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Abstract. We reformulate the Baum-Connes conjecture with coe�cients by introducing
a new crossed product functor for C⇤-algebras. All confirming examples for the original
Baum-Connes conjecture remain confirming examples for the reformulated conjecture, and
at present there are no known counterexamples to the reformulated conjecture. Moreover,
some of the known expander-based counterexamples to the original Baum-Connes conjecture
become confirming examples for our reformulated conjecture.

1. Introduction

For a second countable locally compact group G, the Baum-Connes conjecture (with
coe�cients) [2, 46] asserts that the Baum-Connes assembly map

(1.1) Ktop

⇤ (G;A) ! K⇤(Ao

red

G)

is an isomorphism for all G-C⇤-algebras A. Here the C⇤-algebra A is equipped with a
continuous action of G by C⇤-algebra automorphisms and, as usual, A o

red

G denotes the
reduced crossed product. The conjecture has many deep and important connections to
geometry, topology, representation theory and algebra. It is known to be true for large
classes of groups: see for example [26, 10, 31].

Work of Higson, La↵orgue and Skandalis [27] has, however, shown the conjecture to be
false in the generality stated above. The counterexamples to the Baum-Connes conjecture
they discovered are closely connected to failures of exactness in the sense of Kirchberg and
Wassermann ( [6, Chapter 5]). Recall that a locally compact group G is exact if for every
short exact sequence of G-C⇤-algebras

0 // I // A // B // 0 ,
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the corresponding sequence of reduced crossed products

0 // I o
red

G // Ao

red

G // B o

red

G // 0

is still exact. All naturally occurring classes of locally compact groups1 are known to be exact.
For example, countable linear groups [20], word hyperbolic groups [42], and connected groups
[12, Corollary 6.9(c)] are all exact. Nonetheless, Gromov has indicated [18] how to construct
non-exact ‘monster’ groups. (See Arzhantseva and Delzant [1], Coulon [13], and Osajda
[37] for detailed accounts of related constructions; the last of these is most relevant for this
paper). Higson, La↵orgue and Skandalis [27] used Gromov’s groups to produce short exact
sequences of G-C⇤-algebras such that the resulting sequence of crossed products fails to be
exact even on the level of K-theory. This produces a counterexample to the Baum-Connes
conjecture with coe�cients.

Furthermore, the Baum-Connes conjecture actually predicts that the functor associating
to a G-C⇤-algebra A the K-theory of the reduced crossed product A o

red

G should send
short exact sequences of G-C⇤-algebras to six-term exact sequences of abelian groups. Thus
any examples where exactness of the right-hand-side of the conjecture in line (1.1) fails
necessarily produce counterexamples; conversely, any attempt to reformulate the conjecture
must take exactness into account.

Several results from the last five years show that some counterexamples can be obviated
by using maximal completions, which are always exact. The first progress along these lines
was work of Oyono-Oyono and Yu [38] on the maximal coarse Baum-Connes conjecture for
certain expanders. Developing these ideas, Yu and the third author showed [49, 50] that
some of the counterexamples to the Baum-Connes conjecture coming from Gromov monster
groups can be shown to be confirming examples if the maximal crossed product A o

max

G

is instead used to define the conjecture. Subsequently, the geometric input underlying these
results was clarified by Chen, Wang and Yu [11], and the role of exactness, and also a-T-
menability, in the main examples was made quite explicit by Finn-Sell and Wright [17].

All this work suggests that the maximal crossed product sometimes has better properties
than the reduced crossed product; however, there are well-known property (T) obstructions
[23] to the Baum-Connes conjecture being true for the maximal crossed product in general.
The key idea of the current work is to study crossed products that combine the good prop-
erties of the maximal and reduced crossed products.

1Of course, what ‘naturally occuring’ means is arguable! However, we think this can be reasonably
justified.
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In this paper we shall study C⇤-algebra crossed products that preserve short exact se-
quences. The Baum-Connes conjecture also predicts that a crossed product takes equiv-
ariantly Morita equivalent G-C⇤-algebras to Morita equivalent C⇤-algebras on the level of
K-theory (this is true for the maximal and reduced crossed products, but not in general).
We thus restrict attention to crossed products satisfying a Morita compatibilty assumption
that guarantees this.

We shall show that a minimal exact and Morita compatible crossed product exists, and
we shall use it to reformulate the Baum-Connes conjecture. Denoting the minimal exact and
Morita compatible crossed product by A oE G we propose that the natural Baum-Connes
assembly map

(1.2) µ : Ktop

⇤ (G;A) ! K⇤(AoE G)

is an isomorphism for any second countable locally compact group G and any G-C⇤-algebra
A.

This reformulation has the following four virtues:

(i) it agrees with the usual version of the conjecture for all exact groups and all a-T-menable
groups;

(ii) the property (T) obstructions to surjectivity of the maximal Baum-Connes assembly
map do not apply to it;

(iii) all known constructions of counterexamples to the usual version of the Baum-Connes
conjecture (for groups, with coe�cients) no longer apply;

(iv) there exist groups G and G-C⇤-algebras A for which the old assembly map in line (1.1)
fails to be surjective, but for which the reformulated assembly map in line (1.2) is an
isomorphism.

Note that thanks to point (i) above, the reformulated assembly map is an isomorphism, or
injective, in all situations where the usual version of the assembly map is known to have
these properties.

Acknowledgements. We thank Goulnara Arzhantseva, Nate Brown, Alcides Buss, Siegfried
Echterho↵, Nigel Higson, Eberhard Kirchberg, Ralf Meyer, Damian Osajda, and John Quigg
for illuminating discussions on aspects of this paper. The first author thanks the University
of Hawai‘i at Mānoa for the generous hospitality extended to him during his visits to the
university. The second and third authors thank the Erwin Schrödinger Institute in Vienna
for its support and hospitality during part of the work on this paper.
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Outline of the paper. In Section 2 we define what we mean by a general crossed product,
and show that any such has an associated Baum-Connes assembly map. In Section 3 we
define exact and Morita compatible crossed products and show that there is a minimal crossed
product with both of these properties. In Section 4 we show that the minimal exact and
Morita compatible crossed product has a descent functor in E-theory, and use this to state
our reformulation of the Baum-Connes conjecture. In Section 5 we show that the property
(T) obstructions to the maximal Baum-Connes assembly map being an isomorphism do not
apply to our new conjecture. In Section 6 we show that our reformulated conjecture is true
in the presence of a-T-menability of an action. In Section 7 we produce an example where
the new conjecture is true, but the old version of the conjecture fails. Finally, in Section 8,
we collect together some natural questions and remarks. In Appendix A we discuss some
examples of exotic crossed products: this material is not used in the main body of the paper,
but is useful for background and motivation.

2. Statement of the conjecture

Let G be a second countable, locally compact group. Let C⇤ denote the category of C⇤-
algebras: an object in this category is a C⇤-algebra, and a morphism is a ⇤-homomorphism.
Let G-C⇤ denote the category of G-C⇤-algebras: an object in this category is C⇤-algebra
equipped with a continuous action of G and a morphism is a G-equivariant ⇤-homomorphism.

We shall be interested in crossed product functors from G-C⇤ to C⇤. The motivating
examples are the usual maximal and reduced crossed product functors

A 7! Ao

max

G, A 7! Ao

red

G.

Recall that the maximal crossed product is the completion of the algebraic crossed product
for the maximal norm. Here, the algebraic crossed product Ao

alg

G is the space of continuous
compactly supported functions from G to A, equipped with the usual twisted product and
involution. Similarly, A o

red

G is the completion of the algebraic crossed product for the
reduced norm. Further, the maximal norm dominates the reduced norm so that the identity
on A o

alg

G extends to a (surjective) ⇤-homomorphism A o

max

G ! A o

red

G. Together,
these ⇤-homomorphisms comprise a natural transformation of functors.

With these examples in mind, we introduce the following definition.

2.1. Definition. A (C⇤-algebra) crossed product is a functor

A 7! Ao

⌧

G : G-C⇤ ! C⇤,
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together with natural transformations

(2.1) Ao

max

G ! Ao

⌧

G ! Ao

red

G

such that the composition is the standard ⇤-homomorphism Ao

max

G ! Ao

red

G, and such
that the ⇤-homomorphism Ao

max

G ! Ao

⌧

G is surjective.

The existence of the natural transformations in line (2.1) implies that Ao

alg

G is contained
in A o

⌧

G as a dense ⇤-subalgebra. Thus, A o

⌧

G is a completion of the algebraic crossed
product for a norm which necessarily satisfies

kxk
red

 kxk
⌧

 kxk
max

for every x 2 A o

alg

G. In particular, the ⇤-homomorphism A o

⌧

G ! A o

red

G in line
(2.1) is also onto. Finally, the ⇤-homomorphism A o

⌧

G ! B o

⌧

G functorially induced
by a G-equivariant ⇤-homorphism A ! B is necessarily the extension by continuity of the
standard ⇤-homomorphism Ao

alg

G ! B o

alg

G.

In the appendix we shall see that there are in general many crossed products other than
the reduced and maximal ones. Our immediate goal is to formulate a version of the Baum-
Connes conjecture for a general crossed product. For reasons involving descent (that will
become clear later), we shall formulate the Baum-Connes conjecture in the language of
E-theory, as in [19, Section 10].

We continue to let G be a second countable, locally compact group and consider the ⌧ -
crossed product for G. The ⌧ -Baum-Connes assembly map for G with coe�cients in the
G-C⇤-algebra A is the composition

(2.2) Ktop

⇤ (G;A) ! K⇤(Ao

max

G) ! K⇤(Ao

⌧

G),

in which the first map is the usual maximal Baum-Connes assembly map and the second
is induced by the ⇤-homomorphism A o

max

G ! A o

⌧

G. The domain of assembly is
independent of the particular crossed product we are using. It is the topological K-theory of
G with coe�cients in A, defined as the direct limit of equivariant E-theory groups

Ktop

⇤ (G;A) = lim
X✓EG

cocompact

EG(C
0

(X), A),

where the direct limit is taken over cocompact subsets of EG, a universal space for proper
G actions. The (maximal) assembly map is itself a direct limit of assembly maps for the
individual cocompact subsets of EG, each defined as a composition

(2.3) EG(C
0

(X), A) // E(C
0

(X)o
max

G,Ao

max

G) // E(C, Ao

max

G) ,
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in which the first map is the E-theoretic (maximal) descent functor, and the second map is
composition with the class of the basic projection in C

0

(X)o
max

G, viewed as an element of
E(C, C

0

(X)o
max

G). Compatibility of the assembly maps for the various cocompact subsets
of EG indexing the direct limit follows from the uniqueness (up to homotopy) of the basic
projection. For details see [19, Section 10].

For the moment, we are interested in what validity of the ⌧ -Baum-Connes conjecture – the
assertion that the ⌧ -Baum-Connes assembly map is an isomorphism – would predict about
the ⌧ -crossed product itself. The first prediction is concerned with exactness. Suppose

0 ! I ! A ! B ! 0

is a short exact sequence of G-C⇤-algebras. Exactness properties of equivariant E-theory
ensure that the sequence functorially induced on the left hand side of assemly

Ktop

⇤ (G; I) ! Ktop

⇤ (G;A) ! Ktop

⇤ (G;B)

is exact in the middle. (Precisely, this follows from the corresponding fact for each cocompact
subset of EG upon passing to the limit.) Now, the assembly map is itself functorial for
equivariant ⇤-homomorphisms of the coe�cient algebra. As a consequence, the functorially
induced sequence on the right hand side of assembly

K⇤(I o⌧

G) ! K⇤(Ao

⌧

G) ! K⇤(B o

⌧

G)

must be exact in the middle as well.

The second prediction concerns Morita invariance. To formulate it, let H be the countably
infinite direct sum

H = L2(G)� L2(G)� · · ·
and denote the compact operators on H by K

G

, which we consider as a G-C⇤-algebra in
the natural way. Similarly, for any G-C⇤-algebra A, we consider the spatial tensor product
A ⌦ K

G

as a G-C⇤-algebra via the diagonal action. Assume for simplicity that A and B

are separable G-C⇤-algebras. Then A and B are said to be equivariantly Morita equivalent
if A ⌦ K

G

is equivariantly ⇤-isomorphic to B ⌦ K
G

: results of [14] and [35] show that this
is equivalent to other, perhaps more usual, definitions (compare [19, Proposition 6.11 and
Theorem 6.12]). If A and B are equivariantly Morita equivalent then EG(C,A) ⇠= EG(C,B)
for any G-C⇤-algebra C [19, Theorem 6.12]. There is thus an isomorphism

Ktop

⇤ (G;A) ⇠= Ktop

⇤ (G;B)

on the left hand side of assembly. Assuming the ⌧ -Baum-Connes conjecture is valid for G
we must therefore also have an isomorphism

K⇤(Ao

⌧

G) ⇠= K⇤(B o

⌧

G)
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on the level of K-theory.

3. Crossed product functors

Motivated by the discussion in the previous section, we are led to study crossed product
functors that have good properties with respect to exactness and Morita equivalence. The
following two properties imply this ‘good behavior’, and are particularly well-suited to our
later needs.

Throughout this section, G is a second countable, locally compact group.

3.1. Definition. The ⌧ -crossed product is exact if for every short exact sequence

0 // A // B // C // 0

of G-C⇤-algebras the corresponding sequence of C⇤-algebras

0 // Ao

⌧

G // B o

⌧

G // C o

⌧

G // 0

is short exact.

Whereas the maximal crossed product functor is always exact in this sense (see Lemma
A.4), the reduced crossed product functor is (by definition) exact precisely whenG is an exact
group [30, page 170]. Note that if the ⌧ -crossed product is exact, then the associated K-
theory groups have the half exactness property predicted by the ⌧ -Baum-Connes conjecture
and by half-exactness of K-theory.

For the second property, recall that K
G

denotes the compact operators on the infinite sum
Hilbert space H = L2(G) � L2(G) � . . . , considered as a G-C⇤-algebra with the natural
action. Write ⇤ for the action of G on H. Recall that for any G-C⇤-algebra A, there are
natural maps from A and G into the multiplier algebra M(Ao

max

G), and we can identify
A and G with their images under these maps. This gives rise to a covariant representation

(⇡, u) : (A⌦K
G

, G) ! M(Ao

max

G)⌦K
G

defined by ⇡(a⌦ T ) = a⌦ T and u
g

= g ⌦ ⇤
g

. The integrated form of this covariant pair

(3.1) � : (A⌦K
G

)o
max

G ! (Ao

max

G)⌦K
G

is well-known to be a ⇤-isomorphism, which we call the untwisting isomorphism.

