PERMANENCE IN COARSE GEOMETRY
ERIK GUENTNER

ABSTRACT. We survey permanence results for properties of coarse metric spaces.

1. INTRODUCTION

During the past several years coarse metric spaces have been investigated by a large number of
authors, both through their connections to conjectures concerning C*-algebra K-theory and topo-
logical rigidity and, increasingly, as a subject of their own. See, for example, the monograph
[22]. In the course of this work many properties have been introduced, frequently with specific
applications in mind. Permanence results for these properties are generally scattered throughout
the literature; as a property is introduced and studied its permanence characteristics are developed
over time.

In this survey, we shall place the permanence results themselves at the center, our modest goal
being to provide a unified perspective on permanence results for properties of coarse metric spaces.
We shall identify certain primitive permanence results from which others may be derived in an
axiomatic way. The primitive permanence properties include Fibering, Unions and Limits; derived
results include group extensions, free products (with amalgam), etc. While we shall focus almost
entirely on the properties of finite asymptotic dimension, Property A and coarse embeddability,
our results apply to other properties such as the metric sparsification property [9], the property of
finite decomposition complexity [17], etc.

We make no claim regarding originality. Indeed, this survey is based on the work of Bell and
Dranishnikov and, to a lesser extend, Dadarlat and myself. Rather, our aim is to provide the student
with an essentially self-contained survey of permanence in coarse geometry. We hope the student
obtains a fresh perspective on the topics presented, a perspective they would otherwise have to
extract from the literature themselves. In a few instances, our results are slight generalizations of
results already in the literature and in others we have chosen to not state the most general result
when a particularly simple proof of a weaker result is available. Throughout we have endeavored
to provide detailed references.

During the past few years I have communicated with many people on the subject of coarse met-
ric spaces. I have benefited immensely from these discussions, and it is a pleasure to thank my
coauthors M. Dadarlat, R. Tessera, N. Wright and G. Yu and others including A. Dranishnikov
and J. Roe. A special thanks to R. Willett who carefully read an early version of this work and

The author was partially supported by NSF grant DMS-0349367.
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offered many helpful comments. This survey is based on lectures given at the conferences Geo-
metric linearization of graphs and groups held at the EPF Lausanne and the Workshop on analytic
properties of infinite groups held at the Univertity of Geneva. I am indebted to Goulnara Arzhant-
seva and Alain Valette for invitations to these meetings and for their encouragement in writing this
survey.

2. COARSE METRIC SPACES

In this section we shall establish the basic definitions and notations for the category of coarse
metric spaces. Throughout, we allow for pseudo-metric spaces — a pseudo-metric is defined by
allowing the possibility that distinct points are at distance zero.

Let X and Y be metric spaces. A function f : X — Y is uniformly expansive if there exists a
non-decreasing function p : [0,00) — [0, 0o) such that for every x and y € X

2.1) d(f(x), f(y)) < p(d(x,y));

f is effectively proper if there exists a non-decreasing function & : [0, 00) — [0, co) that is proper
in the sense that 6(t) — oo as t — oo and such that for every x and y € X

(2.2) d(d(x,y)) < d(f(x), f(y)).

There are alternate characterizations of uniformly expansive and effectively proper maps in the
literature, perhaps the most common of which are treated the following lemma.

2.1. Lemma. A function f : X — Y is uniformly expansive if and only if

(2.3) VA 3B such that d(x,y) < A = d(f(x),f(y)) <B;
f is effectively proper if and only if
(2.4) vV C 3D such that d(f(x),f(y)) < C = d(x,y) < D.
Proof. For any function f : X — Y we may define
p(t) = sup {d(f(x),f(y))},  p(t) €[0,00]
d(xy)<t
5(t) = inf {d(f(x),f(y))},
d(xy)=t

which are non-decreasing and satisfy the inequalities (2.1) and (2.2), respectively. Assuming the
conditions (2.3) and (2.4) we observe that p is finite and & is proper, respectively. Conversely,
assuming f is uniformly expansive or effectively proper, the condition (2.3) or (2.4) is readily
verified. U

A function which is both uniformly expansive and effectively proper is a coarse embedding.
A coarse equivalence is a coarse embedding which is coarsely onto in the sense that there exists
C > 0 such that the C-neighborhood of f(X) is all of Y:

Yy € Y dx € X such that dy(f(x),y) < C;
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when it is necessary to keep track of the constant involved, we say f is C-coarsely onto. Metric
spaces X and Y are coarsely equivalent if there is a coarse equivalence X — Y; although not
apparent, we shall see below that coarse equivalence is an equivalence relation.

Coarse equivalences are the isomorphisms a suitable category. Objects in the category are metric
spaces. Morphisms are closeness classes of uniformly expansive maps — g : X — Y is parallel or
close to f if there exists C > 0O such that for every x € X

d(f(x), g(x)) < C;

when necessary we say that f and g are C-close. Closeness is an equivalence relation on the set
of functions from X to Y. Observe that the composition of uniformly expansive functions is again
uniformly expansive and that the compositions of two close functions with a uniformly expansive
function (on either side) are again close. Henceforth, we shall refer to objects in this coarse
category as coarse metric spaces.

2.2. Lemma. A function f : X — Y is a coarse equivalence if and only if it is uniformly expansive
and there exists a uniformly expansive g : Y — X such that the compositions f o g and g o f are
close to the identity of Y and X, respectively.

Proof. Suppose f is a coarse equivalence. Assume f is C-coarsely onto, and let p and 6 be as in
(2.1) and (2.2). Define g : Y — X according to

(2.5) g(y) = some x € X satisfying d(f(x),y) < C.

We must show that g is uniformly expansive, and that the compositions f o g and g o f are close to
the identity. Let
p(t) = sup{s:0(s) <t+2C},

C = sup{s:08(s)<C}
observe that since & is proper, both C and p(t) are finite. The inequalities

8(d(g(x), gly)) < d(fg(x),fgly)) < d(x,y) +2C
5(d(gf(x),x)) < d(fgf(x),f(x)) < C

show, respectively, that g is p-uniformly expansive and that g o f is C-close to the identity. It is
immediate that f o g is C-close to the identity.

Conversely, suppose f and g are as in the statement. Assume g is p-uniformly expansive, and
that the compositions f o g and g o f are C-close to the identity. Then f is C-coarsely onto. Let

5(t) =sup{s:p(s) <t—2C—11.

