of exactness we shall present just one of
several equivalent formulations of exactness (see [25]). For a fuller treatment of
the topic the reader is referred to [2] or [29].

6.1 Definition. A countable discrete group exactif there exists a sequence of
positive-definite kernelg..: ' x ' — R with the following two properties:

(i) For every finite set C I and every > 0 there is arlN such that

97'g2€F = dnlg1,92) >1—¢, Vn>N.

(i) For everyn there is a finite sef C I" such that
dnlg1,92) 0 = gi7'g€F

6.2 Theorem. LetK be a field. Every countable subgroup®I (n, K) is exact.

Remark.It makes sense to consider the exactness of non-countable groups. The
previous theorem holds f@nysubgroup, countable or not.

A countable discrete group is exact if and only if all of its finitely gener-
ated subgroups are exact ([29], [10]). Therefore it suffices to prove Theorem 6.2
for finitely generated subgroups 6flL (n, K). Having restricted our attention to
finitely generated subgroups we may also assume that the<ieldinitely gen-
erated. Thereforeve assume that is a finitely generated field and thatis a
finitely generated subgroup &fL(n, K).

The characterization of exactness we are using (which we are taking as the def-
inition) is formally very similar to the characterization of uniform embeddability
given in Proposition 3.8. It is therefore not surprising that the proof of Theo-
rem 6.2 has much in common with that of Theorem 4.1. We begin by recalling
the necessary facts from Section 4.

Let K be a field and letl be a discrete valuation dh. We decompose the
groupG = GL(n,K) as a product

G = PH,
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and fix, for eachy € G, a decompositiony = ph. We define a mas — P by

g = ph — p; as explained in the proof of Proposition 4.7 this map is isometric. In
Lemma 4.6 we constructed certain positive-definite functipps P — R. These

lift to P-invariant positive-definite kernels, which we extend to positive definite
kernels onG using the mags — P above:

Gm(prhi, p2h2) = Gmlp; 'p2).

According to the properties of th@,,, described in Proposition 4.7, and the fact
that the mapgs — P is isometric, the positive-definite kernels Gh= GL(n, K)
so constructed have the following properties:

(i) For everyC > 0 ande > 0 there existsn such that
la(g7'92) <C = [1—dmlgr, g2l <e.
(i) For everym there exist8 > 0 such that

dm(g91,92) #0 = La(g7'92) < B.

(In fact any sufficiently largen will work in (i).)

We proceed similarly in the case of an archimedean valuation K. The
proof of Proposition 4.4 exhibits a sequence of positive-definite functijgpsn
the solvable grou® € GL(n,C) which we again convert to positive-definite
kernels onGL(n,K) C GL(n, C), using the fact thaGL(n, C) is the product of
P and the compact grougd(n). We obtain positive-definite kernels &1 (n, K)
with same properties (i) and (ii) above.

Putting the two constructions together we obtain the following result:

6.3 Lemma. Let {d;} be a sequence valuations & each either discrete or
archimedean. Lef;} and{A;} be positive sequences. There exist positive-definite
kernelsd; on GL(n, K) such that

(i) If (g7 "92) < Ay, then|1 — d;(g1, 92)I < &;.
(i) For everyj there exists a consta; such that ifﬁj(g;‘gz) > Bj, then
$i(g1,92) =0. O

We now construct new positive-definite kernels on finitely generated sub-
groups of GL(n, K) by combining the positive-definite kernels associated to a
sequence of valuations ¢ To do so we need the following fact:
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6.4 Lemma. LetX be any set.

(i) The pointwise produap(x1, x2)d2(x1,x2) of two positive-definite ker-
nels is again a positive-definite kernel.

(i) Should it converge, the produﬁjﬁ] ¢;(x1,x2) of a countable family of
positive-definite kernels is again positive-definite.

Remark.The convergence hypothesis is that for eveyyx, € X the finite prod-
ucts]_[).]:] ¢;(x1,x2) converge pointwise gds— oo. Itis permissible that the limit
be zero.