3.2. Definition. The ⌧ -crossed product is Morita compatible if the untwisting isomorphism
descends to an isomorphism

� : (A⌦K
G

)o
⌧

G ! (Ao

⌧

G)⌦K
G
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of ⌧ -crossed products.

Both the maximal and reduced crossed product functors are Morita compatible: see
Lemma A.5 in the appendix. Note that if o

⌧

is Morita compatible, then it takes equivari-
antly Morita equivalent (separable) G-C⇤-algebras to Morita equivalent C⇤-algebras. Indeed,
in this case we have

(Ao

⌧

G)⌦K
G

⇠= (A⌦K
G

)o
⌧

G ⇠= (B ⌦K
G

)o
⌧

G ⇠= (B o

⌧

G)⌦K
G

,

where the middle isomorphism is Morita equivalence, and the other two are Morita compati-
bility. Thus if ⌧ is Morita compatible, then the associated K-theory groups have the Morita
invariance property predicted by the ⌧ -Baum-Connes conjecture.

Our goal for the remainder of the section is to show that there is a ‘minimal’ exact and
Morita compatible crossed product. To make sense of this, we introduce a partial ordering on
the collection of crossed products for G: the �-crossed product is smaller than the ⌧ -crossed
product if the natural transformation in line (2.1) from the ⌧ -crossed product to the reduced
crossed product factors through the �-crossed product, meaning that there exists a diagram

Ao

⌧

G ! Ao

�

G ! Ao

red

G

for every G-C⇤-algebra A where the maps from Ao

⌧

G and Ao

�

G to Ao

red

G are the ones
coming from the definition of a crossed product functor. Equivalently, for every x 2 Ao

alg

G

we have

kxk
red

 kxk
�

 kxk
⌧

,

so that the identity on A o

alg

G extends to a ⇤-homomorphism A o

⌧

G ! A o

�

G. In
particular, the order relation on crossed products is induced by the obvious order relation
on C⇤-algebra norms on A o

alg

G.2 The maximal crossed product is the maximal element
for this ordering, and the reduced crossed product is the minimal element.

Recall that the spectrum of a C⇤-algebra A is the set bA of equivalence classes of non-zero
irreducible ⇤-representations of A. We will conflate a representation ⇢ with the equivalence
class it defines in bA. For an ideal I in a C⇤-algebra A, an irreducible representation of
A restricts to a (possibly zero) irreducible representation of I, and conversely irreducible
representations of I extend uniquely to irreducible representations of A. It follows that bI
identifies canonically with

{⇢ 2 bA | I 6✓ Kernel(⇢)}.
2Incidentally, this observation gets us around the set-theoretic technicalities inherent when considering

the ‘collection of all crossed products’.
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Similarly, given a quotient ⇤-homomorphism ⇡ : A ! B, the spectrum bB of B identifies
canonically with the collection

{⇢ 2 bA | Kernel(⇡) ✓ Kernel(⇢)}
of elements of bA that factor through ⇡ via the correspondence bB 3 ⇢ $ ⇢ � ⇡ 2 bA. We will
make these identifications in what follows without further comment; note that having done
this, a short exact sequence

0 // I // A // B // 0

gives rise to a canonical decomposition bA = bI t bB.

We record the following basic fact as a lemma.

3.3. Lemma. For any non-zero element of a C⇤-algebra, there is an irreducible representation
that is non-zero on that element. ⇤

The next lemma is the last general fact we need about spectra.

3.4. Lemma. Consider a diagram of C⇤-algebras

A
1

⇡

1

✏✏

� // A
2

⇡

2

✏✏
B

1

 // B
2

where � is a ⇤-homomorphism, and ⇡
1

and ⇡
2

are surjective ⇤-homomorphisms. For each
⇢ 2 cA

2

, define

�⇤⇢ := {⇢0 2 cA
1

| Kernel(⇢ � �) ✓ Kernel(⇢0)}.
Then there exists a ⇤-homomorphism  : B

1

! B
2

making the diagram commute if and only
if �⇤⇢ is a subset of cB

1

for all ⇢ in cB
2

(where cB
2

is considered as a subset of cA
2

).

Proof. Assume first that  exists. Let ⇢ be an element of cB
2

, and ⇢ � ⇡
2

the corresponding
element of cA

2

. Then

�⇤(⇢ � ⇡
2

) = {⇢0 2 cA
1

| Kernel(⇢ � ⇡
2

� �) ✓ Kernel(⇢0)}
= {⇢0 2 cA

1

| Kernel(⇢ �  � ⇡
1

) ✓ Kernel(⇢0)}
✓ {⇢0 2 cA

1

| Kernel(⇡
1

) ✓ Kernel(⇢0)}
= cB

1

.
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Conversely, assume that no such  exists. Then the kernel of ⇡
1

is not a subset of the
kernel of ⇡

2

� �, so there exists a 2 A
1

such that ⇡
1

(a) = 0, but ⇡
2

(�(a)) 6= 0. Lemma

3.3 implies that there exists ⇢ 2 cB
2

such that ⇢(⇡
2

(�(a))) 6= 0. Write C = ⇢(⇡
2

(�(A)))
and c = ⇢(⇡

2

(�(a)))). Then Lemma 3.3 again implies that there exists ⇢00 2 bC such that

⇢00(c) 6= 0. Let ⇢0 = ⇢00 � ⇢ � ⇡
2

� �, an element of cA
1

. Then

(3.2) Kernel(⇢ � ⇡
2

� �) ✓ Kernel(⇢0)

and ⇢0(a) 6= 0. Line (3.2) implies that ⇢0 is in �⇤⇢, while the fact that ⇢0(a) 6= 0 and ⇡
1

(a) = 0

implies that ⇢0 is not in the subset cB
1

of cA
1

. Hence �⇤⇢ 6✓ cB
1

as required. ⇤

We now turn back to crossed products. Let A be a G-C⇤-algebra and � a crossed product.
Let S

�

(A) denote the subset of \Ao

max

G consisting of representations of A o

max

G that

factor through the quotient A o

�

G. In particular, S
max

(A) denotes \Ao

max

G and S
red

(A)

denotes \Ao

red

G, considered as a subset of S
max

(A).

We will first characterize exactness in terms of the sets above. Let

0 // I // A // B // 0

be a short exact sequence of G-C⇤-algebras. If � is a crossed product, consider the corre-
sponding commutative diagram of short exact sequences

(3.3) 0 // I o
max

G //

⇡I

✏✏

Ao

max

G //

⇡A

✏✏

B o

max

G

⇡B

✏✏

// 0

0 // I o
�

G
◆ // Ao

�

G
⇡ // B o

�

G // 0

We make the following identifications:

(1) S
�

(A) is by definition a subset of S
max

(A);
(2) S

max

(I) and S
max

(B) identify canonically with subsets of S
max

(A) as I o

max

G and
B o

max

G are respectively an ideal and a quotient of Ao

max

G;
(3) S

�

(I) and S
�

(B) are by definition subsets of S
max

(I) and S
max

(B) respectively, and
thus identify with subsets of S

max

(A) by the identifications in the previous point.

3.5. Lemma. Having made the identifications above, the following conditions govern exact-
ness of the bottom line in diagram (3.3).

(1) The map ⇡ in line (3.3) above is surjective, and its kernel contains the image of ◆.
(2) The map ◆ in line (3.3) above is injective if and only if

S
max

(I) \ S
�

(A) = S
�

(I).



EXPANDERS, EXACT CROSSED PRODUCTS, AND THE BAUM-CONNES CONJECTURE 11

(3) The kernel of ⇡ is equal to the image of ◆ in line (3.3) above if and only if

S
max

(B) \ S
�

(A) = S
�

(B).

Proof. The map ⇡ is surjective as its image contains the dense subset B o

alg

G. The kernel
of ⇡ contains the image of ◆ as � is a functor. Thus (1) is established.

For (2), as ◆(I o

�

G) is an ideal in A o

�

G, we may identify its spectrum with a subset
of S

�

(A), and thus also of S
max

(A). Commutativity of line (3.3) identifies the spectrum of
◆(I o

�

G) with

{⇢ 2 S
max

(A) | Kernel(⇡
A

) ✓ Kernel(⇢) and ⇢(I o
max

G) 6= {0}}
= S

max

(I) \ S
�

(A).

Lemma 3.3 implies the map ◆ is injective if and only if the spectrum of ◆(I o
�

G) and S
�

(I)
are the same as subsets of S

max

(A), so we are done.

For (3), surjectivity of ⇡ canonically identifies S
�

(B) with a subset of S
�

(A). Part (2) and
the fact that the image of ◆ is contained in the kernel of ⇡ imply that S

�

(B) is disjoint from
S
max

(I)\S
�

(A) as subsets of S
�

(A). Hence the kernel of ⇡ equals the image of ◆ if and only
if

S
�

(A) = S
�

(B) [ (S
max

(I) \ S
�

(A)),

or equivalently, if and only if

(3.4) S
�

(B) = S
�

(A) \ S
max

(I).

As the top line of diagram (3.3) is exact, S
max

(A) is equal to the disjoint union of S
max

(I) and
S
max

(B), whence S
�

(A) \ S
max

(I) = S
�

(A) \ S
max

(B); the conclusion follows on combining
this with the condition in line (3.4). ⇤

We now characterize Morita compatibility. Recall that there is a canonical ‘untwisting’
⇤-isomorphism

(3.5) � : (A⌦K
G

)o
max

G ! (Ao

max

G)⌦K
G

,

and that a crossed product � is Morita compatible if this descends to an ⇤-isomorphism

(A⌦K
G

)o
�

G ⇠= (Ao

�

G)⌦K
G

.

The following lemma is immediate from the fact that the spectrum of the right-hand-side in
line (3.5) identifies canonically with S

max

(A).
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3.6. Lemma. A crossed product � is Morita compatible if and only if the bijection

b� : S
max

(A⌦K
G

) ! S
max

(A)

induced by � takes S
�

(A⌦K
G

) onto S
�

(A). ⇤

The following lemma is the final step in constructing a minimal exact and Morita com-
patible crossed product.

3.7. Lemma. Let ⌃ be a family of crossed products. Then there is a unique crossed product
⌧ such that for any G-C⇤-algebra A,

S
⌧

(A) =
\

�2A
S
�

(A).

Proof. For each � 2 ⌃, let I
�

denote the kernel of the canonical quotient map Ao

max

G !
A o

�

G, and similarly for I
red

. Note that I
red

contains all the ideals I
�

. Let I denote the
smallest ideal of Ao

max

G containing I
�

for all � 2 ⌃. Define

Ao

⌧

G := (Ao

max

G)/I;

as I is contained in I
red

, this is a completion of Ao

alg

G that sits between the maximal and
reduced completions. The spectrum of Ao

⌧

G is

S
⌧

(A) = {⇢ 2 S
max

(A) | I ✓ Kernel(⇢)}.
Lemma 3.3 implies that this is equal to

{⇢ 2 S
max

(A) | I
�

✓ Kernel(⇢) for all � 2 ⌃} =
\

�2⌃
S
�

(A)

as claimed. Uniqueness of the completion Ao

⌧

G follows from Lemma 3.3 again.

Finally, we must check that o
⌧

defines a functor on G-C⇤: if � : A
1

! A
2

is an equivariant
⇤-homomorphism, we must show that the dashed arrow in the diagram

A
1

o

max

G

✏✏

�oG // A
2

o

max

G

✏✏
A

1

o

⌧

G // A
2

o

⌧

G

can be filled in. Fix � 2 ⌃. Lemma 3.4 applied to the analogous diagram with ⌧ replaced
by � implies that for all ⇡ 2 S

�

(A
2

), (� o G)⇤⇡ is a subset of S
�

(A
1

). Hence for all
⇡ 2 S

⌧

(A
2

) = \
�2⌃S�(A2

) we have that (� o G)⇤⇡ is a subset of \
�2⌃S�(A1

) = S
⌧

(A
1

).
Lemma A.3 now implies that the dashed line can be filled in. ⇤

The part of the following theorem that deals with exactness is due to Eberhard Kirchberg.
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3.8. Theorem. There is a unique minimal exact and Morita compatible crossed product.

Proof. Let ⌃ be the collection of all exact and Morita compatible crossed products, and let
⌧ be the crossed product that satisfies S

⌧

(A) = \
�2⌃S�(A) as in Lemma 3.7. As ⌧ is a

lower bound for the set ⌃, it su�ces to show that ⌧ is exact and Morita compatible. The
conditions in Lemmas 3.5 and 3.8 clearly pass to intersections, however, so we are done. ⇤

4. A reformulation of the conjecture

Continue with G a second countable, locally compact group. We propose to reformulate
the Baum-Connes conjecture, replacing the usual reduced crossed product with the minimal
exact and Morita compatible crossed product (the E-crossed product). There is no change
to the left side of the conjecture.

4.1. Definition. The E-Baum-Connes conjecture with coe�cients is the statement that the
E-Baum-Connes assembly map

µ : Ktop

⇤ (G;A) ! K⇤(AoE G)

is an isomorphism for every G-C⇤-algebra A. Here AoE G is the minimal exact and Morita
compatible crossed product.

When the group is exact, the reduced and E-crossed products agree, and thus the original
and reformulated Baum-Connes conjectures agree. Our main remaining goal is to show that
known expander-based counterexamples to the original Baum-Connes conjecture are con-
firming examples for the reformulated conjecture. Indeed, our positive isomorphism results
will hold in these examples for every exact and Morita compatible crossed product, in partic-
ular for the reformulated conjecture involving the E-crossed product. For the isomorphism
results, we require an alternate description of the E-Baum-Connes assembly map, amenable
to the standard Dirac-dual Dirac method of proving the conjecture.