We leave to the reader to check that f is d-effectively proper, that is, d is non-decreasing and proper,
and (2.2) is satisfied. 0]

It follows from the lemma that coarse equivalence is indeed an equivalence relation on coarse
metric spaces. Also, a coarse embedding f : X — Y is a coarse equivalence X — f(X). For
this reason, coarse embeddings are commonly thought of as being injective, whereas coarsely onto
maps are commonly thought of as being surjective for obvious reasons.
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Remark. Although the lemma is widely known, we have provided some detail in the proof so as to
make the following observation — the assertions do not depend on the particular functions but only
on the associated quantitative data. For example, if a collection of functions f, are all p-uniformly
expansive, d-effectively proper and C-coarsely onto then their inverses g, defined as in (2.5), are
all p-uniformly expansive and the compositions f,, o g, and g, o f, are all max{C, C}-close to the
identity.

Such remarks will play an important role for us, and we shall establish a framework for working
effeciently with them in the next section.

3. COARSE METRIC FAMILIES

In what follows, it will be convenient to work with families of metric spaces, rather than a single
metric space. Following [17], a metric family is simply a collection of metric spaces X = { X }.
The individual spaces comprising X are its components. The index set is part of the data of a metric
family. Typically, a metric family will be a collection of subspaces of a given coarse metric space,
each equipped with the subspace metric. Indeed, we shall see below that if we allow extended
real-valued ‘metrics’ this is always the case.

Let X = { X4} and Y = {Yp } be metric families. A function of families X — Y is a collection
of functions { f, }, together with a structure map vy — («(7y), 3(v)) relating the various index sets
such that

fy : Xaty) = Yp),)
and such that each X, is the domain of some f,. The indexing sets may be different, the same
space X, may be the domain of more than one function f., etc. We write simply f : X — Y. When
composing families { f, } and { g, } we assume the indexing sets are the same and that for every
index y the doman of f, is the range of g, in which case the composition is { f,, o g }.

Remark. To avoid cluttering the notation we shall continue to be deliberately vague regarding ‘in-
dex sets’ and ‘structure maps’. To minimize confusion, we shall continue with the above notation
throughout: the family X is always indexed by «, Y always by 3, and the function f is always
indexed by y. Other, similar notation will hopefully be clear from the context.

As a general rule, quantitative statements about metric spaces, functions, etc. are applied ‘uni-
formly’ to metric families, their morphisms, etc. Thus, a function { f, } of metric families is p-
uniformly expansive if this is true of each f.,; a similar definition applies in the case of d-effectively
proper functions. A function { f, } is C-coarsely onto if this is true of each f, and if, in addition,
each Yp is the range of some f,. Two functions {f, } and { g, } are C-close if, for each vy, the
functions f, and g, have the same domain and are C-close. The following analog of Lemma 2.2
characterizing coarse equivalence of families holds (see the remark after Lemma 2.2).

3.1. Lemma. Let f: X — Y. The following are equivalent:

(1) f is uniformly expansive and there exists a uniformly expansive g : Y — X such that the
compositions f o g and g o f are close to the identity of Y and X, respectively;
(2) fis a coarse embedding and is coarsely onto.
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When these conditions are satisfied, f is a coarse equivalence of families. 0

We close the section by returning to the point of view according to which a metric family is
a family of subspaces of a single metric space — a point of view that is convenient for reducing
questions about metric families to questions about singe metric spaces, and indispensible when
working in the setting of coarse spaces.

Let X = { X } be a metric family and let vy — o(y) be a structure map of index sets. Define an
extended real-valued metric on the disjoint union

X = l—lyXoc(y) = { (X)’Y) HRAS Xoc(y)}
by the formula

doiy)(%,4), v =7
d(x , 1) = Y
(e, Uy) {oo, else,

where we have written x., in place of (x,y) when x € X4(). Equipped with this extended read-
valued metric X is the fotal space of X (with respect to the given structure map).

While seemingly artificial, the definition of the total space permits us to repeat an individual
component of X a number of times in the total space, enabling effecient discussion of morphisms.
Thus, let { f, } be a function of families X — Y and construct the total spaces X and Y using the
structure maps that forms part of the data of f. The formula

f(x,v) = (fy(x),v)
defines a ordinary function f : X — Y. Conversely, every uniformly expansive map of total
spaces arises from some function of families via this construction. The next lemma collects several
elementary properties.
3.2. Lemma. Suppose f is constructed from { f, } as just described. We have

(1) {f, } is p-uniformly expansive if and only if f is;
(2) {fy } is b-effectively proper if and only if f is;
(3) {fy } is C-coarsely onto if and only if f is;

Further, if g is similarly constructed from { g } then
4) {fy}and{ g } are C-close if and only if f and g are;
and applied to { f, o g., } the construction gives f o g. O
When the structure map is the identity on the index set of X' we obtain the standard total space
of X. The original metric spaces X, comprising X are subspaces of the standard total space, and

are recovered as its components — the equivalence classes for the equivalence relation defined by
x ~ y precisely when d(x,y) is finite. In other words,

Xa ={x:d(Xq,x) <00},

where X is an arbitrarily chosen point in X,.
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Remark. For set theoretic constructions we generally require that families are defined with respect
to the same index set, in which case operations are ‘componentwise’. Indeed, we have already done
so when discussing compositions of maps of families. We shall introduce relevant constructions as
we go, but always with this general principle in mind.

Remark. We have seen that quantitative notions are typically applied to families in a ‘uniform’
way. An important example is that of a bounded family — a family of metric spaces of uniformly
bounded diameter.

4. COARSE STRUCTURES

In his monograph, Roe introduced the notion of a coarse structure [22]. A coarse structure on a
set X is a collection € of subsets of X x X that contains the diagonal, and is closed under the taking
of subsets, inverses, products and finite unions:

() Aeé
2Q)bEeandFCE=Fe&
B)EcE=E"c€

4 E,FeE=EoFe&

O EEFeE=EUFel

Here, the inverse and product are defined by

E' = {(xy):(y,x) €E},
EoF = {(x,y):3dz € Xsuchthat(x,z) € Eand (z,y) € F}.

The subsets in € are called entourages or controlled sets. A set equipped with a coarse structure
is a coarse space.! A coarse space is connected if the union of its entourages is all of X x X.
While we generally assume all coarse spaces are connected, we shall discuss an exception to this
convention below.

Example. A (pseudo-)metric space admits a natural coarse structure; entourages for the metric
coarse structure® are (the subsets of) the metric tubes

{(x,y):d(x,y) < C}.

