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Centro-affine Geometry in the Plane and Feedback
Invariants of Two-state Scalar Control Systems

George R. Wilkens

Abstract. The goal of this paper is to establish the precise connection be-

tween the centro-affine invariants of plane curves and the feedback invariants
of nonlinear scalar control systems in the plane. We will also show how the

centro-affine structure provides a shortcut to the structure equations for feed-

back equivalence one obtains by applying Cartan’s equivalence method.

0. Introduction

A direct observation of the way that control systems transform under the action
of feedback transformations leads us to consider a classical problem in the geometry
of submanifolds of Rn. Specifically, let ẋ = f(x, u) represent a control system,
where x ∈ Rn and u ∈ Rm, with m < n. Let x be any point in state space
and let Tx denote the tangent space at x. The control system determines the
mapping u 7→ f(x, u) from the control space, Rm, to the tangent space Tx. If
we make the reasonable assumption that the rank of ∂f/∂u is maximal, then we
see that this mapping determines an m-dimensional parameterized submanifold of
Tx. As we vary x, the control system f(x, u) determines an n-parameter family of
submanifolds, and we are interested in the action of feedback transformations on
this family.

Let x̄ = φ(x), ū = ψ(x, u) be a feedback transformation taking ẋ = f(x, u) to
˙̄x = f̄(x̄, ū). To see how the submanifolds ū 7→ f̄(x̄, ū) are related to the original
submanifolds, we need only apply the chain rule. Since

f̄ =
dx̄
dt

=
∂φ

∂x
· dx
dt

=
∂φ

∂x
· f ,

we see that applying the nonsingular matrix ∂φ/∂x to the image of u 7→ f(x, u)
yields the image of ū 7→ f̄(x̄, ū); moreover we have also reparametrized the im-
age with the new parameter ū = ψ(x, u). Since φ(x) can be any diffeomorphism,
∂φ/∂x can be any GL(n,R) matrix at x. Together, these observations show that
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the feedback transformations induce an arbitrary reparametrization and an arbi-
trary general linear action on each submanifold u 7→ f(x, u), which introduces the
problem of classifying the general linear orbits of submanifolds of Rn.

For this classical submanifold problem, we view GL(n,R) as a group of motions
on Rn and try to classify submanifolds of Rn up to a GL(n,R)-motion. This
problem is exactly analogous to the problem of classifying submanifolds of Rn up
to a motion of the Euclidean group in Rn. The term centro-affine geometry is used
to describe the geometry on Rn induced by GL(n,R), just as Euclidean geometry
is used to describe the geometry on Rn induced by the Euclidean group. Once we
know the centro-affine invariants of submanifolds of Rn, our expectation is that
these invariants should also appear in some form as feedback invariants of a control
system. When we know how to recognize them, we will be able to assign geometric
meaning to them and use our centro-affine insight to interpret them. We will show
exactly how this occurs in the special case of a scalar control system in the plane.

In n-dimensional Euclidean geometry, we often make use of frame fields to
study submanifolds. For example, the Frenet frame on a regular curve is a Euclidean
invariant of the curve, and this frame determines the arc-length and n−1 curvatures
of the curve. These functions are also Euclidean invariants, and they classify the
curve up to a Euclidean motion. In an entirely analogous manner, we can associate
a GL(n,R)-invariant frame field to a curve, and this frame field determines an “arc-
length” and n − 1 “curvatures” which classify the curve up to GL(n,R)-motions
[GW97].

In section 1 we use Cartan’s method of moving frames [Ca51] to construct
a centro-affine invariant frame field for a curve in the plane. For a regular class
of curves we are able to find a GL(2,R)-invariant curve parameter, which we call
the centro-affine arc-length, and an invariant function we call the centro-affine cur-
vature. The arc-length and curvature determine the curve up to a centro-affine
motion. In section 2, we show how a general nonlinear feedback transformation
induces centro-affine actions on a family of curves naturally associated to a scalar
control system in the plane. Then we show exactly how the centro-affine invariants
of plane curves appear as feedback invariants of the control system. In effect, we
solve the problem of finding a complete set of invariants for feedback equivalence.
Finally, in section 3, we consider some examples and exhibit some normal forms.