We recall the necessary background about E-theory. The equivariant asymptotic category
is the category in which the objects are the G-C⇤-algebras and in which the morphisms
are homotopy classes of equivariant asymptotic morphisms. We shall denote the morphism
sets in this category by [[A,B]]

G

. The equivariant E-theory groups are defined as particular
morphism sets in this category:

EG(A,B) = [[⌃A⌦K
G

,⌃B ⌦K
G

]]G,

where ⌃A ⌦ K
G

stands for C
0

(0, 1) ⌦ A ⌦ K
G

. The equivariant E-theory category is the
category in which the objects are the G-C⇤-algebras and in which the morphism sets are the
equivariant E-theory groups.
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The equivariant categories we have encountered are related by functors: there is a functor
from the category of G-C⇤-algebras to the equivariant asymptotic category which is the iden-
tity on objects, and which views an equivariant ⇤-homomorphism as a ‘constant’ asymptotic
family; similarly there is a functor from the equivariant asymptotic category to the equivari-
ant E-theory category which is the identity on objects and which ‘tensors’ an asymptotic
morphism by the identity maps on C

0

(0, 1) and K
G

.

Finally, there is an ordinary (non-equivariant) theory parallel to the equivariant theory
described above: the asymptotic category and E-theory category are categories in which the
objects are C⇤-algebras and the morphisms are appropriate homotopy classes of asymptotic
morphisms; there are functors as above, which are the identity on objects. See [19] for further
background and details.

We start with two technical lemmas. For a C⇤-algebra B, let M(B) denote its multiplier
algebra. If A is a G-C⇤-algebra, recall that elements of A o

alg

G are continuous compactly
supported functions from G to A; we denote such a function by (a

g

)
g2G. Consider the

canonical action of A on Ao

alg

G by multipliers defined by setting

(4.1) b · (a
g

)
g2G := (ba

g

)
g2G and (a

g

)
g2G · b := (a

g

b)
g2G

for all (a
g

)
g2G 2 A o

alg

G and b 2 A. This action extends to an action of A on A o

max

G

by multipliers, i.e. there is a ⇤-homomorphism A ! M(A o

max

G) such that the image of
b 2 A is the extension of the multiplier defined in line (4.1) above to all of Ao

max

G.

4.2. Lemma. For any crossed product functor o

⌧

and any G-C⇤-algebra A, the action of A
on Ao

alg

G in line (4.1) extends to define a ⇤-homomorphism

A ! M(Ao

⌧

G).

This in turn extends to a ⇤-homomorphism

M(A) ! M(Ao

⌧

G)

from the multiplier algebra of A to that of Ao

⌧

G.

Proof. The desired ⇤-homomorphism A ! M(Ao

⌧

G) can be defined as the composition

A ! M(Ao

max

G) ! M(Ao

⌧

G)

of the canonical action of A on the maximal crossed product by multipliers, and the ⇤-
homomorphism on multiplier algebras induced by the surjective natural transformation be-
tween the maximal and ⌧ -crossed products. This ⇤-homomorphism is non-degenerate, so
extends to the multiplier algebra of A as claimed. ⇤
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Let now ‘�’ denote the algebraic tensor product (over C) between two ⇤-algebras, and as
usual use ‘⌦’ for the spatial tensor product of C⇤-algebras. Recall that we denote elements
of A o

alg

G by (a
g

)
g2G. Equip C[0, 1] with the trivial G-action, and consider the function

defined by

(4.2) � : C[0, 1]� (Ao

alg

G) ! (C[0, 1]⌦ A)o
alg

G, f � (a
g

)
g2G 7! (f ⌦ a

g

)
g2G.

It is not di�cult to check that � is a well-defined ⇤-homomorphism.

4.3. Lemma. Let A be a G-C⇤-algebra, and o

⌧

be any crossed product. Then the ⇤-
homomorphism � defined in line (4.2) above extends to a ⇤-isomorphism

� : C[0, 1]⌦ (Ao

⌧

G) ⇠= (C[0, 1]⌦ A)o
⌧

G

on ⌧ -crossed products. If the ⌧ -crossed product is moreover exact, then the restriction of �
to C

0

(0, 1)� (Ao

alg

G) extends to a ⇤-isomorphism

� : C
0

(0, 1)⌦ (Ao

⌧

G) ⇠= (C
0

(0, 1)⌦ A)o
⌧

G.

Proof. The inclusion A ! C[0, 1]⌦A defined by a 7! 1⌦ a is equivariant, so gives rise to a
⇤-homomorphism

Ao

⌧

G ! (C[0, 1]⌦ A)o
⌧

G

by functoriality of the ⌧ -crossed product. Composing this with the canonical inclusion of
the right-hand-side into its multiplier algebra gives a ⇤-homomorphism

(4.3) Ao

⌧

G ! M((C[0, 1]⌦ A)o
⌧

G).

On the other hand, composing the canonical ⇤-homomorphism C[0, 1] ! M(C[0, 1] ⌦ A)
with the ⇤-homomorphism on multiplier algebras from Lemma 4.2 gives a ⇤-homomorphism

(4.4) C[0, 1] ! M((C[0, 1]⌦ A)o
⌧

G).

Checking on the strictly dense ⇤-subalgebra (C[0, 1] ⌦ A) o
alg

G of M((C[0, 1] ⌦ A) o
⌧

G)
shows that the image of C[0, 1] under the ⇤-homomorphism in line (4.4) is central, whence
combining it with the ⇤-homomorphism in line (4.3) defines a ⇤-homomorphism

C[0, 1]� (Ao

⌧

G) ! M((C[0, 1]⌦ A)o
⌧

G),

and nuclearity of C[0, 1] implies that this extends to a ⇤-homomorphism

C[0, 1]⌦ (Ao

⌧

G) ! M((C[0, 1]⌦ A)o
⌧

G).

It is not di�cult to see that this ⇤-homomorphism agrees with the map � from line (4.2) on
the dense ⇤-subalgebra C[0, 1] � (A o

alg

G) of the left-hand-side and thus in particular has
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image in the C⇤-subalgebra (C[0, 1]⌦ A)o
⌧

G of the right-hand-side. We have thus shown
that the ⇤-homomorphism � from line (4.2) extends to a ⇤-homomorphism

� : C[0, 1]⌦ (Ao

⌧

G) ! (C[0, 1]⌦ A)o
⌧

G.

It has dense image, and is thus surjective; in the C[0, 1] case it remains to show injectivity.

To this end, for each t 2 [0, 1] let

✏
t

: (C[0, 1]⌦ A)o
⌧

G ! Ao

⌧

G

be the ⇤-homomorphism induced by the G-equivariant ⇤-homomorphism C[0, 1] ⌦ A ! A

defined by evaluation at t. Let F be an element of C[0, 1]⌦ (Ao

⌧

G), which we may think
of as a function from [0, 1] to Ao

⌧

G via the canonical isomorphism

C[0, 1]⌦ (Ao

⌧

G) ⇠= C([0, 1], Ao

⌧

G).

Checking directly on the dense ⇤-subalgebra C[0, 1]� (Ao

alg

G) of C[0, 1]⌦ (Ao

⌧

G) shows
that ✏

t

(�(F )) = F (t) for any t 2 [0, 1]. Hence if F is in the kernel of �, then F (t) = 0 for all
t in [0, 1], whence F = 0. Hence � is injective as required.

Assume now that the ⌧ -crossed product is exact, and look at the C
0

(0, 1) case. The short
exact sequence

0 ! C
0

(0, 1] ! C[0, 1] ! C ! 0

combined with exactness of the maximal tensor product, nuclearity of commutative C⇤-
algebras, and exactness of the ⌧ -crossed product gives rise to a commutative diagram

0 // C
0

(0, 1]⌦ (Ao

⌧

G)

✏✏

// C[0, 1]⌦ (Ao

⌧

G)

�

⇠
=

✏✏

// Ao

⌧

G //

=

✏✏

0

0 // (C
0

(0, 1]⌦ A)o
⌧

G // (C[0, 1]⌦ A)o
⌧

G // Ao

⌧

G // 0

with exact rows, and where the leftmost vertical arrow is the restriction of �. The restriction
of � to C

0

(0, 1] ⌦ (A o

⌧

G) is thus an isomorphism onto (C
0

(0, 1] ⌦ A) o
⌧

G. Applying an
analogous argument to the short exact sequence

0 ! C
0

(0, 1) ! C
0

(0, 1] ! C ! 0

completes the proof. ⇤

Given this, the following result is an immediate generalization of [19, Theorem 4.12],
which treats the maximal crossed product. See also [19, Theorem 4.16] for comments on the
reduced crossed product.
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4.4. Theorem. If the ⌧ -crossed product is both exact and Morita compatible, then there is
a ‘descent functor’ from the equivariant E-theory category to the E-theory category which
agrees with the ⌧ -crossed product functor on objects and on those morphisms which are
(represented by) equivariant ⇤-homomorphisms.

Proof. We follow the proof of [19, Theorem 6.22]. It follows from Lemma 4.3 that a crossed
product functor is always continuous in the sense of [19, Definition 3.1]. Applying (an
obvious analogue of) [19, Theorem 3.5], an exact crossed product functor admits descent
from the equivariant asymptotic category to the asymptotic category. Thus, we have maps
on morphism sets in the asymptotic categories

EG(A,B) = [[⌃A⌦K
G

,⌃B ⌦K
G

]]
G

! [[(⌃A⌦K
G

)o
⌧

G, (⌃B ⌦K
G

)o
⌧

G]]

which agree with the ⌧ -crossed product on morphisms represented by equivariant ⇤-homomorphisms.
It remains to identify the right hand side with the E-theory group E(Ao

⌧

G,B o

⌧

G). We
do this by showing that

(C
0

(0, 1)⌦ A⌦K
G

)o
⌧

G ⇠= C
0

(0, 1)⌦ (Ao

⌧

G)⌦K
G

.

This follows immediately from Morita compatibilty and Lemma 4.3. ⇤

We now have an alternate description of the ⌧ -Baum-Connes assembly map in the case
of an exact, Morita compatible crossed product functor: we can descend directly to the
⌧ -crossed products and compose with the basic projection. In detail, it follows from Defini-
tion 2.1 and the corresponding fact for the maximal and reduced crossed products, that if
X is a proper, cocompact G-space, then all crossed products of C

0

(X) by G agree. We view
the basic projection as an element of C

0

(X)o
⌧

G, giving a class in E(C, C
0

(X)o
⌧

G). We
form the composition

(4.5) EG(C
0

(X), A) // E(C
0

(X)o
⌧

G,Ao

⌧

G) // E(C, Ao

⌧

G),

in which the first map is the E-theoretic ⌧ -descent and the second is composition with the
(class of the) basic projection. Taking the direct limit over the cocompact subsets of EG we
obtain a map

Ktop

⇤ (G;A) ! K⇤(Ao

⌧

G).

4.5. Proposition. The map just defined is the ⌧ -Baum-Connes assembly map.

Proof. We have to show that applying the maps (4.5) to an element ✓ 2 EG(C
0

(X), A) gives
the same result as applying those in (2.3) followed by the map on K-theory induced by the
natural transformation  

A

: Ao

max

G ! Ao

⌧

G. Noting that C
0

(X)o
max

G = C
0

(X)o
⌧

G

(as all crossed products applied to a proper algebra give the same result), we have the class of
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the basic projection [p] 2 E(C, C
0

(X)o
max

G) = E(C, C
0

(X)o
⌧

G), and the above amounts
to saying that the morphisms

(4.6)  
A

� (✓ o
max

G) � [p] , (✓ o
⌧

G) � [p] : C ! Ao

⌧

G

in the E-theory category are the same.

As the functors defined by the ⌧ and maximal crossed products are continuous and exact,
[19, Proposition 3.6] shows that the natural transformation A o

max

G ! A o

⌧

G gives rise
to a natural transformation between the corresponding functors on the asymptotic category.
Hence if ✓ is any morphism in [[C

0

(X), A]]
G

the diagram

(4.7) C
0

(X)o
max

G

✓o

max

G

✏✏

C
0

(X)o
⌧

G

✓o⌧G

✏✏
Ao

max

G
 A // Ao

⌧

G

commutes in the asymptotic category. Hence by [19, Theorem 4.6] the diagram

⌃(C
0

(X)o
max

G)⌦K
1⌦✓o

max

G⌦1

✏✏

⌃(C
0

(X)o
⌧

G)⌦K
1⌦✓o⌧G⌦1

✏✏
⌃(Ao

max

G)⌦K 1⌦ A⌦1 // ⌃(Ao

⌧

G)⌦K
commutes in the asymptotic category, which says exactly that the diagram in line (4.7)
commutes in the E-theory category. In other words, as morphisms in the E-theory category

✓ o
⌧

G =  
A

� (✓ o
max

G),

whence the morphisms in line (4.6) are the same. ⇤

We close the section with the following ‘two out of three’ result, which will be our main
tool for proving the E-Baum-Connes conjecture in cases of interest. It does not hold for the
usual Baum-Connes conjecture due to possible failures of exactness on the right hand side;
indeed, its failure is the reason behind the known counterexamples. We only prove it in the
case of a discrete group as this is technically much simpler, and all we need for our results.

4.6. Proposition. Assume G is a countable discrete group. Let ⌧ be an exact and Morita
compatible crossed product. Let

0 // I // A // B // 0

be a short exact sequence of separable G-C⇤-algebras. If the ⌧ -Baum-Connes conjecture is
valid with coe�cients in two of I, A and B then it is valid with coe�cients in the third.
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Before we start the proof, we recall the construction of the boundary map in equivariant
E-theory associated to a short exact sequence

0 // I // A // B // 0

of G-C⇤-algebras. See [19, Chapter 5] for more details. Let {u
t

} be an approximate for I

that is quasi-central for A, and asymptotically G-invariant; such exists by [19, Lemma 5.3].
Let s : B ! A be a set-theoretic section. Then there is an asymptotic morphism

� : C
0

(0, 1)⌦ B ! A(I) :=
C

b

([1,1), I)

C
0

([1,1), I)

which is defined on elementary tensors by

�(f ⌦ b) = (t 7! f(u
t

)s(b))

(see [19, Proposition 5.5]) such that the corresponding class � 2 [[C
0

(0, 1) ⌦ B, I]] does not
depend on the choice of {u

t

} or s ([19, Lemma 5.7]). We then set

�
I

= 1⌦ � ⌦ 1 2 [[⌃(C
0

(0, 1)⌦ B)⌦K
G

,⌃I ⌦K
G

]]
G

= E
G

(C
0

(0, 1)⌦ B, I)

to be the E-theory class associated to this extension. This construction works precisely
analogously in the non-equivariant setting.