Coarse structures and coarse spaces enjoy a philosophical advantage over coarse metric spaces
— for example, we shall see below that all left invariant bounded geometry metrics on a countable
group induce the same metric coarse structure which is therefore transparently uniquely determined
by the group.

On the other hand, the absence of a natural guage complicates the notion of a coarse family —
while it is natural to speak of sets of uniform size in different metric spaces it is not possible to do
so in different coarse spaces without imposing additional structure. This motivates our definition
of a coarse family as a collection of coarse spaces X = { X }, each of which is a coarse subspace

'0n occasion the requirement that the diagonal be an entourage is dropped from the definition of coarse space; in
this case, a course space in which the diagonal is an entourage is called unital.
ZRoe calls this the bounded coarse structure associated to the metric [22].
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of a fixed external coarse space Z; this means that a family of entourages € on Z is given and, for
each «, the entourages on X are the intersections

{(ENXax Xq:Ee€ &L

The standard total coarse space of the coarse family X is the coarse space X whose underlying
set is the disjoint union of the X, and in which the entourages are the disjoint unions

Us (EN Xy X Xo) C Ug (Xg X X)) C X x X,

as E ranges over €. It is at this point that we must broaden the notion of coarse space slightly by
dropping the requirement that the union of the entourages is all of X x X. A coarse space failing
this requirement will be called disconnected. The (connected) components of a coarse space are
the equivalence classes of the following equivalence relation: x ~ y precisely when there exists an
entourage containing the pair (x,y). The components are coarse spaces with the subspace coarse
structure. A coarse space has a single component precisely when it is connected. The coarse spaces
X« comprising the family X are exactly the components of the standard total coarse space of the
family. This terminology agrees with that introduced earlier in the context of metric families.

In this survey we shall restrict attention to coarse metric spaces, primarily to remove a language
barrier for those unfamiliar with coarse spaces. Much of the theory we shall develop applies
equally to coarse spaces, and we shall attempt to formulate our results so as to make the translation
to coarse spaces as transparent as possible. Ideed, we shall sprinkle remarks throughout the text to
aid the reader with this translation.

5. PROPERTIES OF COARSE METRIC SPACES

Our main focus is on permanence results for properties of coarse metric spaces. In this short
section we shall introduce the properties we consider; finite asymptotic dimension, Property A
and coarse embeddability. In order to state permanence results we must work with ‘uniform’ or
‘quantitative’ versions of these properties which, as we have seen, are stated most effeciently for
metric families.

5.1. Finite asymptotic dimension. A coarse metric space X has asymptotic dimension at most d
if for every R > 0 there exists a uniformly bounded cover 4 and a partition of {{ into d 4 1 ‘colors’
U=UgU---Uly
in which any two (distinct) sets of the same color are R-separated:

u,Veil = dUV) >R

A coarse metric space X has finite asymptotic dimension if it has asymptotic dimension at most
d, for some d. A metric family X has finite asymptotic dimension, or asymptotic dimension at
most d if one, equivalently each, of its total spaces does. We express these notions by writing, for
example, X € FAD4 or X € FAD.
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Remark. A metric family X has finite asymptotic dimension if and only if there exists a d such that
the components X of X have asymptotic dimension at most d ‘uniformly’ in the sense of Bell and
Dranishnikov [2]. Precisely, given R, each component X admits a cover £{(X) which partitions into
d + 1 colors as above but with

(5.1) sup {diam U : U € 4U(X), all X} < oo.

Remark. The notion of asymptotic dimension for coarse spaces was explicitly described in the
monograph [22] and is easily adapted to the setting of coarse families. The essential definition is
that a subset U of a coarse space X is bounded if U x U is an entourage; a collection of subsets U;
of X is uniformly bounded if UU; x U; is an entourage. In a metric coarse structure these are the
usual notions. See also [4].

Finite asymptotic dimension was introduced by Gromov [15]. For an up-to-date survey of this
property, its application, and a wealth of examples we recommend the survey of Bell and Dranish-
nikov [4].

5.2. Property A and exactness. A coarse metric space is exact if it satisfies the following parti-
tion of unity condition: for every R > 0 and every ¢ > 0 there exists a partition of unity { @y }
subordinate to a uniformly bounded cover i such that for x andy € X

(5.2) dxy) <R =Y [dulx) — buly)l <e.

Uest
A metric family is exact if one, equivalently each, of its total spaces is exact. To express that a
coarse metric space or metric family is exact we write X € EX or X € EX.

Remark. A metric family X is exact precisely when its components are ‘uniformly’ exact in the
sense that given R and ¢ each component X admits a partition of unity { ¢{}} satisfying (5.2) and
subordinate to a cover ${(X) satisfying (5.1).

Remark. The definition of exactness is easily adapted to the general setting of coarse spaces, again
using the notion of boundedness mentioned above.

Dadarlat and Guentner introduced exactness for metric spaces as a substitute for Property A,
believing its definition easier to manipulate than the standard characterizations of Property A [12].
Further, they proved the equivalence of exactness and Property A for metric spaces of bounded
geometry.*

Property A itself was introduced by Yu in the course of his work on the Novikov conjecture
[25]; he was interested in defining a property that is both easy to verify in cases of interest and that
implies coarse embeddability. Recently, Willett has written an excellent survey of Property A [24].

The germ of a uniform version of Property A was introduced by Bell [6]; related notions play
important roles in the work of Nowak [18] and Dadarlat and Guentner [12]. The equivalence of
exactness and Property A works also for families — exactness of a family is equivalent to ‘uniform’
Property A for its components.

3In the language of [12] the components of X are ‘equi-exact’.
4Nick Wright has explained to me how to extend this equivalence to the general case. See [24].
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5.3. Coarse embeddability. A coarse metric space is coarsely embeddable if it admits a coarse
embedding into a Hilbert space. A metric family is coarsely embeddable if it admits a coarse
embedding into the family comprised of a single Hilbert space. To express that a coarse metric
space or metric family is coarsely embeddable we write X € CE or X € CE.

Remark. A metric family is coarsely embeddable precisely when its constituent spaces are ‘uni-
formly’ coarsely embeddable. Precisely, X € CE if and only if each component X of X admits a
p-uniformly expansive and d-effectively proper coarse embedding, where p and & are independent
of X2

Remark. If the coarse metric space is countable, we may assume the Hilbert space is separable.