Proof. The first statement is proved in [11, Corollary 5.5]. The second state-
ment follows from the first, since a pointwise limit of positive-definite kernels is
positive-definite. O

Remark.Thanks to the first part of the lemma, we can square the positive-definite
functions which appear in Lemma 6.3 and thereby assume that they have the addi-
tional propertyd;(g1, g2) > 0. This we shall do without further comment below.

Proof of Theorem 6.2Let K be a finitely generated field and Ié{C GL(n, K) be
a finitely generated subgroup. (We reduced to this case earlier® CeK be the
ring generated by the coefficients of the matriceB,iand let{d;} be anR-proper
family of valuations orK. LetF be a finite subset df and lete > 0. For each,
let A; be a constant such that

97’2 € F = §(g7'g0) <A,

and let{¢;} be a positive sequence such thff(1 —&;) > 1T — . Now let{¢;} be
a sequence of positive-definite kernels®h(n, K) with the properties described
in Lemma 6.3. Form the product

¢(91,02) = [ [ bi(91, 92),
j
which in view of Lemma 6.4 is a positive-definite kernel@h(n, K). If gf] gz €
Fthend;(g1, g2) > 1 — g5, for all j, and therefore

97'g2€F = dlgr,g2) >1—e.

If d(g1,92) # 0 then of courseb;(gs, g2) # 0, for all j, and from this it follows
that¢;(g;'g2) < By, for all j, where the constants; are as in Lemma 6.3. As
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a result, it follows from the definition of the length functions and ofRaproper
family that there is a finite sétz C T" such that

b(91,02) 0 = g,'g2€Fe.
Inspecting Definition 6.1, we see that we have proved the exactnéss of [

As an application of Theorem 6.2 we obtain the following counterpart to Kas-
parov’s proof of the Novikov conjecture for discrete subgroups of Lie groups [20].

6.5 Theorem. Every countable subgroup of an almost connected Lie group is
exact, and therefore uniformly embeddable into Hilbert space. As a result, the
Novikov conjecture holds for all countable subgroups of almost connected Lie
groups.

Proof. Assume first thaf'” is a countable subgroup of@nnected.ie group.
Using the adjoint representation Gfwe see that there is an extension of groups

15Z-oT7"5T"51

where Z is abelian (in fact central i) andT" is linear [16]. Since the class
of exact groups is closed under extensions, and sincebaiidl™ are exact, it
follows thatl"” is exact.
In the general case, Ifis a subgroup of an almost connected Lie group then
there is an extension
1T =T —=F—=1,

whereF is a finite group and wherB” is a subgroup of a connected Lie group.
SinceF andl™” are exact it follows thak is exact too. O

7 An Application to Relative Eta Invariants

Atiyah, Patodi and Singer [4] introduced a real-valued invarigii) of an odd-
dimensional, smooth, closed and oriented manifeld equipped with a finite-
dimensional unitary representatipn 7t;(M) — U(k) of its fundamental group.
Although this invariant i;mot homotopy invariant, the third author has shown [31],
using the Novikov Conjecture for subgroupsit,,(Q), that for homotopy equiv-
alent manifolds\l andM’ the difference),(M’) —n,(M) is arational number.

In this section we shall use the main result of this paper to improve this result.
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7.1 Theorem. Let M and M’ be homotopy equivalent smooth, closed and ori-
ented, odd-dimensional manifolds with fundamental graugnd letp : © —
U(k) be a finite-dimensional unitary representation. Let

R ={p aprime: p[n] has an element of order}.

There is a positive intege, all of whose odd prime factors belongRosuch that
Mo(M) = 7,(M') € §Z.

Remark.WhenR is empty, or ifrt is torsion-free, the third author has conjectured
thatm, is a homotopy invariant [30]. IR is non-empty, then the “integrality”
statement above is, in some sense, the best possible, aside from the special role of
the prime2.