4.7. Lemma. Let G be a countable discrete group. Given a short exact sequence of separable
G-C⇤-algebras

0 // I // A // B // 0

there is an element �
I

2 EG(C
0

(0, 1)⌦ B, I) as above. There is also a short exact sequence
of C⇤-algebras

0 // I o
⌧

G // Ao

⌧

G // B o

⌧

G // 0

giving rise to �
Io⌧G 2 E(C

0

(0, 1)⌦ (B o

⌧

G) , I o
⌧

G).

The descent functor associated to the ⌧ crossed product then takes �
I

to �
Io⌧G.

Proof. Identify A with the C⇤-subalgebra {au
e

| a 2 A} of Ao

⌧

G, and similarly for B and
I. Choose any set-theoretic section s : B o

⌧

G ! A o

⌧

G, which we may assume has the
property that s(Bu

g

) ✓ Au
g

for all g 2 G. We then have that �
I

is asymptotic to the map

f ⌦ b 7! (t 7! f(u
t

)s(b)).

Checking directly, the image of �
I

under descent agrees with the formula

(4.8) f ⌦
X

g2G
bu

g

7!
⇣

t 7! f(u
t

)s(b)u
g

)
⌘

on elements of the algebraic tensor product C
0

(0, 1)� (B o

alg

G).
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On the other hand, we may use s and {u
t

} (which identifies with a quasi-central ap-
proximate unit for I o

⌧

G under the canonical inclusion I ! I o

⌧

G) to define �
Io⌧G, in

which case the formula in line (4.8) agrees with that for �
Io⌧G on the dense ⇤-subalgebra

(C
0

(0, 1)⌦B)o
alg

G of (C
0

(0, 1)⌦B)o
⌧

G. Thus up to the identification (C
0

(0, 1)⌦B)o
⌧

G ⇠=
C

0

(0, 1) ⌦ (B o

⌧

G) from Lemma 4.3, the image of � 2 [[C
0

(0, 1) ⌦ B, I]]
G

under descent is
the same as �

Io⌧G 2 [[C
0

(0, 1)⌦ (B o

⌧

G), I o
⌧

G]] and we are done. ⇤

Proof of Proposition 4.6. Basic exactness properties of K-theory and exactness of the ⌧ -
crossed product give a six-term exact sequence on the right hand side of the conjecture:

(4.9) K
0

(I o
⌧

G) // K
0

(Ao

⌧

G) // K
0

(B o

⌧

G)

✏✏
K

1

(B o

⌧

G)

OO

K
1

(Ao

⌧

G)oo K
1

(I o
⌧

G).oo

Similarly, basic exactness properties of equivariant E-theory give a six-term sequence on the
left hand side:

(4.10) Ktop

0

(G; I) // Ktop

0

(G;A) // Ktop

0

(G;B)

✏✏

Ktop

1

(G;B)

OO

Ktop

1

(G;A)oo Ktop

1

(G; I).oo

The corresponding maps in these diagrams are given by composition with elements of equi-
variant E-theory groups, and the corresponding descended elements of E-theory groups;
for example, the left hand vertical map in (4.10) is induced by the equivariant asymptotic
morphism associated to the original short exact sequence of G-C⇤-algebras, and the corre-
sponding map in (4.9) is induced by its descended asymptotic morphism.

Further, the assignments

A 7! K⇤(Ao

⌧

G), A 7! Ktop

⇤ (G;A)

define functors from EG to abelian groups, and functoriality of descent together with as-
sociativity of E-theory compositions imply the assembly map is a natural transformation
between these functors. Hence assembly induces compatible maps between the six-term
exact sequences in lines (4.9) and (4.10). The result now follows from the five lemma. ⇤
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5. Some properties of the minimal exact and Morita compatible crossed

product

In this section, we study a natural class of exact and Morita compatible crossed products,
and use these to deduce some properties of the minimal exact and Morita compatible crossed
product. In particular, we show that the usual property (T) obstructions to surjectivity of
the maximal Baum-Connes assembly map do not apply to our reformulated conjecture. We
also give an example of a crossed product that could be equal to the minimal one.

Throughout, G denotes a locally compact, second countable group. The following general
lemma will be used twice below.

5.1. Lemma. Let ⌧ be a crossed product. For any G-C⇤-algebra A, let M(A o

⌧

G) denote
the multiplier algebra of Ao

⌧

G. The canonical actions of A and G by multipliers on Ao

alg

G

extend to an injective ⇤-homomorphism

A ! M(Ao

⌧

G)

and an injective unitary representation

G ! M(Ao

⌧

G).

Proof. As the canonical ⇤-homomorphism

Ao

max

G ! Ao

⌧

G

is surjective, it extends uniquely to a ⇤-homomorphism on multiplier algebras

M(Ao

max

G) ! M(Ao

⌧

G);

the desired homomorphisms are the compositions of this with the canonical actions of G and
A by multipliers on Ao

max

G. ⇤

5.2. Definition. Let ⌧ be a crossed product, and B a fixed unital G-C⇤-algebra. For any
G-C⇤-algebra A, the ⌧ -B completion of A o

alg

G, denoted A o

⌧,B

G, is defined to be the
image of the map

Ao

⌧

G ! (A⌦
max

B)o
⌧

G

induced by the equivariant inclusion

A ! A⌦
max

B, a 7! a⌦ 1.

5.3. Lemma. For any G-C⇤-algebra B and crossed product ⌧ , the family of completions
Ao

⌧,B

G defined above are a crossed product functor.
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Proof. To see that o

⌧,B

dominates the reduced completion, note that as the ⌧ completion
dominates the reduced completion there is a commutative diagram

Ao

⌧,B

G //

✏✏

Ao

red

G

✏✏
(A⌦

max

B)o
⌧

G // (A⌦
max

B)o
red

G

,

where the vertical arrows are induced by the equivariant inclusion a 7! a ⌦ 1, and the
bottom horizontal arrow is the canonical natural transformation between the ⌧ and reduced
crossed products. We need to show the dashed horizontal arrow can be filled in. This follows
as equivariant inclusions of G-C⇤-algebras induce inclusions of reduced crossed products,
whence the right vertical map is injective.

The fact that o
⌧,B

is a functor follows as the assignment A 7! A⌦
max

B defines a functor
from the category of G-C⇤-algebras to itself, and the ⌧ crossed product is a functor. ⇤

From now on, we refer to the construction in Definition 5.2 as the ⌧ -B-crossed product.

5.4. Lemma. Let ⌧ be a crossed product, and B a unital G-C⇤-algebra. If the ⌧ -crossed
product is Morita compatible (respectively, exact), then the ⌧ -B-crossed product is Morita
compatible (exact).

Proof. To see Morita compatibility, consider the commutative diagram

(A⌦K
G

)o
⌧,B

G //

✏✏

(Ao

⌧,B

G)⌦K
G

✏✏
((A⌦K

G

)⌦
max

B)o
⌧

G
⇠
= // ((A⌦

max

B)⌦K
G

)o
⌧

G
⇠
= // ((A⌦

max

B)o
⌧

G)⌦K
G

,

where the left arrow on the bottom row comes from the nuclearity of K
G

and associativity of
the maximal crossed product; the right arrow on the bottom row is the Morita compatibility
isomorphism; and the vertical arrows are by definition of the ⌧ -B crossed product. It su�ces
to show that the dashed arrow exists and is an isomorphism: this follows from the fact that
the vertical arrows are injections.

To see exactness, consider a short exact sequence of G-C⇤-algebras

0 // I // A // Q // 0
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and the corresponding commutative diagram

0 // I o
⌧,B

G
◆ //

✏✏

Ao

⌧,B

G
⇡ //

✏✏

Qo

⌧,B

G //

✏✏

0

0 // (I ⌦
max

B)o
⌧

G // (A⌦
max

B)o
⌧

G // (Q⌦
max

B)o
⌧

G // 0

.

Note that all the vertical maps are injections by definition. Moreover, the bottom row is
exact by exactness of the maximal tensor product, and the assumed exactness of the ⌧
crossed product. The only issue is thus to show that the kernel of ⇡ is equal to the image of
◆.

The kernel of ⇡ is A o

⌧,B

G \ (I ⌦
max

B) o
⌧

G, so we must show that this is equal to
I o

⌧,B

G. The inclusion

I o
⌧,B

G ✓ Ao

⌧,B

G \ (I ⌦
max

B)o
⌧

G

is automatic, so it remains to show the reverse inclusion. Let x be an element of the right
hand side. Let {u

i

} be an approximate unit for I, and note that {v
i

} := {u
i

⌦ 1} can be
thought of as a net in the multiplier algebra of (I ⌦

max

B) o
⌧

G via Lemma 5.1. The net
{v

i

} is an ‘approximate unit’ in the sense that v
i

y converges to y for all y 2 (I⌦
max

B)o
⌧

G.
Let {x

i

} be a (bounded) net in A o

alg

G converging to x in the A o

⌧,B

G norm, and with
the same index set as that of {v

i

}. Note that

kv
i

x
i

� xk  kv
i

x
i

� v
i

xk+ kv
i

x� xk  kv
i

kkx
i

� xk+ kv
i

x� xk,
which tends to zero as i tends to infinity. Note, however, that v

i

x
i

belongs to I o

alg

G

(considered as a ⇤-subalgebra of (I ⌦
max

B)o
⌧

G), so we are done. ⇤

We now specialize to the case when ⌧ is E , the minimal exact crossed product.

5.5. Corollary. For any unital G-C⇤-algebra B, the E-crossed product and E-B-crossed prod-
uct are equal.

Proof. It is immediate from the definition that the E-B-crossed product is no larger than
the E-crossed product. Lemma 5.4 implies that the E-B-crossed product is exact and Morita
compatible, however, so they are equal by minimality of the E-crossed product. ⇤

5.6. Corollary. For any unital G-C⇤-algebra B and any G-C⇤-algebra A, the map

AoE G ! (A⌦
max

B)oE G

induced by the inclusion a 7! a⌦ 1 is injective.
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Proof. The image of the map AoE G is (by definition) equal to AoE,BG so this is immediate
from Corollary 5.5. ⇤

The following result implies that the usual property (T) obstructions to surjectivity of the
maximal Baum-Connes assembly map do not apply to the E-Baum-Connes conjecture: see
Corollary 5.8 below. The proof is inspired by [6, Proof of Theorem 2.6.8, part (7) ) (1)].

5.7. Proposition. Say the C⇤-algebra C⇤
E(G) := CoEG admits a non-zero finite dimensional

representation. Then G is amenable.

Proof. Let C
ub

(G) denote the C⇤-algebra of bounded, (left) uniformly continuous functions
on G, and let ↵ denote the (left) action of G on this C⇤-algebra, which is a continuous action
by ⇤-automorphisms. It will su�ce (compare [3, Section G.1]) to show that if C⇤

E(G) has a
non-zero finite dimensional representation then there exists an invariant mean on C

ub

(G): a
state � on C

ub

(G) such that �(↵
g

(f)) = �(f) for all g 2 G and f 2 C
ub

(G).

Assume then there is a non-zero representation ⇡ : C⇤
E(G) ! B(H), where H is finite

dimensional. Passing to a subrepresentation, we may assume ⇡ is non-degenerate whence it
comes from a unitary representation of G, which we also denote ⇡. Applying Corollary 5.6
to the special case A = C, B = C

ub

(G), we have that C⇤
E(G) identifies canonically with a C⇤-

subalgebra of C
ub

(G)oE G. Hence by Arveson’s extension theorem (in the finite dimensional
case - see [6, Corollary 1.5.16]) there exists a contractive completely positive map

⇢ : C
ub

(G)oE G ! B(H)

extending ⇡. As ⇡ is non-degenerate, ⇢ is, whence ([32, Corollary 5.7]) it extends to a strictly
continuous unital completely positive map on the multiplier algebra, which we also denote
by ⇢

⇢ : M(C
ub

(G)oE G) ! B(H).

Now, note that as ⇡ is a representation, the C⇤-subalgebra C⇤
E(G) of M(C

ub

(G) oE G) is
in the multiplicative domain of ⇢ (compare [6, page 12]). Note that the image of G inside
M(C

ub

(G) o
max

G) is in the strict closure of the ⇤-subalgebra C
c

(G), whence the same is
true in the image of G in M(C

ub

(G) oE G) given by Lemma 5.1; it follows from this and
strict continuity of ⇢ that the image of G in M(C

ub

(G) oE G) is also in the multiplicative
domain of ⇢. Hence for any g 2 G and f 2 C

ub

(G),

⇢(↵
g

(f)) = ⇢(u
g

fu⇤
g

) = ⇡(g)⇢(f)⇡(g)⇤.

It follows that if ⌧ : B(H) ! C is the canonical tracial state, then ⌧ � ⇢ is an invariant mean
on C

ub

(G), so G is amenable. ⇤
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We now discuss the relevance of this proposition to the property (T) obstructions to the
maximal Baum-Connes conjecture. Recall that if G is a group with property (T), then for
any finite dimensional unitary representation ⇡ of G (for example, the trivial representation),
there is a central Kazhdan projection p

⇡

in C⇤
max

(G) that maps to the orthogonal projection
onto the ⇡-isotypical component in any unitary representation of G. When G is infinite and
discrete3, it is well-known [23, Discussion below 5.1] that the class of p

⇡

inK
0

(C⇤
max

(G)) is not
in the image of the maximal Baum-Connes assembly map. Thus, at least for infinite discrete
groups, the projections p

⇡

obstruct the maximal version of the Baum-Connes conjecture.

The following corollary, which is immediate from the above proposition, shows that these
obstructions do not apply to the E-crossed product.

5.8. Corollary. Let G be a group with property (T), and ⇡ be a finite dimensional represen-
tation of G. Write C⇤

E(G) := C oE G. Then the canonical quotient map C⇤
max

(G) ! C⇤
E(G)

sends p
⇡

to zero. ⇤

Finally in this section, we specialize to the case of discrete groups and look at the particular
example of the max-l1(G)-crossed product. We show below that this crossed product is
actually equal to the reduced one when G is exact. It is thus possible that the max-l1(G)-
crossed product actually is the E-crossed product. As further evidence in this direction, note
that for any commutative unital B, there is a unital equivariant map from B to l1(G) by
restriction to any orbit. This shows that the max-l1(G)-crossed product is the greatest lower
bound of the max-B-crossed products as B ranges over commutative unital C⇤-algebras. We
do not know what happens when B is noncommutative: quite plausibly here one can get
something strictly smaller. Of course, there could also be many other constructions of exact
and Morita compatible crossed products that do not arise as above.