Remark. In defining coarse embeddability, we may work with real or complex Hilbert spaces.
Indeed, viewing a complex Hilbert space as a real Hilbert space the norm is unchanged; conversely,
a real Hilbert space embeds isometrically in its complexification.

Remark. In the context of coarse embeddability, restricting to coarse metric spaces entails no loss
of generality. Indeed, if a coarse space coarsely embeds in a Hilbert space, or indeed in any metric
space, its coarse structure is a metric coarse structure.

6. PRIMITIVE PERMANENCE RESULTS FOR SPACES

Let P be a property of coarse metric spaces; P could be one of the properties described above,
or another property. To express the statement that a coarse metric space X has the property P we
write X € P.

To apply P to metric families, we assume that P satisfies the following condition: the standard
total space of the family X satisfies P if and only if every total space of X does. We then declare
that a metric family X has the property P precisely when its total spaces do, in which case we write
X € P. In this case we also say that the components of X have the property P uniformly. These
conventions are consistent with our treatment of the properties FAD 4, FAD and EX; they do not
quite apply to CE, which we shall treat separately. (See section 8.)

We shall state our primitive permanence results for families, rather than for single metric spaces.
This is essentially unavoidable as ‘uniform’ properties already enter into the statements designed
for single spaces.

Coarse Invariance. If X and Y are coarsely equivalent then X € P if and only if Y € P.
Subspace Permanence. If X < Y andyY € P then X € P.

Our conventions regarding subspaces involve a few wrinkles. We write XX < Y precisely when
every component of X is a subspace of some component of Y or, in detail, when a structure map
o — [3(o) is given and for every index & we have X C Yp(«). We say X is a family of subspaces
of Y. We reserve the notation X C Y (with underline) for the special case in which the families X
and Y have the same index set and for every index o« we have X, C Y. In this case we say simply
that X is a subspace of Y.

3In the language of [12] the components of X are ‘equi-uniformly embeddable’.
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While it is essentially obvious that our basic properties FAD4, FAD and EX satisfy subspace
permanence, the following lemma allows us to treat subspace permanence and coarse invariance
simultaneously.

6.1. Lemma. A property P is coarsely invariant and satisfies subspace permanence if and only if
whenever Y € P and X coarsely embeds in'Y) then X € P.

Proof. A coarse embedding X — Y factors as the composition of a coarse equivalence and the
inclusion of a family of subspaces. Conversely, the inclusion of a family of subspaces is a coarse
embedding and, if X and Y are coarsely equivalent then each coarsely embeds in the other. U

6.2. Theorem. Our basic properties, FAD 4, FAD and EX are coarsely invariant and satisfy sub-

space permanence. Precisely, let P be one of these properties. If Y € P and X coarsely embeds in
Y then X € P.

Proof. For the properties FAD 4, FAD and EX the result for families follows either directly or, with
aid of Lemma 3.2 after passing to total spaces, from the analogous (and well-known) result for
single metric spaces. See [2, 22] and [12, Rem. 2.11]. O

Our next permanence property concerns the attempt to conclude that a coarse metric space has
property P from the knowledge that it is written as the union of subspaces each of which have
property P. Clearly the subspaces must have property P uniformly. Further, if not every (count-
able) space has property P, an additional hypothesis, typically some sort of excision condition, is
necessary in general.

Union Permanence. Suppose Z=XUY. If X and) € P then Z € P.

Suppose Z = UX;. Suppose further that for every R > 0 there exists a subspace W = W(R) C Z
such that W € P and such that for every index o the collection { Xi o — W }i is R-disjoint. If the
Xi,« have P uniformly then Z € P.

In accord with our conventions, we write Z = U;X; when Z and the X; share the same index set
and, in addition, for each index o« we have Z, = U;Xj «. In particular, all families in the statement
are indexed by the same set.

Remark. The assumption that the X; , have P uniformly means that the family { X; « }, as both «
and i vary, satisfies P. The X; o — W4, for fixed « and varying 1, are subspaces of Z, allowing us
to speak of of R-disjointness.

Remark. 1f the property P is coarsely invariant and satisfies subspace permanence then the finite as-
sertion of union permanence follows from the infinite assertion. Indeed, excise the R-neighborhood
of the intersection X N Y from each and observe:

(1) X—=Ng(XNY)and Y — Ng(X NY) are R-disjoint;

(2) Ng(XNY) is coarsely equivalent to X N'Y, which is a subspace of both X and Y.
The formulation for families is left to the reader. This observation applies to each of our basic
properties.
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6.3. Theorem. The basic properties FAD 4 and EX satisfy union permanence.

Proof. Again, after passing to (standard) total spaces the result follows from the analogous state-
ment for metric spaces — one merely checks that the proofs are valid in the case of extended
real-valued metrics. Observe, for example, that the assertion Z = U;X; translates to Z = U;X; at
the level of (standard) total spaces. See [2, 12]. [

While finite union permanence works without change for FAD, a little additional care must be
taken to formulate the general case of union permanence. Indeed, if the conclusion Z € FAD is to
be true then the excised subspaces W(R) must have asymptotic dimension no greater than that of
Z. Taking this into account, we obtain a correct formulation of union permanence for FAD, which
is merely a thinly disguised version of union permanence for FAD4 and follows directly from it.

6.4. Theorem. Suppose Z = UX;. Suppose that there exists d such that for every R > 0 there
exists a subspace W = W(R) C Z such that W € FADq4 and such that the collection { Xi o —Wx i
is R-disjoint. If { Xi « } € FAD then Z € FAD. O

Our next, and perhaps most important permanence property concerns the attempt to conclude
that a coarse metric space has property P by fibering it, in the coarse category, over a space with
property P in such a way that the fibers have property P.

Fibering Permanence. Let f : X — Y be uniformly expansive. Suppose Y € P and that for every
bounded family of subspaces 2 <Y the inverse image ' (Z) € P. Then X € P.

Before discussing the conventions relevant for the statement, we illustrate the hypotheses with a
simple yet motivating example in the context of single spaces.

Example. Consider the projection X = X’ x Y — Y. In this case we also have Y C X, so that
if the property P satisfies subspace permanence the portion of the hypothesis pertaining to Y is
necessary. The remaining hypothesis amounts to the assertion that X’ € P. In fact, if P satisfies
coarse invariance, subspace and fibering permanence then a product has property P if and only if
each of its factors do.

