Graph coverings, coarse non-amenability and coarse embeddings

Erik Guentner
University of Hawaii at Manoa
with Goulnara Arzhantseva, Jan Spakula

Coarse amenability ≡ **Property A**

 ${\it Z}$ a metric space

uniformly discrete and bounded geometry – typically a graph or a group, or a coarse union of graphs or groups – just insurance

Z is coarsely amenable (CA) \Leftrightarrow for every R>0, $\varepsilon>0$ there exists S>0 and $f:Z\to \mathbf{Prob}(Z)$ s.t.

- (1) if $f_z(x) \neq 0$ then $d(x,y) \leq S$
- (2) if $d(x,y) \leq R$ then $||f_x f_y|| \leq \varepsilon$

Z = G a (countable, discrete) group

CA is a non-equivariant formulation of amenability – the definition is analogous to the Reiter condition

CA is equivalent to topological amenability of the action of G on its Stone-Cech compactification — compare Sageev's talk

Coarse embeddability

 ${\cal Z}$ a metric space

 \mathcal{H} , Hilbert space

 $f:Z\to \mathcal{H}$ is a coarse embedding \Leftrightarrow there exist $\rho_{\pm}:\mathbb{R}^+\to\mathbb{R}^+$, non-decreasing, proper s.t. for all $x,y\in Z$

$$\rho_{-}(d(x,y)) \le ||f(x) - f(y)|| \le \rho_{+}(d(y))$$

Z is coarsely embeddable (CE) $\Leftrightarrow \exists$ a uniform embedding

X can be drawn in $\mathcal H$ without excessive distortion

Z=G a group

CE is a non-equivariant formulation of a-T-menability – an equivariant coarse embedding is the orbit of an affine isometric action

Examples and counterexamples

Most naturally occurring spaces and groups are CA.

- (1) free groups, hyperbolic groups
- (2) amenable groups
- (3) linear groups (not necessarily discrete)
- (4) mapping class groups
- (5) symmetric spaces and buildings
- (6) CAT(0) cube complexes (finite dimensional)
- (7) CA (and CE, too) closed under many operations

Since CA implies CE, these are CE as well.

Expander graphs are not CE, hence also not CA.

graphs Z_n with $\lambda_1(Z_n) \geq \lambda > 0$ cannot 'uniformly' coarsely embed

Does there exist a space or group that is CE, but CnA?

Coarse unions - box spaces

 Z_i finite (or bounded) metric spaces

 $\square = Z_1 \sqcup Z_2 \sqcup \ldots$ (disjoint) union

☐ is a metric space; use any metric satisfying

(1) $Z_i \subset \square$ isometrically

(2) Z_i are well-spaced: $d(Z_i, Z_j) \to \infty$ as $i + j \to \infty$ (this is well-defined up to coarse equivalence)

G a (residually finite) group

 $\Box G = \Gamma_0 \sqcup \Gamma_1 \sqcup \ldots$ where

 N_i normal, finite index subgroups, usually $\cap N_i = \{1\}$, and $\Gamma_i = G/N_i$

Interesting class of spaces – CnE examples, counterexamples to K-theoretic conjectures (Baum-Connes and Coarse Baum-Connes)

Our example

Theorem (AGS): There exists a $\square \mathbb{F}_2$ that is CE and CnA. This example has bounded geometry.

(at the level of equivariant properties, \mathbb{F}_2 is a-T-menable but not amenable, so the question is natural)

Construction: $\square \mathbb{F}_2 = \Gamma_0 \sqcup \Gamma_1 \sqcup \ldots$ where N_i are defined by $N_0 = \mathbb{F}_2$, $N_1 = \mathbb{F}_2^{(2)}$, ... and, for example, $\mathbb{F}_2^{(2)}$ is the subgroup generated by the squares of elements

Theorem (N): The space $\Box = \mathbb{Z}/2 \sqcup \mathbb{Z}/2 \times \mathbb{Z}/2 \sqcup \ldots$ is CE and CnA; the metrics on the blocks are the Hamming distance. but this space does not have bounded geometry – further, unbounded ge-

ometry is used essentially in the proof of CnA

Why box spaces?

Fact: $\Box G$ is CA \Leftrightarrow G amenable

Fact: $\Box G$ is $\mathsf{CE} \Rightarrow G$ a-T-menable

Fact: $\Box G$ are expanders $\Leftrightarrow G$ has (τ) wrt the subgroups N_i

such box spaces are neither CE nor CA

Idea: a box space is CA precisely when its blocks are 'uniformly' CA – when the blocks are (finite) groups you can average to see this happens precisely when the blocks are 'uniformly' amenable – in the case of $\Box G$, assuming the tower is faithful, this implies G itself is amenable because balls in G match up with balls in Γ_n for large n; it follows even when the tower is not faithful

This only works one way in the case of CE — it is not true that a quotient of an a-T-menable group is itself a-T-menable

So, our $\square \mathbb{F}_2$ is CnA. What about CE?

Wall spaces and cuts

S a set

 $W=\{A,B\}$ a wall – a decomposition $S=A\sqcup B,\ A,\ B$ nonempty W separates x and y if $x\in A$ and $y\in B$ or the other way around $\mathcal W$ a collection of walls with the property: for every $x,\ y$ only finitely many W separate

Prop: d(x,y)= the number of walls separating x and y defines a metric on S; with this metric S is CE and one may take $\rho_{\pm}(r)=\sqrt{r}$. define $f:S\to\ell^2(\mathcal{W})$ by f(x)= characteristic function of those walls separating x from a fixed basepoint

When Γ is a graph, we speak of cuts: a collection of edges with the property that when they are removed the resulting graph has exactly two connected components. The components define a wall.

Covering spaces

The blocks in $\square \mathbb{F}_2$ are the $\mathbb{Z}/2$ -homology covers of the 'figure-8'

 Γ a graph, $\pi_1(\Gamma) \cong \mathbb{F}_r$

 $\mathbb{F}_r \to \mathbb{Z}/2 \oplus \cdots \oplus \mathbb{Z}/2$ (r-summands)

the $\mathbb{Z}/2$ -homology cover $\widetilde{\Gamma}$ of Γ is the corresponding cover its fundamental group is the kernel of this homomorphism it admits a simple geometric construction

Lemma: If Γ has the property that every edge belongs to a circuit then the edges in $\widetilde{\Gamma}$ sitting over a given edge in Γ form a cut

So, $\widetilde{\Gamma}$ has a wall structure in which walls correspond to edges in Γ In our tower, each block now has a wall metric and these are 'uniformly' CE. This would mean that $\square \mathbb{F}_2$ (but with coarse union of wall metrics) is CE.

Covering spaces

But, on $\widetilde{\Gamma}$ the wall and graph metrics do not coincide.

Neither in general, nor on our tower.

Prop: The wall and graph metrics on $\widetilde{\Gamma}$ coincide on scales smaller than the girth of Γ . Precisely, the wall distance and graph distance between two points in $\widetilde{\Gamma}$ agree when one (equivalently both) of them is smaller than the girth of Γ .

This shows that $\square \mathbb{F}_2$ with either metric is simultaneously CE – also simultaneously CA. Since it is CnA with graph metrics and CE with wall metrics we are done.