The following argument is based on [47, Section 2].

5.9. Proposition. Say G is exact. Then the max-l1(G)-crossed product equals the reduced
crossed product.

Proof. LetA be aG-C⇤-algebra. We will show that (A⌦l1(G))o
max

G = (A⌦l1(G))o
red

(G),
which will su�ce to complete the proof. In order to do this, we will start by constructing
an appropriate family of Schur multipliers.

Fix a left-invariant proper metric d on G. As G is exact, results of Guentner and Kaminker
[21], and Ozawa [39] show that the metric space (G, d) has Yu’s property A [52, Definition
2.1]. It follows (see for example [4, Theorem 3, condition 3]) that for any R > 0 and any

3It is suspected that this is true in general, but we do not know of a proof in the literature
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✏ > 0 there exists S > 0 and a ‘partition of unity’ {�
g

: G ! [0, 1]}
g2G with the following

properties.

(1) For all h 2 G,
P

g

(�
g

(h))2 = 1.
(2) For all h, k 2 G such that d(h, k)  R,

P

g

|�
g

(h)� �
g

(k)|  1.
(3) For all g 2 G �

g

is supported in the ball of radius S about g.

Consider now the linear map

M : (A⌦ l1(G))o
alg

G ! (A⌦ l1(G))o
alg

G

defined on elementary tensors by the formula

M(a⌦ f [g]) =
n

X

i=1

a⌦
⇣

X

h2Gi

�
i

f(�
i

� ↵
g

)
⌘

[g],

and extended to all of (A⌦l1(G))o
alg

G by continuity. Note that the condition ‘
P

g

(�
g

(h))2 =
1 for all h 2 G’ implies that this is unital. We claim that it extends to a unital completely
positive map on any C⇤-algebra completion B of (A⌦ l1(G))o

alg

G. It su�ces to show that
for any n and any b in the n ⇥ n matrices over (A ⌦ l1(G)) o

alg

G that is positive for the
C⇤-algebra structure coming from the n⇥ n matrices over B, we have that M ⌦ 1

Mn(C)(b) is
positive.

For notational simplicity, assume that b is in (A ⌦ l1(G)) o
alg

G; the same argument
will apply to matrix algebras. Assume that S 0 > 0 is such that b is in the subspace E

S

0 of
(A⌦ l1(G))o

alg

G spanned by elements of the form x[g] where x is in A⌦ l1(G), and the
length of g is at most S 0. Using the bounded geometry of G and a greedy algorithm, we may
decompose G into finitely many disjoint subsets G

1

, ..., G
n

such that for any g, h in the same
G

i

, d(g, h) > 2S 0. For each i 2 {1, ..., n}, set �
i

=
P

g2Gi
�
i

, a positive element in l1(G),
and therefore a positive element of B. One then checks that

M(b) =
n

X

i=1

�
i

b�
i

,

and therefore b is positive as it is a finite sum of positive elements.

Note further that the image of M on (A⌦ l1(G))o
alg

G lies in E
2S

, and this subspace is
closed in any completion of (A⌦ l1(G))o

alg

G. It follows that the image of M is contained
in E

2S

when extended to any completion of (A ⌦ l1(G)) o
alg

G, and so in particular in
(A⌦ l1(G))o

alg

G.
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Now, for each n, let M
n

be constructed as above for the data R = n and ✏ = 1/n. Consider
the commutative diagram

(A⌦ l1(G))o
alg

G

✏✏

Mn // (A⌦ l1(G))o
alg

G

✏✏
(A⌦ l1(G))o

max

G
Mn //

�

✏✏

(A⌦ l1(G))o
max

G

�

✏✏
(A⌦ l1(G))o

red

G
Mn // (A⌦ l1(G))o

red

G

.

Assume that x 2 (A ⌦ l1(G)) o
max

G is in the kernel of �. Then for all n, �(M
n

(x)) =
M

n

(�(x)) = 0. However, M
n

(x) lies in the algebraic crossed product and � is injective on
this crossed product, so this forces M

n

(x) to be zero for all n. However, estimates using the
norm from l1(G,A ⌦ l1(G)) (which dominates the norm on any C⇤-algebra completion of
(A ⌦ l1(G)) o

alg

G) show that the sequence (M
n

) converges point-norm to the identity, so
this forces x = 0. Thus we have shown that � is injective; this completes the proof. ⇤

We suspect a similar result holds for a general locally compact group (with C
ub

(G) gen-
eralizing l1(G)), but have not tried to pursue this here. This is because the proof above
relies on property A, and while property A makes sense for locally compact groups, it is not
known if is equivalent to exactness outside the discrete case.

6. Proving the conjecture

In this section, we consider conditions under which the Baum-Connes conjecture with
coe�cients in a G-C⇤-algebra A is true for exact and Morita compatible crossed products
and, in particular, when the E-Baum-Connes conjecture is true. This is certainly the case
when G is exact and the usual Baum-Connes conjecture for G with coe�cients in A is valid.
However, we are interested in the non-exact Gromov monster groups. We shall study actions
of these groups with the Haagerup property as in the following definition (adapted from work
of Tu [45, Section 3]).

6.1. Definition. Let G be a locally compact group acting on the right on a locally compact
Hausdor↵ topological space X. A function h : X ⇥ G ! R is of conditionally negative type
if it satisfies the following conditions:

(i) the restriction of h to X ⇥ {e} is zero;
(ii) for every x 2 X, g 2 G, we have that h(x, g) = h(xg, g�1);
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(iii) for every x in X and any finite subsets {g
1

, ..., g
n

} of G and {t
1

, ..., t
n

} of R such that
P

i

t
i

= 0 we have that

n

X

i,j=1

t
i

t
j

h(xg
i

, g�1

i

g
j

)  0.

The action of G on X is a-T-menable if there exists a continuous conditionally negative type
function h that is locally proper : for any compact K ✓ X the restriction of h to the set

{(x, g) 2 X ⇥G | x 2 K, xg 2 K}

is a proper function.

In the precise form stated, the following theorem is essentially due to Tu [45]. See also
Higson and Guentner [25, Theorem 3.12], Higson [24, Theorem 3.4] and Yu [52, Theorem
1.1] for closely related results.

6.2. Theorem. Let G be a second countable locally compact group acting a-T-menably on a
second countable locally compact space X. The ⌧ -Baum-Connes assembly map

Ktop

⇤ (G;C
0

(X)) ! K⇤(C0

(X)o
⌧

G)

is an isomorphism for every exact and Morita compatible crossed product ⌧ .

Proof. In the terminology of [45, Section 3], Definition 6.1 says that the transformation
groupoid X o G admits a locally proper, negative type function, and therefore by [45,
Proposition 3.8] acts properly by isometries on a field of Hilbert spaces. It then follows from
[45, Théorème 1.1] and the discussion in [45, Last paragraph of introduction] that there exist

↵ 2 EG(A, C
0

(X)), � 2 EG(C
0

(X),A)

such that

(6.1) ↵ � � = 1 in EG(C
0

(X), C
0

(X)).

(Actually, Tu works in the framework of equivariant KK-theory. Using the natural trans-
formation to equivariant E-theory, we obtain the result as stated here.)

Consider now the following diagram, where the vertical maps are induced by ↵, � above,
E-theory compositions, and the descent functor from Theorem 4.4; and the horizontal maps
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are assembly maps

Ktop

⇤ (G;C
0

(X))

�⇤
✏✏

// K⇤(C0

(X)o
⌧

G)

�⇤
✏✏

Ktop

⇤ (G;A) //

↵⇤
✏✏

K⇤(Ao

⌧

G)

↵⇤
✏✏

Ktop

⇤ (G;C
0

(X)) // K⇤(C0

(X)o
⌧

G)

.

The diagram commutes as descent is a functor and E-theory compositions are associative.
Moreover, the vertical compositions are isomorphisms by line (6.1). Further all crossed
products are the same for a proper action, whence the central horizontal map identifies with
the usual assembly map, and so is an isomorphism by [9, Théorème 2.2]. Hence from a
diagram chase the top and bottom maps are isomorphisms, which is the desired result. ⇤

6.3. Remark. The Baum-Connes conjecture with coe�cients is true for a-T-menable groups
when defined with either the maximal or reduced crossed product [26]. The argument above
shows that this extends to any exact and Morita compatible crossed product.

Based on this remark, it may be tempting to believe that for a-T-menable groups the
Baum-Connes conjecture is true with values in any ‘intermediate completion’ of the algebraic
crossed product Ao

alg

G. This is false (even if A = C), as the following example shows.

6.4. Example. Let G be an a-T-menable group that is not amenable, for example a free group
or SL(2,R). Let C⇤

S

(G) denote the completion of C
c

(G) in the direct sum ��1 of the regular
and trivial representations.4

As G is not amenable the trivial representation is isolated in the spectrum of C⇤
S

(G),
whence this C⇤-algebra splits as a direct sum

C⇤
S

(G) = C⇤
r

(G)� C.

Let p 2 C⇤
S

(G) denote the unit of the copy of C in this decomposition, a so-called Kazhdan
projection. The class [p] 2 K

0

(C⇤
r

(G)) generates a copy of Z, which is precisely the kernel of
the map on K-theory induced by the quotient C⇤

S

(G) ! C⇤
r

(G).

The Baum-Connes conjecture is true for G by a-T-menability whence [p] is not in the
image of the Baum-Connes assembly map

µ : Ktop

⇤ (G) ! K⇤(C⇤
S

(G)),

4C⇤
S(G) is the Brown-Guentner crossed product CoBG,S G associated to the subset S = cGr [ {1} of the

unitary dual: see Appendix A.
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and so in particular the assembly map is not surjective. The discussion in Examples A.11
develops this a little further.

7. An example coming from Gromov monster groups

A Gromov monster group G is a discrete group whose Cayley graph contains an expanding
sequence of graphs (an expander), in some weak sense. The geometric properties of expanders
can be used to build a commutative G-C⇤-algebra A for which the Baum-Connes conjecture
with coe�cients fails. In fact, Gromov monster groups are the only known source of such
failures.

In this section we show that for some Gromov monster groups there is a separable com-
mutative G-C⇤-algebra B for which the E-Baum-Connes conjecture is true, but the usual
version using the reduced crossed product is false. The existence of such a B can be attrib-
uted to two properties: failure of exactness, and the presence of a-T-menability. The main
result of this section is Theorem 7.8, which proves a-T-menability of a certain action.

The ideas in this section draw on many sources. The existence of Gromov monster groups
was indicated by Gromov [18]. More details were subsequently provided by Arzhantseva
and Delzant [1], and Coulon [13]. The version of the construction we use in this paper
is due to Osajda [37]. The idea of using Gromov monsters to construct counterexamples
to the Baum-Connes conjecture is due to Higson, La↵orgue and Skandalis [27, Section 7].
The construction of counterexamples we use in this section comes from work of Yu and the
third author [49, Section 8], [50]. The present exposition is inspired by subsequent work of
Finn-Sell and Wright [17], of Chen, Wang and Yu [11], and of Finn-Sell [15]. Note also that
Finn-Sell [16] has obtained analogs of Theorem 7.8 below using a di↵erent method.

In order to discuss a-T-menability, we will be interested in kernels with the properties in
the next definition.

7.1. Definition. Let X be a set, and k : X ⇥X ! R

+

a function (a kernel).

The kernel k is conditionally negative definite if

(i) k(x, x) = 0, for every x 2 X;
(ii) k(x, y) = k(y, x), for every x, y 2 X;
(iii) for every subset {x

1

, ..., x
n

} of X and every subset {t
1

, ..., t
n

} of R such that
P

n

i=1

t
i

= 0
we have

n

X

i,j=1

t
i

t
j

k(x
i

, x
j

)  0.
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Assume now that X is a metric space. The kernel k is asymptotically conditionally negative
definite if conditions (i) and (ii) above hold, and the following weak version of condition (iii)
holds:

(iii)’ for every r > 0 there exists a bounded subset K = K(r) of X such that for every
subset {x

1

, ..., x
n

} of X \K of diameter at most r, and every subset {t
1

, ..., t
n

} of R
such that

P

n

i=1

t
i

= 0 we have

n

X

i,j=1

t
i

t
j

k(x
i

, x
j

)  0.

Continuing to assume that X is a metric space, a kernel k is proper if for each r > 0

sup
d(x,y)r

k(x, y)

is finite, and if

inf
d(x,y)�r

k(x, y)

tends to infinity as r tends to infinity.

Remark. Using techniques similar to those in [15] (compare also [48]), one can show that if
X admits a fibered coarse embedding into Hilbert space as in [11, Section 2], then X admits
a proper, asymptotically conditionally negative definite kernel. One can also show directly
that if X admits a proper, asymptotically conditionally negative definite kernel, then the
restriction to the boundary of the coarse groupoid of X has the Haagerup property as studied
in [17]. We will not need these properties, however, so do not pursue this further here.

Let now X and Y be metric spaces. A map f : X ! Y is a coarse embedding if there
exist non-decreasing functions ⇢� and ⇢

+

from R

+

to R

+

such that for all x
1

, x
2

2 X,

⇢�(d(x1

, x
2

))  d(f(x
1

), f(x
2

))  ⇢
+

(d(x
1

, x
2

))

and such that ⇢�(t) tends to infinity as t tends to infinity. A coarse embedding f : X ! Y

is a coarse equivalence if in addition there exists C � 0 such that every point of Y is
distance at most C from a point of f(X). Coarse equivalences have ‘approximate inverses’:
given a coarse equivalence f : X ! Y there is a coarse equivalence g : Y ! X such that
sup

x2X d(x, g(f(x))) and sup
y2Y d(y, f(g(y))) are finite.

We record the following lemma for later use; the proof is a series of routine checks.

7.2. Lemma. Let X and Y be metric spaces, and f : X ! Y a coarse embedding.
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If k is a proper, asymptotically conditionally negative definite kernel on Y , then the pull-
back kernel (f ⇤k)(x, y) := k(f(x), f(y)) on X is proper and asymptotically conditionally
negative definite. ⇤

We are mainly interested in metric spaces that are built from graphs. We identify a finite
graph with its vertex set, and equip it with the edge metric: the distance between vertices
x and y is the smallest number n for which there exists a sequence

x = x
0

, x
1

, ..., x
n

= y

in which consecutive pairs span an edge.