Our conventions regarding the inverse image are the natural ones — f~'(2) < X is the family
of inverse images of the spaces comprising Z, under the maps comprising f. To give a precise
definition, recall that as part of the data of the family of subspaces Z < Y we have a structure map
d — [(d) and, as part of the data of f we have the structure map y — (a(y), B(y)). When the
index pair (v, 0) satisfies (y) = [3(d) we have

Zs C Yp(s), fy 1 Xaty) = Ypis)
so that f1(Z5) C Xq(y). We define the inverse image by
f1(2) ={f,'(Zs) : B(8) = B(¥)},

a family of subspaces of X with index set { (y,d) : B(y) = B(d) } and structure map (y,0) —
x(v).

6.5. Theorem. Property EX satisfies fibering permanence.
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Proof. As usual, a direct proof without appeal to total spaces is possible, and amounts to careful
bookkeeping with the constants appearing in the proof for a single space. The proof is a combina-
tion of Thm. 3.1 and Cor. 3.3 of [12]. ]

Fibering permanence is somewhat more subtle than the other permanence properties, and care
must be taken to formulate it correctly for our other basic properties. For asymptotic dimension,
the following result is both simple and useful.

6.6. Theorem. Let f : X — Y be uniformly expansive. Suppose thatYy € FAD. Suppose there
exists d such that for every bounded family of subspaces Z <Y the inverse image ' (Z) € FADg.
Then X € FAD.

Remark. In the case of single spaces, as opposed to families, significantly more refined results are
possible. Perhaps the first such result is [5, Thm. 1], which is stated for a Lipschitz map between
geodesic metric spaces, and achieved a bound much better than that inherent in our proof. An
optimal result was obtained recently in [7]. The reader may wish to adapt these to the setting of
families. See the survey [4] for more details.

In the proof, and subsequently, we shall work with an obvious reformulation of finite asymptotic
dimension in terms of colorings. For example, the conclusion X € FADy~ is rephrased as follows:
for every R there exists an S such that for every « there exists a cover 4, of X and a coloring
Co: Uy —{0,...,d"} satisfying

(1) if U € Y, then diam(U) < S;
(2) if U #£V € 4y and co(U) = co(V) then d(U, V) > R.

For brevity we shall express (1) by saying that 4{, is S-bounded, and (2) by saying that c4 is a
(d”, R)-coloring of .

Proof. For variety, and to illustrate the alternate ‘quantitative’ point of view, we shall give a direct
proof without appeal to total spaces.

The statement is a thinly disguised version of the simplest type of result concerning asymptotic
dimension of a product — and is proven the same way. Compare [11]. So motivated, we assume
Y € FADy and shall prove that X € FADy~, where d” = (d+ 1)(d’ 4 1) — 1. Further, we restrict
attention to the (equivalent) case in which f, X and Y are all defined over the same index set; thus
we have a family of p-uniformly expansive maps

foo: Xa = Yo

As a final preparation we rephrase the preimage condition in the statement: for every S’ and R
there exists an S such that for every subset U of every Y, satisfying diam(U) < S’ there exists a
cover 20 of f,'(Ul) with the following two properties:

(1) 20 is S-bounded,;
(2) 20 admits a (d, R)-coloring.

(Note that the cover comprised of all subsets of the Y, of diameter < S’ is bounded.)
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We turn to the proof. Assume f is p-uniformly expansive. Let R be given. We apply the
hypothesis Y € FAD/ to obtain S’ and covers U, of Yy, each of which is S’-bounded and admits
a (d’, p(R))-coloring c,. We lift these to X, by defining

BV ={f'(W):UE By}
Cu(U) = co(U), some U € Y, for which U = ' (U).
(It may happen that two distinct elements of U, have the same preimage and in order that € is
well-defined we must choose one of them.) It follows from the fact that f is p-uniformly expansive
that C is a (d’, R)-coloring of Y.

As the covers Uy are all S’ -bounded the preimage condition applies. We obtain S with the
property that each U admits a cover 20(U) that is S-bounded and admits a (d, R)-coloring c{;. The
cover and coloring we require are defined:

Upo={VeWwU:alle Y,

ca(V) = (Co(U),cg(V)), some U for which V € 20(U).
(Again, we make choices so that ¢ is well-defined.) This is a coloring with valuesin{O0,...,d’ } x
{0,...,d}. Each 4, is S-bounded. If distinct sets have the same color, they could be from a

common 20(U) - in which case they are at distance > R because their colors agree in the second
coordinate and 20(U) is (d, R)-colored — or from distinct ones gU(U) and 20(U;) — in which case
they are at distance > R because this is already true of U and U; as like-colored members of the

(d’, R)-colored V. O

Our final primitive permanence result will be useful when we disucss direct unions of discrete
groups in the next section. While the properties FAD4 and EX satisfy limit permanence FAD does
not, for essentially obvious reasons.

Limit Permanence. Suppose that for every R > 0 there exists a decomposition Z = U;X; such
that for every index « the collection { X « } is R-disjoint and such that the X, « satisfy P uniformly.
Then Z € P.

6.7. Theorem. The properties FAD 4 and EX satisfy limit permanence.

Proof. While straightforward, limit permanence is not treated explicitly elsewhere. First, for
FADy, let R be given. Obtain a decomposition Z = UX; as in the statement of limit permanence.
The hypothesis now implies that there exists S such that for each X « there exists an S-bounded
cover il;  admitting a (d, R)-coloring. Taken together, {, = U;tl; 4 is an S-bounded cover of Z
admitting a (d, R)-coloring.

The proof for EX is no more difficult, and is omitted. O

We close this section with a single derived permanence result for spaces, which holds for our
basic properties FAD and EX.

6.8. Theorem. Let P be a property satisfying subspace and fibering permanence and for which
R € P. A metric family satisfies P precisely when the collection of all its bounded subspaces
satisfies P uniformly.
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Proof. Let P be as in the statement, and let X be a metric family. The converse being immediate,
we show that if the collection of all bounded subspaces of X satisfies P unifromly then X itself
satisfies P.

Fix a basepoint x, in each component X, of X. Define a contractive, in particular uniformly
expansive map f : X — { R } using the distance function:

fo(x) = d(xg,x), fo:Xe— R.

If now Z is a bounded family of subspaces of R then f~'(2) is a family of bounded subspaces of
X, which satisfies P by hypothesis. Thus, fibering permanence applies. U

Remark. In the proof, the distinction between ‘family of bounded subspaces’ and ‘bounded family
of subspaces’ is purposeful.