Proof. The idea of the proof of Theorem 7.1 is as follows. Defih be the
linear groupp[7t]. We shall realize the invariamt,(M) (in R modquZ[%]) as the
image of[M] € KOn(BF)[%] (theK-homology class determined by the signature
operator ofM) under a map

(7.1) KO,(BMN[3] — R /Z[]].
We shall also construct a map
(7.2) KOn(BI) (5] — Kl ClaglT)) 5]

with the following properties:

() Thanks to Theorem 4.1, the map is (split) injective.

(i) The image of thek-homology clas$M] € KOn(BF)[ﬁ] under this map
is a homotopy invariant.

(Here and subsequently, A is an abelian group theh[%z] denotes the tensor
product with the ring obtained froié by inverting2 and the elements &.) Af-
ter invertingR in (7.1) we see right away that ¥ andM’ are homotopy equiva-
lent then the relative eta-invarianig(M) andn,(M’) are equal irR/Z[%z], as
required.

The map (7.1) is constructed as follows. K&t,(X) denote then-dimensional,
smooth, oriented bordism group of the spXc@hus classes if),,(X) are repre-
sented by map$ : N — X whereN is a closed, orientean-dimensional, smooth
manifold). The direct sum), (X) = $,,Q,.(X) is a module ovef), (pt), which
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is itself a ring. The map which sendlsl]] € Q4 (pt) to SignN), and which is
zero on all component@ ., (pt), wherem is not divisible by4, is a ring homo-
morphism fromQ, (pt) to Z[%]. Using it, we can form the tensor product

Q.(X) ®a, (pt) Z[%]~

The tensor product is naturally/4Z-graded abelian group, and according to
Sullivan’s “Conner-Floyd theorem” [24] the signature operator provides an iso-
morphism

(7.3) Q. (X) ®q. py Z[5] = KOL(X) ® Z[3] € K.(X) ® Z[3].

Now let X = BI'. According to the APS index theorem [3], the relative eta-
invariantn, defines a homomorphism

(7.4) Q.(BT) ®aq, (py ZI3] = R/Z[3].

This is because iiN] = [N’] in the left hand side then there is a compact manifold
mapping toBI" whose boundary is the disjoint union 2f copies ofN, the same
number of copies of-N’ and product manifoldg\; x B; with Sign(A;) = 0.
Sincen,(A x M) = Sign(A) -1,(M) (see [12]) the product manifolds have triv-

ial relative eta-invariant, and since the relative eta-invariants of all the boundary
components add up to an integer (by the APS index theorem) we see that

Mo(N) =7,(N) € R/Z[3],

as required. Putting together (7.3) and (7.4) we obtain the map (7.1) that we need.
It remains to define the map (7.2). There is a natural map

(7.5) KOn(BIN[5] — Kn(BI)[3]

which is split injective? Now the left-hand side of the Baum-Connes assembly
map (0.1) (in the case of trivial coefficieqt'-algebraA = C) is the Kasparov
equivariantK-homology of the classifying spaéd’ for proper-actions (we shall
denote this bK! (€T). See [5]. There is a natural map

(7.6) Kn(BI') — KL(ET)

2We already invoked this when we associated cIassK@in(BF)[%] to elliptic operators.
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and after invertin@ this map becomes a split-injection. Indee@if is the quo-
tient of ET" by I then there is a map frod! (€T) to K, (BTI") for which the com-
position

Kn(BI') — K (ET) — KL (BIN)

is induced by the natural map froBI" to BI". Standard arguments show that
the induced map is an isomorphism after inverting the primeR fftompare
Lemma 2.8 in [23]). Putting together (7.5) and (7.6) we obtain the split injec-
tion (7.2). The fact that the clagsl] is homotopy invariant in the image follows
from the homotopy invariance of tHé-theoretic index of the signature operator
(see [5] again for references). ]
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