1. Centro-affine geometry in the punctured plane.

Moving frames on the punctured plane. The method of moving frames is
a technique that is well suited to the study of submanifolds of a homogeneous space.
In [Ca51], Cartan shows that when a Lie group acts transitively and effectively on a
manifold, one can construct a bundle of frames over the manifold. Cartan develops
this theory to study two submanifold problems: the problem of contact and the
problem of equivalence. The first problem involves determining the order of contact
two submanifolds have at a point. The second problem involves determining when
there exists an element of the given Lie group that translates one submanifold onto
another. Cartan devotes most of his book to specific geometric examples of these
problems. More recent descriptions of the method of moving frames can be found
in [Gn78], [Gr74] and an excellent recent book [Sh96]. Green’s paper [Gn78] and
Sharpe’s book [Sh96] carefully point out subtle features in the theory and include
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many examples. Our goal in this section will be to classify planar curves up to
general linear actions.

We define the punctured plane to be the plane of column vectors, R2, with
the origin removed; and we will denote it by R2

0. Since the group GL(2,R) acts
transitively and effectively on R2

0, we can use the method of moving frames to
study the GL(2,R)-invariants of curves in the punctured plane. A frame on R2

0 will
consist of a pair of linearly independent vectors in R2

0, (e0, e1). Let F be the set of
all frames on R2

0. We may also think of the frame (e0, e1) as the GL(2,R) matrix
(ei

j)0≤i,j≤1, where ej is the column vector ej = t(e0j , e
1
j) (we use t on the left to

denote transpose). Now GL(2,R) is an open subset of the four dimensional vector
space L(2,R) of all two by two matrices. The projections

L(2,R)
e0

↙
e1

↘
R2 R2

from L(2,R) onto the left and right columns of the matrices are linear maps, and
therefore their restrictions to any open subset are differentiable. In particular, we
have two differentiable mappings e0, e1 : F → R2

0. Expressing the derivatives of
these mappings in terms of themselves gives the structure equations on F :

(1)

de0 = e0 ω
0
0 + e1 ω

1
0

de1 = e0 ω
0
1 + e1 ω

1
1

dωi
j = −ωi

0 ∧ ω0
j − ωi

1 ∧ ω1
j 0 ≤ i, j ≤ 1.

In these equations we view e0 and e1 as functions from F to R2. The equations
for dωi

j are consequences of d2e0 = d2e1 = 0. The 1-forms ω0
0, ω

0
1, ω

1
0, ω

1
1 form

a basis for the 1-forms on F .

Zeroth order frames. Let I ⊂ R be an open interval and let x : I → R2
0 be

a smooth immersed curve. We call

{(u; e0, e1) ∈ I ×F | e0 = x(u)}

the set of zeroth order frames for the curve x, and we denote this set by F (0)
x . We

think of the zeroth order frames as the restriction of the frames on R2
0 to the curve

x by requiring that the first leg of the frame, e0, be the position vector of the curve;
that is we let e0(u) = x(u) for all u ∈ I. If we differentiate this equation and use
the structure equations (1), we get that

(2) x′(u) du = dx = de0 = e0 ω
0
0 + e1 ω

1
0.

This implies that ω0
0 and ω1

0 are multiples of du. In Cartan’s language, the curve
parameter u is called a principal parameter, and the components of dej that are
multiples of du are called principal components. We want to choose the second leg
of the frame, e1, in a way that is adapted to the geometry of the curve. The natural
thing to do is to choose e1 to be tangent to the curve, however this is not always
possible. Since e0 and e1 must be linearly independent, we can require e1 to be
tangent to the curve if and only if x(u) and x′(u) are linearly independent. Since
x(u) ∧ x′(u) du = e0 ∧ de0 = e0 ∧ e1 ω

1
0, we see that x(u) and x′(u) are linearly

independent if and only if ω1
0 6= 0. Since x(u) and x′(u) are linearly dependent if

and only if the curve is tangent to the ray through x(u) emanating from the origin,
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we see that ω1
0 vanishes exactly when the curve is tangent to radial directions.

We will consider the two extreme cases for this condition: ω1
0 either vanishes or is

nonzero for every point on the curve. We will encounter several similar conditions
in the rest of this paper. We will use the term regular to mean that a condition is
satisfied for every point in the domain, and we will always restrict our consideration
to regular cases. If we consider the regular case satisfying ω1

0 = 0 for every point
on the curve, then de0 ∧ e0 = 0 for all u ∈ I. This implies that the ray through e0

is constant, and we see that the curve x(u) lies on a ray.

First order frames. We now restrict to the regular case where ω1
0 6= 0 for

all u ∈ I. In this case we can define the first order frames F (1)
x to be the set

F (1)
x = {(u; e0, e1) ∈ F (0)

x | e1 points in the direction of x′(u)}.

Remark. This choice of first order frames is adapted to oriented curves. If we
allow the curve to reverse orientation, then we can only require that e1 be tangent
to the curve, but not that it point in a particular direction.