The theorem asserts a form of ‘locality’ for P, and may be rephrased in several suggestive ways.
We work with a single space X. First, assuming P satisfies subspace permanence we may rephrase
by asserting equivalence of the following:

(1) Xe?;
(2) the family { B(x, R) }, as both x € X and R € R vary, satisfies P;
(3) for each fixed x € X the family { B(x, R) }, as R € R varies, satisfies P.

Second, for a locally finite space X we have: X € P precisely when the collection of its finite
subsets satisfies P uniformly. In this form the result was known for property CE for quite some
time [14]. More recently, a version was formulated and proved for Property A [8]; see also [24]
for another variant.

7. DERIVED PERMANENCE RESULTS FOR GROUPS

Motivated by the wealth of applications we focus on the case of (countable) groups. The es-
sential idea is to prove that a group G has property P by observing that it acts by isometries on a
space having property P in such a way that the stabilizers of the action have property P — an ap-
plication of fibering permanence. A closely related question concerns proving that G has property
P assuming it is built from groups having property P by familiar constructions from group theory.
Henceforth, we shall work with single spaces and single groups, leaving to the reader to formulate
appropriate ‘family’ versions.

7.1. Groups as coarse metric spaces. Let G be a group. A length function on G is a function
£:G — [0, 00) satistying

(D) L1)=0

(2) Us™) = L(s)

(3) U(st) < L(s) +£(t)
We allow for the possibility that some non-identity elements of G have length zero. A length
function is proper if, for every C > 0, the set

{seG:{(s)<C}
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is finite. One easily checks that a group admits a proper length function precisely when it is
countable. A metric on G is left invariant if it satisfies

d(rs,rt) = d(s,t),

forevery T, sand t € G. If £ is a length function on G then d(s,t) = {(s~'t) defines a left invariant
metric on G; conversely, by setting £(s) = d(1, s) one checks that every left invariant metric on G
arises in this way. A length function is proper if and only if the corresponding metric has bounded
geometry, in the sense that there is a uniform bound on the cardinality of a ball of a fixed radius
(independent of its center). We shall always assume a metric on a group to be left invariant.

7.1.1. Proposition. Let G be a countable group. Up to coarse equivalence, G admits a unique
bounded geometry metric. Indeed, if d1 and d, are bounded geometry metrics on G then the
identity map (G, d;) — (G, d3) is a coarse equivalence. O

When viewing a (countable) group G as a metric space, the statement that G possesses a par-
ticular property is always understood with reference to a bounded geometry metric. In light of the
proposition, for properties satisfying coarse invariance such an assertion is unambiguous.

Example. A discrete group G (countable or not) admits a natural coarse structure; entourages for
the canonical (left invariant bounded geometry) coarse structure are (the subsets of) the tubes

{(s,t):s"te U, UC G finite ).

While this definition is approprate for uncountable discrete groups, when G is countable it agrees
with the metric coarse structure associated to a bounded geometry metric. When G is uncountable,
howeyver, it is not a metric course structure.

7.2. Permanence for groups. Henceforth, all groups are assumed countable and discrete. Fur-
ther, all properties are assumed to satisfy coarse invariance. Consequently, the statement that a
particular group has a particular property is unambiguous.

7.2.1. Theorem. Let P be a property satisfying subspace and limit permanence. If G is the direct
union of subgroups each having property P then G has property P. In particular, a countable
discrete group G satisfies P if and only if each of its finitely generated subgroups do.

Proof. Fix a proper length function on G. Let H be the subgroup of G generated by the elements
of the R-ball with center the identity. As this ball is finite it is contained in one of the subgroups
comprising the direct union so that the same is true of H. Hence, by subspace permanence H € P.
Further, the family of cosets { sH }, being coarsely equivalent, even isometric to H in the sense of
families, satisfies P. An application of limit permanence based on the subsequent lemma completes
the proof. 0

7.2.2. Lemma. If G is equipped with a proper length function and the subgroup H of G contains
the R-ball with center the identity then the cosets of H are pairwise at distance at least R. U

Remark. The above theorem applies, in particular, to the properties FAD4 and EX. Simple ex-
amples, such as the direct sum of countably many copies of Z, show that is does not apply to
FAD.



16 ERIK GUENTNER

Remark. The analog for a possibly uncountable group with its canonical coarse structure is treated
by Dranishnikov and Smith [13].

We turn to group actions, which we always assume to be by isometries. The simplest situation
occurs when a group G acts metrically properly on a metric space Y. In this case the orbit map

f:G—=Y, f(s)=s-y

is a coarse embedding; the easiest way to see this is to observe that {(s) = d(y,s - y) defines
a proper length function on G and to appeal to Proposition 7.1.1. Thus, any property satisfying
subspace permanence will pass from Y to G. This discussion applies, in particular, when Y is
locally finite and the action is free, or has finite stabilizers. We are interested in the complementary
case where the action has infinite stabilizers and/or the metric space is not locally finite.

7.2.3. Theorem. Let P be a property satisfying subspace, finite union and fibering permanence. If
G acts on a locally finite space Y € P and there exists ay € Y for which the stabilizer G, € P
then G € P.

Proof. This is a basic application of fibering permanence. Begin by observing that it suffices to
consider the case of a transitive action — simply choose y as in the statement and restrict the given
action to the orbit Gy which, as a subspace of Y, satisfies P.

Fix a base point y € Y. We employ the orbit map and begin by checking that it is uniformly
expansive. Indeed, this is hinted in the paragraph just before the statement: if d(s,t) < A then

d(f(s), f(t)) = d(y,s 't y) <B=sup{d(y,r-y): {(r) <A} < o0.

Apply Lemma 2.1.

It remains to check that the orbit map satisfies the inverse image condition in the statement
of fibering permanence. Formally, let Z < Y be a bounded family of subspaces of Y, say with
uniform bound S. As we are assuming the action is transitive, we find for every component Z, of
Z an element s, € G for which s, - Z, C B(y,S). Using the equivariance of the orbit map we
conclude that ~'(2) is coarsely equivalent (even isometric) as a family, to a family of subspaces
of the single metric space

(7.1) f1(B(y,S)) ={seG:d(y,s-y) <Sh

Thus, by an application of subspace permanence, it remains only to see that this coarse stabilizer
satisfies P. But, by local finiteness, it is the finite union of cosets sG,,, each of which is isometric
to Gy. An application of finite union permanence completes the proof. 0

7.2.4. Corollary. A property P satisfying subspace, finite union and fibering permanence is closed
under group extensions. O

Remark. In the corollary we assume P satisfies finite union permanence. This is necessary only
because we deduce the corollary from the preceding theorem — the corollary remains true without
this assumption. Indeed, finite union permanence is used only near the end of the proof to conclude
that the union of cosets (7.1) satisfies P. In the case of an extension

1-H—-G—>G/H—1
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one verifies directly that this union of cosets is coarsely equivalent to H.