7.3. Definition. Let (X
n

) be a sequence of finite graphs such that

(i) each X
n

is non-empty, finite, and connected;
(ii) there exists a D such that all vertices have degree at most D.

Equip the disjoint union X = t
n

X
n

with a metric that restricts to the edge metric on each
X

n

and in addition satisfies

d(X
n

,t
n 6=m

X
m

) ! 1 as n ! 1.

The exact choice of metric does not matter for us: the identity map on X is a coarse
equivalence between any two choices of metric satisfying these conditions.

The metric space X is the box space associated to the sequence (X
n

).

The girth of a graph X is the length of the shortest non-trivial cycle in X, and infinity
if no non-trivial cycles exist. A box space X built from a sequence (X

n

) as above has large
girth if the girth of X

n

tends to infinity as n tends to infinity.

A box space X associated to a sequence (X
n

) is an expander if there exists c > 1 such
that for all n and all subsets A of X

n

with |A|  |X
n

|/2, we have

|{x 2 X
n

| d(x,A)  1}|
|A| � c.

7.4. Theorem. Let X be a large girth box space as in Definition 7.3. Then the distance
function on X is a proper, asymptotically conditionally negative definite kernel.

For the proof of this theorem, we shall require the following well known lemma [28, Sec-
tion 2]. For convenience, we sketch a proof.

7.5. Lemma. Let T be (the vertex set of ) a tree. The edge metric is conditionally negative
definite, when viewed as a kernel d : T ⇥ T ! R

+

.
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Proof. Let `2 denote the Hilbert space of square summable functions on the set of edges in
T . Fix a base vertex x

0

. For every vertex x let ⇠(x) be the characteristic function of those
edges along the unique no-backtrack path from x

0

to x. The result is a routine calculation
starting from the observation that

k⇠(x)� ⇠(y)k2 = d(x, y),

for every two vertices x and y. ⇤

Proof of Theorem 7.4. Let k(x, y) = d(x, y). Properness and conditions (i) and (ii) from
the definition of asymptotically conditionally negative definite are trivially satisfied, so it
remains to check condition (iii).

Given r > 0, let N be large enough that the following conditions are satisfied:

(a) if n > N then d(X
n

,t
m 6=n

X
m

) > r;
(b) if n > N then the girth of X

n

is at least 2r.

The force of (b) is that if T
n

is the universal cover of X
n

then the covering map T
n

! X
n

is an isometry on sets of diameter r or less. Let K = X
1

t · · · t X
N

. It now su�ces to
show that d is conditionally negative definite when restricted to a finite subset F of X \K
of diameter at most r. But, such a subset necessarily belongs entirely to some X

n

, and the
covering map T

n

! X
n

admits an isometric splitting over F . Thus, restricted to F ⇥ F ,
the metric d is the pullback of the distance function on T

n

which is conditionally negative
definite by the previous lemma. ⇤

Let G be a finitely generated group. Fix a word length ` and associated left-invariant
metric on G; the following definition is independent of the choice of length function.

7.6. Definition. The group G is a special Gromov monster if there exists a large girth
expander box space X as in Definition 7.3 and a coarse embedding from X to G.

Osajda [37] has shown that special Gromov monsters in the sense above exist: in fact,
he proves the existence of examples where the (large girth, expander) box space X is iso-
metrically embedded. Other constructions of Gromov monster groups, including Gromov’s
original one, produce maps of (expander, large girth) box spaces into groups which are not
(obviously) coarse embeddings: see the remarks in Section 8.4 below. The restriction to
coarsely embedded box spaces is the reason for the terminology ‘special Gromov monster’ in
the above.

For the remainder of this section, let G be a special Gromov monster group, and let
f : X ! G be a coarse embedding of a large girth, expander box space into G. Let
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Z = f(X) ⇢ G be the image of f . For each natural number R, let N
R

(Z) be the R-
neighborhood of Z in G.

7.7. Lemma. There exists a kernel k on G such that for any R 2 N the restriction of k to
N

R

(Z) is proper and asymptotically conditionally negative definite.

Proof. Let p
0

: Z ! Z be the identity map. For R 2 N inductively choose p
R

: N
R

(Z) ! Z

by stipulating that p
R+1

: N
R+1

(Z) ! Z extends p
R

, and satisfies d(p
R+1

(x), x)  R+ 1 for
all x 2 N

R

(Z). Note that each p
R

is a coarse equivalence. Let g : Z ! X be any choice
of coarse equivalence, and let d be the distance function on X, so d has the properties in
Theorem 7.4.

For each R, let k
R

be the pullback kernel (g � p
R

)⇤d, which Lemma 7.2 implies is proper
and asymptotically conditionally negative definite. The choice of the functions p

R

implies
that for R > S, the kernel k

R

extends k
S

, and so these functions piece together to define a
kernel k on [

R

N
R

(Z) = G. ⇤

We will now construct an a-T-menable action of G.

For each natural number R, let N
R

(Z) be the closure of N
R

(Z) in the Stone-Čech com-
pactification �G of G. Let

Y =

 

[

R2N
N

R

(Z)

!

\ @G,

i.e. Y is the intersection of the open subset [
R2NNR

(Z) ⇢ �G with the Stone-Čech corona
@G.

Next we define an action of G on Y . This is best done by considering the associated
C⇤-algebras of continuous functions. The C⇤-algebra of continuous functions on [

R2NNR

(Z)
naturally identifies with

A =
[

R2N
`1(N

R

(Z)),

the C⇤-subalgebra of `1(G) generated by all the bounded functions on the R-neighbourhoods
of Z. For every x and g in G we have

d(x, xg) = `(g),

so that the right action of G on itself gives rise to an action on `1(G) that preserves A. In
this way A is a G-C⇤-algebra. Note that A contains C

0

(G) as a G-invariant ideal, and Y

identifies naturally with the maximal ideal space of the G-C⇤-algebra A/C
0

(G).

7.8. Theorem. The action of G on Y is a-T-menable.
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Proof. Let k be as in Lemma 7.7. Say g is an element of G and y is an element of Y , so
contained in some N

R

(Z). Note that the set {k(x, xg)}
x2NR(Z)

is bounded by properness of
the restriction of k to N

R+`(g)

(Z). Hence, thinking of y as an ultrafilter on N
R

(Z), we may
define

h(y, g) = lim
y

k(x, xg).

This definition does not depend on the choice of R. We claim that the function

h : Y ⇥G ! R

+

thus defined has the properties from Definition 6.1.

Indeed, condition (i) follows as

h(y, e) = lim
y

k(x, x) = 0

for any y. For condition (ii), note that

h(y, g) = lim
y

k(x, xg) = lim
y

k(xg, x) = h(xg, g�1).

For condition (iii), let y be fixed, {g
1

, ..., g
n

} be a subset of G and {t
1

, ..., t
n

} a subset of R
such that

P

t
i

= 0. Then
n

X

i,j=1

t
i

t
j

h(yg
i

, g�1

i

g
j

) = lim
y

n

X

i,j=1

k(xg
i

, xg
i

g�1

i

g
j

) = lim
y

n

X

i,j=1

k(xg
i

, xg
j

).

Let r be larger than the diameter of {xg
1

, ..., xg
n

}, and note that removing the finite set
K(r) as in the definition of asymptotic conditionally negative definite kernel from N

R

(Z)
does not a↵ect the ultralimit lim

y

P

k(xg
i

, xg
j

). We may thus think of this as an ultralimit
over a set of non-positive numbers, and thus non-positive.

Finally, we check local properness. Let K be a compact subset of Y . As {N
R

(Z)\Y | R 2
N} is an open cover of Y , the set K must be contained in some N

R

(Z). Assume that y and
yg are both in K. Choose any net (x

i

) in N
R

(Z) converging to y and, passing to a subnet,
assume that the elements x

i

g are all contained in N
R

(Z). Passing to another subnet, assume
that lim

i

k(x
i

, x
i

g) exists. We then have that

h(y, g) = lim
y

k(x, xg) = lim
i

k(x
i

, x
i

g) � inf{k(x, y) | x, y 2 N
R

(Z), d(x, y) � `(g)}
which tends to infinity as `(g) tends to infinity (at a rate depending only on R, whence only
on K) by properness of the restriction of k to N

R

(Z). This completes the proof. ⇤

We are now ready to produce our example of a C⇤-algebra B for which the usual Baum-
Connes assembly map

µ : Ktop

⇤ (G;B) ! K⇤(B o

red

G)
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fails to be surjective, but for which the E-Baum-Connes assembly map

µ : Ktop

⇤ (G;B) ! K⇤(B oE G)

is an isomorphism.

Assume that G is a special Gromov monster group. Then there exists a Kazhdan projection
p in some matrix algebra M

n

(A o

red

G) over A o

red

G such that the corresponding class
[p] 2 K

0

(A o

red

G) is not in the image of the assembly map: see [49, Section 8]. We may
write

p = lim
n!1

X

g2Fn

n

X

i,j=1

f
(n)

ijg

e
ij

[g]

where F
n

is a finite subset of G, {e
ij

}n
i,j=1

are the standard matrix units for M
n

(C), and each

f
(n)

gij

is an element of A.

Let h : Y ⇥G ! R

+

be a function as in Definition 6.1, and let C
0

(W ) be the C⇤-subalgebra
of C

0

(Y ) generated by the countably many functions {x 7! h(x, g)}
g2G, the restriction of

the countably many functions f
(n)

gij

to Y , and all translates of these elements by G. Let B

be the preimage of C
0

(W ) in A. Then the following hold (compare [25, Lemma 4.2]):

(i) B is separable;
(ii) the action of G on W is a-T-menable;
(iii) the Kazhdan projection is contained in a matrix algebra over the reduced crossed prod-

uct B o

red

G.

7.9. Corollary. The E-Baum-Connes assembly map with coe�cients in the algebra B is
an isomorphism. On the other hand, the usual Baum-Connes assembly map for G with
coe�cients in B is not surjective.

Proof. The C⇤-algebra B sits in a G-equivariant short exact sequence of the form

0 // C
0

(G) // B // C
0

(W ) // 0 .

The action of G on the space W is a-T-menable, so the E-Baum-Connes conjecture with co-
e�cients in C

0

(W ) is true by Corollary 6.2. The E-Baum-Connes conjecture with coe�cients
in C

0

(G) is true by properness of this algebra (which also forces C
0

(G)oEG = C
0

(G)o
red

G).
The result for the E-Baum-Connes conjecture now follows from Lemma 4.6.

On the other hand, the results of [49] show that the class [p] 2 K
0

(Ao

red

G) is not in the
image of the assembly map; by naturality of the assembly map in the coe�cient algebra, the
corresponding class [p] 2 K

0

(B o

red

G) is not in the image of the assembly map either. ⇤
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7.10. Remark. It seems very likely that an analogous statement holds for A itself. However,
here we pass to a separable C⇤-subalgebra to avoid technicalities that arise in the non-
separable case.

8. Concluding remarks and questions

8.1. The role of exactness. Given the current state of knowledge on exactness and the
Baum-Connes conjecture, we do not know which of the following (vague) statements is closer
to the truth.

(i) Failures of exactness are the fundamental reason for failure of the Baum-Connes con-
jecture (with coe�cients, for groups).

(ii) Failures of exactness are a convenient way to detect counterexamples to the Baum-
Connes conjecture, but counterexamples arise for more fundamental reasons.

The statement that the E-Baum-Connes conjecture is true is a precise version of statement
(i), and the material in this paper provides some evidence for its validity. Playing devil’s
advocate, we outline some evidence for statement (ii) below.

8.1.1. Groupoid counterexamples. As well as the counterexamples to the Baum-Connes con-
jecture with coe�cients for groups that we have discussed, Higson, La↵orgue and Skandalis
[27] also use failures of exactness to produce counterexamples to the Baum-Connes conjecture
for groupoids.

One can use the precise analog of Definition 2.1 to define general groupoid crossed prod-
ucts, and then for a particular crossed product ⌧ define the ⌧ -Baum-Connes assembly map
as the composition of the maximal groupoid Baum-Connes assembly map and the map on
K-theory induced by the quotient map from the maximal crossed product to the ⌧ -crossed
product. It seems (we did not check all the details) that the program of this paper can
also be carried out in this context: there is a minimal groupoid crossed product with good
properties, and one can reformulate the groupoid Baum-Connes conjecture with coe�cients
accordingly. The work of Popescu on groupoid-equivariant E-theory [40] is relevant here.

However, in the case of groupoids this method will not obviate all known counterexamples.
In fact, the following result is not di�cult to extrapolate from [27, Section 2, 1st counterex-
ample]. For any groupoid G and groupoid crossed product ⌧ , let C⇤

⌧

(G) denote C
0

(G(0))o
⌧

G,
a completion of the groupoid convolution algebra C

c

(G).
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Proposition. There exists a (locally compact, Hausdor↵, second countable, étale) groupoid
G such that for any groupoid crossed product ⌧ , there exists a projection p

⌧

2 C⇤
⌧

(G) whose
K-theory class is not in the image of the ⌧ -assembly map.

Proof. Let �1 be the discrete group SL(3,Z) and for each n let �
n

= SL(3,Z/nZ) and
let ⇡

n

: �1 ! �
n

be the obvious quotient map. In [27, Section 2], the authors show how
to construct a locally compact, Hausdor↵ second countable groupoid G out of this data:
roughly, the base space of G is N [ {1}, and G is the bundle of groups with �

n

over the
point n in N [ {1}.

As explained in [27, Section 2, 1st counterexample], there is a projection p
red

in C⇤
red

(G)
whose K-theory class is not in the image of the reduced assembly map; roughly p

red

exists
as the trivial representation of SL(3,Z) is isolated among the congruence representations.
However, as SL(3,Z) has property (T), the trivial representation is isolated among all uni-
tary representations of this group, and therefore there is a projection p

max

in C⇤
max

(G) that
maps to p

red

under the canonical quotient map. Let p
⌧

denote the image of p
max

under the
canonical quotient map from the maximal crossed product to the ⌧ -crossed product. As the
reduced assembly map factors through the ⌧ -assembly map, the fact that the class of p

red

is not in the image of the reduced assembly map implies that the class of p
⌧

is not in the
image of the ⌧ -assembly map. ⇤

For groupoids, then, statement (ii) above seems the more reasonable one. Having said
this, we think the methods of this paper can be used to obviate some of the other groupoid
counterexamples in [27], and it is natural to try to describe the groupoids for which this
can be done. This question seems interesting in its own right, and it might also suggest
phenomena that could occur in the less directly accessible group case.