Remark. The proofs of the theorem and corollary apply to the property EX. Brief inspection
reveals, however, that the modified form of fibering permanence satisfied by FAD is sufficient, so
that the results remain true for FAD, although our approach gives a very poor bound. An analogous
result, with the optimal bound, is stated for finitely generated groups in [5, Thm. 7]. The general
case is treated in [13, Thm. 2.3]; for an alternate proof see [7, Thm. 5.4]. Compare to the remark
just after the statement of Theorem 6.6.

Arguments involving a non-locally finite space follow essentially the same path as the proof of
Theorem 7.2.3. The added difficulty occurs near the end of the argument where the infinite union
theorem must be applied to show that the coarse stabilizer (7.1) has property P; verification of the
excision hypothesis is not always straightforward.

Two cases in which the method has been used effectively are free products (with amalgam) and
relative hyperbolicity. In each case, the group under study acts on a (in general) non-locally finite
hyperbolic graph — for free products, the Bass-Serre tree and in the case of relative hyperbolicity
the ‘electric space’. We shall discuss free products below, following a modification of the method
of Bell and Dranishnikov [2]. We shall not discuss the case of relative hyperbolicity, but refer to the
papers of Osin [19], who developed the method and applied it to FAD, and Dadarlat and Guentner
[12], who give a short summary and statements involving the properties EX and CE.

7.2.5. Theorem. A property P satisfying subspace, union and fibering permanence, and which is
possessed by (the vertex set of) a (simplicial) tree is closed under the formation of free products
(with amalgam). ]

Without entering into details we shall describe the proof, following the modification of the
original argument of Bell and Dranishnikov given by Dadarlat and Guentner [11, 12]. Willett
also gives a very clear discussion in the case of Property A [24]. We hope our informal discussion
will complement these resources.

Let G = A *c B be the free product of A and B, amalgamated over the common subgroup C.
We begin by recalling the construction of the Bass-Serre tree of the amalgam. The vertices of the
tree are the A and B-cosets in G, the edges are the C-cosets:

vertices = G/AUG/B ={sA}U{tB}
edges = G/C ={rC}.

Two vertices v and w are connected by an edge precisely when they have non-empty intersection
(recall they are subsets of G). In this case, one of v and w is an A-coset, the other a B-coset — the
intersection v N'w a C-coset which represents the connecting edge. For a proof that this defines a
tree, see [23, 1]. Defining the distance between two vertices to be the length of the shortest edge
path connecting them we obtain a metric on (the vertex set of) the tree.

We shall fiber not G, but rather a closely related space, over the Bass-Serre tree. Define

X={x,:x€vCG,va vertex J;
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B
¢ b’'A ﬁ_/_

A B bA

aB

FIGURE 1. Bass-Serre tree.

here v is a vertex in the Bass-Serre tree, viewed as an A or B-coset. Thus, X is the disjoint union
of the A and B-cosets and, as each element of G lies in precisely on A-coset and one B-coset, we
see that X comprises two (disjoint) copies of G. An adjacency occurs between x,, and x,,, where
x € G is viewed as an element of two adjacent vertices v and w. A transition occurs between X,
and y,, where x and y € G are elements of a common A or B-coset v.

Y
z |, 4 x X
[ bC
W:B v = bA

FIGURE 2. Adjacency and transition: b € B.

The metric on X is the maximal metric satisfying the requirements that an adjacency has distance
at most one, and that a transition has distance at most the distance measured in the ambient group
G or, what is the same, in the coset v C G equipped with the subspace metric. A formula for the
metric on X is given in [11].

Remark. 1t is important to use the subspace metric on the individual cosets at this stage — this
choice eliminates distortion, so that the metric on X behaves as one would hope. In Figure 2, for
example, d(x,,y,) will actually equal the distance in the ambient group — there is no possibility
of finding a shortcut in the neighboring coset w. Similarly,

d(zy,yy) =inf{d(y,x) + 1+ d(x,z) : x evnw =DbC}

where the distances d(y, x) and d(x, z) are measured in the respective cosets v and w. This is a
special case of the formula from [11]. (In Figure 2 the small rectangle inside the coset B represents
the copy of bC C B, and similarly the small semidisk inside the coset bA.)

The group G acts by isometries on the Bass-Serre tree T by permuting cosets. Further, G acts by
isometries on X according to the formula s - x,, = (sx)s,. And, f(x,) = v defines an equivariant
contraction X — T — comparing Figures 1 and 3 the map is evident. We should like to apply
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X/

b’A

bA
X

[ []

aB

FIGURE 3. A portion of X.

fibering — via a modification of the argument used in the proof of Theorem 7.2.3 — to conclude that
X has property P. Since X is locally finite, we would then conclude that G has property P as well.

The version of fibering we require differs from that in Theorem 7.2.3 in two respects. The first
is not substantive — we allow for an equivariant fibering map X — Y in place of the orbit map, and
assume the action of G on Y is cobounded.

7.2.6. Proposition. Let P be a property satisfying subspace and fibering permanence. Suppose that
G acts on metric spaces X and Y by isometries, the action on 'Y is cobounded, and that f : X =Y
is a G-equivariant and uniformly expansive map. Suppose Y € P and that for some y € Y and
every S

(7.2) f'(B(y,S)) C X
satisfies P. Then X € P. O

The idea, which we encountered in the proof of Theorem 7.2.3, is that the equivariance of f and
coboundedness of the action on Y allow us to reduce the inverse image condition in the statement
of fibering permanence to the stated condition on the set f~'(B(y, S)).

The second, and more substantive difference concerns the proof that the space appearing in
(7.2) satisfies property P. This space is in general an infinite union of cosets, and we must concern
ourselves with the hypotheses of infinite union permanence. Fix the basepointy = vy = A. We
show by induction on S that

Bs =1 (B(vo,S)) = {xy € X: dr(vo,v) < S}

satisfies P. For S = 0 we have the coset vy, which satisfies P by hypothesis. Assuming the
statement for S, we wish to prove it for S + 1. We write

BS—H = BSUU{V . d(\)o,\)) =S+ 1}
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Excising the R-neighborhood of Bs from the spaces comprising this union, the resulting pieces are
R-separated. Figure 3 illustrates the passage from B to B,. The shaded region inside the coset
bA represents the R-neighborhood of bC C bA, and similarly for the other shaded regions. The
distance d(x,x’) is at least R —a ‘path’ connecting x and x’ must lie over the corresponding edge
path in T, and the first transition from x to bC will already contribute R to the distance. This
concludes our discussion of Theorem 7.2.5.

7.2.7. Theorem. Let P be a property satisfying subspace, union and fibering permanence, and
which is possessed by a tree. A group acting cofinitely on a tree (without inversion)® satisfies P if
and only if all vertex stabilizers satisfy P. O

Of course, the ‘only if” direction is immediate — we are concerned with the ‘if” direction. The
proof is the same as the one given for free products. Simply fiber over the given tree, carrying out
the construction of the total space exactly as before. Both this theorem and Theorem 7.2.5 apply
to the properties EX and FAD — again, the modified form of fibering satisfied by FAD is sufficient.

Remark. If P also satisfies limit permanence we may dispense with the assumption that the action
is cofinite. Further, there is an alternate proof. Indeed, assuming the action is without inversion, by
the Bass-Serre theory a group as in the statement is built from the vertex stabilizers by repeated free
products and HNN-extensions, followed by a limit. Having Theorem 7.2.5 at our disposal, we need
only check that an HNN-extension of groups satisfying P again satisfies P. But, an HNN-extension
is itself built from free products, a limit and an extension. See [23, 11].

Remark. Theorem 7.2.5 for FAD, with same estimate inherent here, first appeared in [2]. More
refined results for FAD appeared subsequently. A version of Theorem 7.2.7 but with a sharper es-
timate appeared in [3, Thm. 1] under the assumption of finite generation and a cofinite action. The
previous theorem, as applied to FAD, appears to have been overlooked in the literature. Related
results may be formulated by replacing the hypothesis of a cofinite action by a uniform bound on
the asymptotic dimension of the vertex stabilizers.

8. COARSE EMBEDDABILITY AND OTHER MISCELLANEA

As alluded to above, the property of coarse embeddability is somewhat more subtle than the
properties of finite asymptotic dimension and exactness. For this reason we are treating CE sep-
arately. In addition, we collect several miscellaneous permanence results which do not fit in our
general framework.

8.1. Theorem. The property CE satifies coarse invariance, subspace, union and limit permanence.
U

In this regard, CE behaves as our other basic properties. An essential difference occurs, however,
in relation to fibering permanence — CE satisfies a modified form of fibering permanence in which
the base space is assumed to satisfy property EX.

®This hypothesis is not substantive. Passing to the barycentric subdivision we obtain an action without inversion;
the vertex stabilizers for this action are, up to finite index, intersections of vertex stabilizers for the original action.
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8.2. Theorem. Let f : X — Y be uniformly expansive. Suppose Yy € EX and that for every bounded
family of subspaces Z < Y the inverse image ~'(2) € CE. Then X € CE. O

The failure of the general form of fibering permanence for CE has interesting consequences in
the case of group extensions. Indeed, following the treatment in the previous section, we recover a
basic result of Dadarlat and Guentner [11], originally proven directly.

8.3. Theorem. An extension with coarsely embeddable kernel and exact quotient is itself coarsely
embeddable. Precisely, if a normal subgroup H of G satisfies CE and G/H satisfies EX then G
satisfies CE. O

Apaprt from a couple of essentially obvious remarks, there was little progress on the general
problem of extensions until recently. Building on their work regarding stability of a-T-menability
under wreath products, deCornulier, Stalder and Valette obtained the following very interesting
result [10].

8.4. Theorem. If the countable discrete groups G and H are coarsely embeddable then so is their
wreath product H1 G = H(®) x G. Here, H(S) denotes the group of finitely supported H-valued
functions on G, on which G acts by translation. 0

We shall not enter into the details of the proof, which rests on a characterization of CE in
terms of embeddings in spaces with measured walls (basically contained in [21]) and an ingenious
construction with such spaces. See [10].

Remark. As is clear from the construction of the wreath product, a property P satisfying our prim-
itive permanence results will be closed under formation of wreath products. Indeed, it follows
from fibering permanence that finite sums of H satisfy P, from limit permanence that H(G) satis-
fies P, and from another application of fibering permanence (an extension) that H G satisfies P.
Thus, property EX is closed under formation of wreath products and, in keeping with the above,
if H € CE and G € EX then H? G € CE. Thus, the content in the theorem is in the weakened
hypothesis on G.

We conclude our discussion of CE with remarks concerning limits, coarse spaces, and a caveat.
A countable discrete group satisfies CE precisely when its finitely generated subgroups do. This
follows from Theorems 8.1 and 7.2.1; see also [11] for the original proof. Generalized limit perma-
nence results valid in the setting of coarse spaces would be applicable to non-necessarily countable
groups. In the case of FAD4 a generalized form of limit permanence was obtained by Dranish-
nikov and Smith [13, 4]: G &€ FADy precisely when each of its finitely generated subgroups
satisfies FAD 4. But, the generalization fails for property CE. An example is G = R. Equip G with
the canonical coarse structure described earlier. As this coarse structure is not metrizable, G cannot
satisfy CE. Nevertheless, the finitely generated generated subgroup of G are (up to isomorphism)
precisely the groups Z™, for some n and each of these satisfies CE.

Finally, we complete our collection of miscellaneous remarks by mentioning work of Ozawa,
which provides an alternate approach to the permanence of Property A with respect to (amalga-
mated) free products, and relative hyperbolicity [20].
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8.5. Theorem. Suppose G acts on a countable, fine hyperbolic graph with finite quotient. If all
vertex stabilizers satisfy EX then so does G. 0]

We refer to the original paper for definitions of the terms appearing in the statement. Suffice it to
say that a tree is a fine hyperbolic graph, and that the theorem applies to free products with arbitrary
amalgam. At the heart of the proof is an elegant piece of functional analysis — an application of the
Hahn-Banach theorem. The method appears a bit sharper than the more geometric method intro-
duced by Bell and Dranishnikov which we have followed in that it produces a compact amenable
G-space. See the paper of Ozawa for an application of this idea [20].

Finally, the method of proof of Theorem 8.5 can be extended to prove that certain Artin groups
satisfy EX. These groups, at least at present, cannot be treated using the geometric approach. See
[16].
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