8.1.2. Geometric property (T) for expanders. As mentioned above, all current evidence sug-
gests that statement (i) above might be the correct one for groups and group actions. It is
crucial here that the only expanders anyone knows how to coarsely embed into a group are
those with ‘large girth’, as we exploited in Section 7.

In [50, Section 7] and [51], Yu and the third author study a property of expanders called
geometric property (T), which is a strong negation of the Haagerup-type properties used in
Section 7. Say G there is a group containing a coarsely embedded expander with geometric
property (T) (it is not known whether such a group exists!). Then we may construct the
analogue of the C⇤-algebra B used in Corollary 7.9. For this B and any crossed product o

⌧

the C⇤-algebra B o

⌧

G will contain a Kazhdan projection that (modulo a minor technical
condition, which should be easy to check) will not be in the image of the ⌧ -assembly map. In
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particular, this would imply that the E-Baum-Connes conjecture fails for the group G and
coe�cient C⇤-algebra B.

It is thus very natural to ask if one can embed an expander with geometric property (T)
into a group. We currently do not know enough to speculate on this either way.

8.2. Other exact crossed products. We use the crossed product oE for our reformulation
of the Baum-Connes conjecture as it has the following two properties.

(i) It is exact and Morita compatible.
(ii) It is equal to the reduced crossed product when the group is exact.

However, the results of Theorem 6.2 and Corollary 7.9 are true for any exact and Morita
compatible crossed product. It is thus reasonable to consider other crossed products with
properties (i) and (ii) above.

For example, consider the family of crossed products introduced by Kaliszewski, Landstad
and Quigg [29] that we discuss in the appendix. These are all Morita compatible, and
one can consider the minimal exact crossed product from this smaller class. This minimal
Kaliszewski-Landstad-Quigg crossed product would have particularly good properties: for
example, it would be a functor on a natural Morita category of correspondences [7, Section
2]. It is not clear to us if oE has similarly good properties, or if it is equal to the ‘minimal
exact Kaliszewski-Landstad-Quigg crossed product’.

Another natural example is the max-l1(G)-crossed product that we looked at in Proposi-
tion 5.9 above: it is possible that this is equal to the E-crossed product. If it is not equal to
the E-crossed product, it would be interesting to know why.

8.3. Consequences of the reformulated conjecture. Most of the applications of the
Baum-Connes conjecture to topology and geometry, for example to the Novikov and Gromov-
Lawson conjectures (see [2, Section 7]), follow from the strong Novikov conjecture5: the
statement that the maximal assembly map with trivial coe�cients

(8.1) µ : Ktop

⇤ (G) ! K⇤(C⇤
max

(G))

is injective. This is implied by injectivity of the E-assembly map, so the reformulated con-
jecture still has these same consequences. Moreover, isomorphism of the E-assembly map
implies that the assembly map in line (8.1) is split injective.

5Some authors use ‘strong Novikov conjecture’ to refer to the stronger statement that the reduced assembly
map with trivial coe�cients is injective.
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On the other hand, the Kadison-Kaplansky conjecture states that if G is a torsion free
discrete group, then there are no non-trivial projections in the reduced group C⇤-algebra
C⇤

red

(G). It is predicted by the classical form of the Baum-Connes conjecture. However,
it is not predicted by our reformulated conjecture for non-exact groups. The reformulated
conjecture does not even predict that there are no non-trivial projections in the exotic group
C⇤-algebra CoE G, essentially as this C⇤-algebra does not (obviously) have a faithful trace.

It is thus natural to look for counterexamples to the Kadison-Kaplansky conjecture among
non-exact groups.

8.4. Weak coarse embeddings. Let X = tX
n

be a box space as in Definition 7.3 and
G be a finitely generated group equipped with a word metric. A collection of functions
f
n

: X
n

! G is a weak coarse embedding if:

(i) there is a constant c > 0 such that

d
G

(f
n

(x), f
n

(y))  cd
Xn(x, y)

for all n and all x, y 2 X
n

;
(ii) the limit

lim
n!1

max
n |f�1

n

(x)|
|X

n

| | x 2 G
o

is zero.

If (X
n

) is a sequence of graphs, and f : X ! G is a coarse embedding from the associated box
space into a group G, then the sequence of maps (f

n

: X
n

! G) defined by restricting f is
a weak coarse embedding. Some versions of the Gromov monster construction (for example,
[34, 1]) show that weak coarse embeddings of large girth, expander box spaces into groups
exist6, but it is not clear from these constructions that coarse embeddings are possible.

In their original construction of counterexamples to the Baum-Connes conjecture with
coe�cients [27, Section 7], Higson, La↵orgue and Skandalis used the existence of a group
G and a weak coarse embedding of an expander (f

n

: X
n

! G). They use this data to
construct G-spaces Y and Z, and show that the Baum-Connes assembly map fails to be an

6Arzhantseva and Delzant [1] show something much stronger than this: very roughly, they prove the
existence of maps fn : Xn ! G that are ‘almost a quasi-isometry’, and where the deviation from being
a quasi-isometry is ‘small’ relative to the girth. See [1, Section 7] for detailed statements. There is no
implication either way between the condition that a sequence of maps (f : Xn ! G) be a coarse embedding,
and the condition that it satisfy the ‘almost quasi-isometry’ properties of [1, Section 7]. We do not know if
the existence of an ‘almost quasi-isometric’ embedding of a box space into a group implies the existence of
a coarse embedding.
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isomorphism either with coe�cients in C
0

(Y ), or with coe�cients in C
0

(Z). Their techniques
do not show that the reformulated conjecture will fail for one of these coe�cients, but we
do not know if the reformulated conjecture is true under these assumptions either.

On the other hand, to produce our examples where the reformulated conjecture is true but
the old conjecture fails (compare Corollary 7.9) we need to know the existence of a group G

and a coarse embedding f : X ! G of a large girth, expander box space; such groups are
the special Gromov monsters of Definition 7.6. We appeal to recent results of Osajda [37]
to see that appropriate examples exist.

8.5. Further questions. The following (related) questions seem natural; we do not cur-
rently know the answer to any of them. Unfortunately, non-exact groups are quite poorly
understood (for example, there are no concrete countable7 examples), so many of these
questions might be di�cult to approach directly.

8.1. Questions. (i) Can one coarsely embed an expander with geometric property (T) into
a (finitely generated) discrete group?

(ii) Can one characterize exact crossed products in a natural way, e.g. by a ‘slice map
property’?

(iii) It is shown in [43] that for G countable and discrete, the reduced crossed product is
exact if and only if it preserves exactness of the sequence

0 ! C
0

(G) ! l1(G) ! l1(G)/C
0

(G) ! 0.

Is this true for more general crossed products? Is there another natural ‘universal short
exact sequence’ that works for a general crossed product?

(iv) Say G is a non-exact group, and let C⇤
E(G) denote C oE G, a completion of the group

algebra. Can this completion be equal to C⇤
red

(G)?
(v) Is the E-crossed product equal to the minimal exact Kaliszewski-Landstad-Quigg crossed

product?
(vi) Is the E-crossed product equal to the max-l1(G) crossed product from Proposition 5.9?
(vii) Does the E-crossed product give rise to a descent functor on KK-theory?
(viii) Is the reformulated conjecture true for the counterexamples originally constructed by

Higson, La↵orgue and Skandalis?

7Exactness passes to closed subgroups, so finding concrete uncountable examples - like permutation groups
on infinitely many letters - is easy given that some countable non-exact group exists at all.
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Appendix A. Appendix: some examples of crossed products

In this appendix we discuss some examples of crossed products. These examples are not
necessary for the development in the main piece. However, they are important as motivation
and to show the sort of examples that can arise (and contradict overly optimistic conjectures).

We will look at two families of exotic crossed products, which were introduced in [5]
and [29]. For many groups both families contain uncountably many natural examples that
are distinct from the reduced and maximal crossed products; thus there is a rich theory of
exotic crossed products. We will show this and that one family is always exact, the other
always Morita compatible. We conclude with two examples showing that the Baum-Connes
conjecture fails for many exact crossed products.

The material draws on work of Brown and Guentner [5], of Kaliszewski, Landstad and
Quigg [29] and of Buss and Echterho↵ [8, 7]. The third author is grateful to Alcides Buss
and Siegfried Echterho↵ for some very illuminating discussions of these papers.

Let G be a locally compact group. We will write u : G ! U(H), g 7! u
g

for a unitary
representation of G, and use the same notation for the integrated forms

u : C
c

(G) 7! B(H), u : C⇤
max

(G) ! B(H)

as for the representation itself. If A is a G-C⇤-algebra, we will write a covariant pair of
representations for (A,G) in the form

(⇡, u) : (A,G) ! B(H),

where ⇡ : A ! B(H) is a ⇤-representation and u : G ! U(H) is a unitary representation
satisfying the covariance relation

u
g

⇡(a)u⇤
g

= ⇡(g(a)), g 2 G, a 2 A.

Write
⇡ o u : Ao

alg

G ! B(H), ⇡ o u : Ao

max

G ! B(H)

for the integrated forms of (⇡, u).

Recall that if S is a collection of unitary representations of G, and u is a unitary repre-
sentation of G, then u is said to be weakly contained in S if

(A.1) ku(f)k  sup
v2S

kv(f)k

for all f 2 C
c

(G).

Let bG denote the unitary dual of G, i.e. the set of unitary equivalence classes of irreducible
unitary representations of G. We will identify each class in bG with a choice of representative
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when this causes no confusion. The unitary dual is topologized by the following closure
operation: if S is a subset of bG, then the closure S consists of all those elements of bG that
are weakly contained in S. Let bG

r

denote the closed subset of bG consisting of all (equivalence
classes of) irreducible unitary representations that are weakly contained in the (left) regular
representation.

A.1. Definition. A subset S of bG is admissible if its closure contains bG
r

.

Note that bG and bG
r

identify canonically with the spectra of the maximal and reduced
group C⇤-algebras C⇤

max

(G) and C⇤
red

(G) respectively. If S is an admissible subset of bG,
define a C⇤-norm on C

c

(G) by
kfk

S

:= sup
u2S

ku(f)k

and let C⇤
S

(G) denote the corresponding completion. Note that as S contains bG
r

, the identity
map on C

c

(G) extends to a quotient map

C⇤
S

(G) ! C⇤
red

(G).

We will now associate two crossed products to each admissible S ✓ bG. The first was
introduced by Brown and Guentner [5, Section 5] (at least in a special case), and the second
by Kaliszewski, Landstad and Quigg [29, Section 6] (it was subsequently shown to define a
functor by Buss and Echterho↵ [8, Section 7]).

A.2. Definition. Let S be an admissible subset of bG.

(i) A covariant pair (⇡, u) for a G-C⇤-algebra A is an S-representation if u is weakly
contained in S.

Define the Brown-Guentner S-crossed-product (or ‘BG S-crossed-product’) of A by
G, denoted Ao

BG,S

G, to be the completion of Ao

alg

G for the norm

kxk := sup{k(⇡ o u)(x)kB(H)

| (⇡, u) : (A,G) ! B(H) an S-representation}.
If S is unambiguous, we will often write Ao

BG

G.
(ii) Let A be a G-C⇤-algebra, and let

(Ao

max

G)⌦ C⇤
S

(G)

denote the spatial tensor product of the maximal crossed product Ao

max

G and C⇤
S

(G);
let M(Ao

max

G⌦ C⇤
S

(G)) denote its multiplier algebra. Let

(⇡, u) : (A,G) ! M(Ao

max

G)⌦M(C⇤
S

(G)) ✓ M(Ao

max

G⌦ C⇤
S

(G))

be the covariant representation defined by

⇡ : a 7! a⌦ 1, u : g 7! g ⌦ g.
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Note that this integrates to an injective ⇤-homomorphism

⇡ o u : Ao

alg

G ! (Ao

max

G)⌦ C⇤
S

(G).

Define theKaliszewski-Landstad-Quigg S-crossed-product (or ‘KLQ S-crossed-product’)
of A by G, denoted Ao

KLQ,S

G, to be the completion of

(⇡ o u)(Ao

alg

G)

inside (Ao

max

G)⌦ C⇤
S

(G). If S is unambiguous, we will often write Ao

KLQ

G.

For the reader comparing the above to [5] and [29], we note that the constructions in those
papers use spaces of matrix coe�cients rather than subsets of bG to build crossed products.
Standard duality arguments show that the two points of view are equivalent: we use subsets
of bG here simply as this seemed to lead more directly to the results we want.

We now show that the Brown-Guentner and Kaliszewski-Landstad-Quigg crossed products
are crossed product functors.

A.3. Proposition. Let S be an admissible subset of bG. Let � : A ! B be a G-equivariant
⇤-homomorphism. Let

�oG : Ao

alg

G ! B o

alg

G

denote its integrated form. Then �oG extends to ⇤-homomorphisms

�oG : Ao

BG

G ! B o

BG

G, �oG : Ao

KLQ

G ! B o

KLQ

G

on both the BG and KLQ S-crossed-products.

In particular, o
BG

and o

KLQ

are crossed product functors in the sense of Definition 2.1.

Proof. Let x be an element of Ao

alg

G.

We first consider the BG crossed product. Note that

k(�oG)(x)k
BoBGG

= sup{k((⇡ � �)o u)(x)k | (⇡, u) : (B,G) ! B(H)

an S-representation}.
However, the set that we are taking the supremum over on the right hand side is a subset of

{k(⇡ o u)(x)k | (⇡, u) : (A,G) ! B(H) an S-representation},
and the Ao

BG

G norm of x is defined to the supremum over this larger set. This shows that

k(�oG)(x)k
BoBGG

 kxk
AoBGG

and thus that �oG extends to the BG crossed product.
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For the KLQ crossed product, note that there is a commutative diagram

Ao

alg

G

�oG

✏✏

// (Ao

max

G)⌦ C⇤
S

(G)

(�oG)⌦id

✏✏
B o

alg

G // (B o

max

G)⌦ C⇤
S

(G)

,

where the horizontal arrows are the injective ⇤-homomorphisms used to define A o

KLQ

G

and B o

KLQ

G. In particular, �oG extends to a map between the closures

�oG : Ao

alg

G ! B o

alg

G

of the algebraic crossed products A o

alg

G and B o

alg

G inside (A o

max

G) ⌦ C⇤
S

(G) and
(Bo

max

G)⌦C⇤
S

(G) respectively, and thus by definition to a map between the KLQ crossed
products. ⇤

Note that if S is dense in bG, then both the BG and KLQ crossed products associated to
S are equal to the maximal crossed product o

max

. On the other hand, if the closure of S
is just bG

r

, then the KLQ crossed product is equal to the reduced crossed product [29, page
18, point (4)], but the analog of this is not true in general for the BG crossed product, as
follows for example from Lemma A.6 below.

We now look at exactness (Definition 3.1) and Morita compatibilty (Definition 3.2). We
will prove the following results below.

(i) BG crossed products are always exact.
(ii) KLQ crossed products are always Morita compatible.
(iii) BG crossed products are Morita compatible only in the trivial case when S = bG.

We do note know anything about exactness of KLQ crossed products, other than in the
special cases when S = bG and S = cG

r

; this seems to be a very interesting question in
general.

A.4. Lemma. For any admissible S, the BG S-crossed-product is exact.

Proof. Let

0 // I
◆ // A

⇢ // B // 0

be a short exact sequence of G-C⇤-algebras, and consider its ‘image’

0 // I o
BG

G
◆oG // Ao

BG

G
⇢oG // B o

BG

G // 0

under the functor o
BG
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It follows from the fact that o

BG

is a functor that (⇢ o G) � (◆ o G) is zero. Moreover,
⇢oG has dense image and is thus surjective.

To see that ◆oG is injective, note that if

(⇡, u) : (I,G) ! B(H)

is an S-representation, then the representation ⇡̃ : A ! B(H) defined for ⇡(i)v 2 ⇡(I) · H
by

⇡̃(a)(⇡(i)v)) = ⇡(ai)v

fits together with u.

Finally, note that as (⇢oG) � (◆oG) = 0, there is a surjective ⇤-homomorphism

Ao

BG

G

I o
BG

G
! B o

BG

G;

we must show that this is injective. Let � : A o

BG

G ! B(H) be a non-degenerate ⇤-
representation containing I o

BG

G in its kernel; it will su�ce to show that � descends to
a ⇤-representation of B o

BG

G. As � is non-degenerate, it is the integrated form of some
S-representation

(⇡, u) : (A,G) ! B(H).

Note that the fact that I o

alg

G is contained in the kernel of � implies (by the concrete
formula for the integrated form ⇡ o u) that I is contained in the kernel of ⇡. Hence (⇡, u)
descends to a covariant pair for (B,G), which is of course still an S-representation. Its
integrated form thus extends to B o

BG

G. ⇤

A.5. Lemma. For any admissible S, the KLQ S-crossed-product is Morita compatible.

Proof. Let K
G

denote the compact operators on the infinite amplification �
n2NL2(G) of the

regular representation equipped with the natural conjugation action. Let A be a G-C⇤-
algebra, and let

� : (A⌦K
G

)o
max

G ! (Ao

max

G)⌦K
G

denote the untwisting isomorphism from line (3.1). Consider the isomorphism

�⌦ 1 : (A⌦K
G

)o
max

G⌦ C⇤
S

(G) ! (Ao

max

G)⌦K
G

⌦ C⇤
S

(G).

Up to the canonical identification

(Ao

max

G)⌦K
G

⌦ C⇤
S

(G) ⇠= (Ao

max

G)⌦ C⇤
S

(G)⌦K
G

,

the restriction of �⌦ 1 to

(A⌦K
G

)o
KLQ

G ✓ (A⌦K
G

)o
max

G⌦ C⇤
S

(G)
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identifies with the untwisting isomorphism from this C⇤-algebra to

(Ao

KLQ

G)⌦K
G

✓ (Ao

max

G)⌦ C⇤
S

(G)⌦K
G

⇤

A.6. Lemma. For any admissible S, the BG S-crossed-product is Morita compatible if and
only if S is dense in bG.

Proof. If S is dense in bG, then o

BG

is equal to o

max

and so trivially Morita compatible.

For the converse, let K
G

be as in the definition of Morita compatibilty. Let U : G ! U(H)
be a unitary representation that extends faithfully to C⇤

max

(G). Consider now the covariant
pair

(⇡, u) : (K
G

, G) ! B(�
n2NL2(G)⌦H),

defined by

⇡ : T 7! T ⌦ 1, u : g 7! (��
g

)⌦ U
g

,

which by the explicit form of the untwisting isomorphism is a faithful representation (with
image K

G

⌦C⇤
max

(G)). On the other hand, the representation u is weakly contained in the reg-
ular representation by Fell’s trick. Hence by admissibility of S, (⇡, u) is an S-representation,
and thus extends to K

G

o

BG

G. We conclude that the canonical quotient

K
G

o

max

G ! K
G

o

BG

G

is an isomorphism.

On the other hand, consider the commutative diagram

K
G

o

max

G
�,

⇠
= // K

G

⌦ C⇤
max

(G)

id⌦⇢
✏✏

K
G

o

BG

G // K
G

⌦ C⇤
S

(G)

where � is the untwisting isomorphism, ⇢ : C⇤
max

(G) ! C⇤
S

(G) is the canonical quotient,
and the bottom line is defined to make the diagram commute. To say that o

BG

is Morita
compatible means by definition that the surjection on the bottom line is an isomorphism.
This implies that the right hand vertical map is an isomorphism, whence ⇢ is an isomorphism
and so S = bG. ⇤

We now characterize when the various BG and KLQ crossed products are the same.
The characterizations imply that for non-amenable G the families of BG and KLQ crossed
products both tend to be fairly large (Lemma A.8 and Examples A.9), and that the only
crossed product common to both is the maximal crossed product (Lemma A.10).
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A.7. Definition. A subset S of bG is an ideal if for any unitary representation u and any
v 2 S, the tensor product representation u⌦ v is weakly contained in S.

A.8. Proposition. Let S, R be admissible subsets of bG.

(i) The BG crossed products defined by S and R are the same if and only if the closures
of R and S in bG are the same. In particular, BG crossed products are in one-to-one
correspondence with closed subsets of bG that contain bG

r

.
(ii) The KLQ crossed products defined by S and R are the same if and only if the closed

ideals in bG generated by R and S are the same. In particular, KLQ crossed products
are in one-to-one correspondence with closed ideals of bG that contain bG

r

.

Proof. We look first at the BG crossed products. Note that a covariant pair (⇡, u) : (A,G) !
B(H) is an S-representation if and only if it is an S-representation. This shows that the BG
crossed products associated to S and S are the same, and thus that if R = S, then their BG
crossed products are the same.

Conversely, note that if R and S have the same BG crossed products, then considering
the trivial action on C shows that C⇤

S

(G) = C⇤
R

(G). This happens (if and) only if R = S.

Look now at the KLQ crossed products. If S is an admissible subset of bG, denote by
hSi the closed ideal generated by S. Let A be a G-C⇤-algebra, and consider the covariant
representation of (A,G) into

M(Ao

max

G)⌦M(C⇤
max

(G)) ✓ M((Ao

max

G)⌦ C⇤
max

(G))

defined by

⇡ : a 7! a⌦ 1, u : g 7! g ⌦ g.

The integrated form of this representation defines a ⇤-homomorphism

Ao

alg

G ! (Ao

max

G)⌦ C⇤
max

(G)

and the closure of its image is Ao

max

G by [29, page 18, point (3)]. It follows that to define
Ao

KLQ,S

G we may take the closure of the image of Ao

alg

G under the integrated form of
the covariant pair of (A,G) with image in

M(Ao

max

G)⌦M(C⇤
max

(G))⌦M(C⇤
S

(G)) ✓ M((Ao

max

G)⌦ C⇤
max

(G)⌦ C⇤
S

(G))

defined by

(A.2) ⇡ : a 7! a⌦ 1⌦ 1, u : g 7! g ⌦ g ⌦ g.

However, the closure of the image of the integrated form of the representation

(A.3) u : G ! U(C⇤
max

(G)⌦ C⇤
S

(G)), g 7! g ⌦ g
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is easily seen to be C⇤
hSi(G). Therefore the integrated form of the representation in line (A.2)

identifies with the integrated form of the covariant pair of (A,G) with image in

M(Ao

max

G)⌦M(C⇤
hSi(G)) ✓ M((Ao

max

G)⌦ C⇤
hSi(G))

defined by
⇡ : a 7! a⌦ 1, u : g 7! g ⌦ g.

This discussion shows that S and hSi give rise to the same KLQ crossed product, and thus
that if hSi = hRi, then S and R define the same KLQ crossed product.

Conversely, note that Co

S

G is (by definition) the C⇤-algebra generated by the integrated
form of the unitary representation in line (A.3) and, as already noted, this is C⇤

hSi(G). In
particular, if R and S have the same KLQ crossed product then C⇤

hSi(G) and C⇤
hRi(G) are

the same, and this forces hRi = hSi. ⇤
A.9. Examples. Let G be a locally compact group. For any p 2 [1,1), let S

p

denote those
(equivalences classes of) irreducible unitary representations for which there are a dense set

of matrix coe�cients in Lp(G). Then S
p

is an ideal in bG containing cG
r

. Building on seminal
work of Haagerup [22], Okayasu [36] has shown that for G = F

2

, the completions C⇤
Sp
(G) are

all di↵erent as p varies through [2,1). It follows by an induction argument that the same
is true for any discrete G containing F

2

as a subgroup8.

Hence in particular for ‘many’ non-amenable G there is an uncountable family of distinct
closed ideals {S

p

| p 2 [2,1)} in bG, and thus an uncountable family of distinct KLQ and
BG completions.

The next lemma discusses the relationship between the BG and KLQ crossed products
associated to the same S. Considering the trivial crossed products of C with respect to the
trivial action as in the proof of Proposition A.8 shows that the question is only interesting
when S is a closed ideal in bG, so we only look at this case. Compare [29, Example 6.6] and
also [41] for a more detailed discussion of similar phenomena.

A.10. Lemma. Let S be a closed ideal in bG containing cG
r

. Then for any G-C⇤-algebra A,
the identity on Ao

alg

G extends to a quotient ⇤-homomorphism

Ao

BG

G ! Ao

KLQ

G

from the BG S-crossed-product to the KLQ S-crossed-product.

Moreover, this quotient map is an isomorphism for A = K
G

if and only if S = bG (in which
case we have o

BG

= o

KLQ

= o

max

).

8This is also true more generally: whether it is true for any non-amenable locally compact G seems to be
an interesting question.
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Proof. Let H and H
A

be faithful representation spaces for C⇤
S

(G) and Ao

max

G respectively.
As S is an ideal, the representation

Ao

alg

G ! (Ao

max

G)⌦ C⇤
S

(G) ✓ B(H
A

⌦H)

defining Ao

KLQ

G is the integrated form of an S-representation of (A,G), and thus extends
to Ao

BG

G. This shows the existence of the claimed quotient map.

For the second part, note that the arguments of Lemma A.5 and A.6 show that there is a
commutative diagram

K
G

o

BG

G
⇠
= //

✏✏

K
G

⌦ C⇤
max

(G)

id⌦⇢
✏✏

K
G

o

KLQ

G
⇠
= // K

G

⌦ C⇤
S

(G)

where the left hand vertical map is the quotient extending the identity map on K
G

o

alg

G,
and the right hand vertical map is the quotient extending the identity on the algebraic tensor
product K

G

� C
c

(G). Hence if

K
G

o

BG

G = K
G

o

KLQ

G

then we must have that ⇢ : C⇤
max

(G) ! C⇤
S

(G) is an isomorphism; as S is closed, this forces
S = bG. ⇤

We conclude this appendix with two examples showing that one should not in general
expect exact crossed products to satisfy the Baum-Connes conjecture.

A.11. Examples. Let G be a non-amenable group, and let S = cG
r

[ {1}, where 1 is the
class of the trivial representation (compare Example 6.4). S is a closed subset of bG, and
non-amenability implies that 1 is an isolated point of S. It follows as in Example 6.4 that
there is a Kazhdan projection p in C⇤

S

(G) that maps onto projection onto the G-fixed vectors
in any representation. The class of this projection [p] 2 K

0

(C⇤
S

(G)) cannot be in the image
of the Baum-Connes assembly map in many cases9: for example, if G is discrete (see [23,
discussion below 5.1]), or if the Baum-Connes conjecture is true for C⇤

r

(G) (for example if
G is almost connected [10]). Hence the Baum-Connes conjecture fails for the BG crossed
product associated to S in this case.

In particular, for any non-amenable discrete or almost connected G, there is an exact
crossed product for which the Baum-Connes conjecture fails. Note that this is true even for
a-T-menable groups, where the Baum-Connes conjecture is true for both the maximal and
reduced crossed products.

9We would guess it can never be in the image, but we do not know how to prove this.
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A similar, perhaps more natural, example can be arrived at by starting with G = SL(2,Z),
which is a non-amenable, a-T-menable group. Let

u
n

: SL(2,Z) ! B(l2(SL(2,Z/nZ)))
be the nth congruence representation, and define a norm on C

c

(G) by

kxk
cong

:= sup
n

{ku
n

(x)k}.

Isolation of the trivial representation in the spectrum of C⇤
cong

(SL(2,Z)) is then a conse-
quence of Selberg’s theorem [44] (see also [33, Section 4.4]), and the same construction of a
Kazhdan projection goes through.

As our second class of examples, let G be any locally compact group and S an admissible
subset of bG. Consider the commutative diagram coming from the Baum-Connes conjecture
for the BG crossed product associated to S:

Ktop

⇤ (G) //

''

K⇤(C⇤
max

(G))

✏✏
K⇤(C⇤

S

(G))

.

Assuming the Baum-Connes conjecture for the BG S-crossed product, the diagonal map
is an isomorphism, and Lemma A.6 (together with the Baum-Connes conjecture for this
crossed product and coe�cients in K

G

) implies that the vertical map is an isomorphism.
Hence the horizontal map (the maximal Baum-Connes assembly map) is an isomorphism.

However, for discrete property (T) groups (see [23, discussion below 5.1] again) for exam-
ple, the maximal assembly map is definitely not an isomorphism. Hence for discrete property
(T) groups, the Baum-Connes conjecture will fail for all BG crossed products.
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