Since x′ is parallel to e1, equation (2) implies that de0 = e1 ω
1
0; equivalently

ω0
0 = 0. This shows that ω1

0 is a non-zero multiple of du, so a 1-form on F (1)
x

is a multiple of du if and only if it is a multiple of ω1
0. In particular, principal

components must be multiples of ω1
0. Differentiating the last relation and using

equations (1) gives 0 = dω0
0 = −ω0

1∧ω1
0. Therefore ω0

1 is a principal component
and we may write ω0

1 = aω1
0, for some function a. A subgroup of GL(2,R) acts

on the function a, and we can compute the infinitesimal action by differentiating
both sides of the last equation. (See pages 40–43 of [Ga89] for a discussion of group
actions and how to identify them from their infinitesimal actions.) Differentiating
both sides, we get

dω0
1 = −ω0

1 ∧ ω1
1

= −aω1
0 ∧ ω1

1 and

d(aω1
0) = da ∧ ω1

0 − aω1
1 ∧ ω1

0.

Subtracting the second equation from the third equation we arrive at the equa-
tion 0 = (da − 2aω1

1) ∧ ω1
0. This shows that the function a is acted on by

a square. We can in fact compute the function a explicitly. The first order
frames are parametrized by I ×R+, where (u, ν) determines the frame (e0, e1) =
(x(u),x′(u) ν−1), ν > 0. Hence, de0 = x′(u) du = (x′(u) ν−1)(ν du) = e1 ν du =
e1 ω

1
0, and we see that ω1

0 = ν du. By taking determinants we can isolate ω0
1 in

the structure equation for de1. Explicitly,

det(de1, e1)
by (1)

= det(e0, e1)ω0
1 = det(x(u),x′(u)) ν−1 ω0

1.

We also have that

det(de1, e1) = det(d(x′(u) ν−1),x′(u) ν−1) = det(x′′(u),x′(u)) ν−2 du,

so

ω0
1 =

det(x′′(u),x′(u))
det(x(u),x′(u))

ν−1 du =
det(x′′(u),x′(u))
det(x(u),x′(u))

ν−2 ω1
0 = aω1

0.

We see that the function a = [det(x′′(u),x′(u))/det(x(u),x′(u))] ν−2, and the
square action of ν−1 is evident. From this formula it is clear that a vanishes if
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and only if x′′(u) and x′(u) are linearly dependent, which occurs exactly at the
inflection points of the curve. If we consider the regular case where a is identically
zero, we see that this happens if and only if every point on the curve is an inflection
point. This means that the curve must lie on a line, and since ω1

0 6= 0, this line
can not pass through the origin. Thus a identically zero classifies the affine lines.

Remark. We do not need the explicit formula for a to see that the vanishing
of a determines affine lines. This is because the vanishing of a is equivalent to the
condition de1 ∧ e1 = 0. Since e1 determines the direction of the tangent line, this
equation says that the tangent line is constant and therefore x(u) lies on a line.

Since a is acted on by a square, the sign of a is an invariant. The formula
for a makes it clear that a will be positive when the position vector x(u) and the
acceleration vector x′′(u) point to the same side of the tangent line, and a will
be negative when the acceleration vector and the position vector point to opposite
sides of the tangent line. In other words, that a is negative when the curve is
convex, and a is positive when the curve is concave.

Second order frames. We now consider the last regular case, namely the case
where a 6= 0 for every point on the curve. In this case we can determine a unique set
of second order frames, F (2)

x , by choosing the first order frames for which a = −ε,
where ε = 1 if the curve is convex and ε = −1 if the curve is concave. With a = −ε,
the parameter ν takes on the value ν =

√
|det(x′′(u),x′(u))/det(x(u),x′(u))|, and

the frame (e0, e1) = (x(u),x′(u) ν−1) is uniquely defined along the curve. The
1-form ω1

0 = ν du =
√
|det(x′′(u),x′(u))/det(x(u),x′(u))| du is well defined on

the curve, and determines the centro-affine arc-length of the curve. We will denote
the centro-affine arc-length parameter by s, which implies that ω1

0 = ds. Notice
that the centro-affine arc-length is second order in x(u), as is the vector e1. The
1-form ω1

1, which is obtained by differentiating e1, must be a multiple of ds. We
will write ω1

1 = κ(s) ds, and we will call κ the centro-affine curvature of the curve.
Notice that κ is third order.

The structure equations (1) reduce to the Frenet type equations

(3)
de0 = e1 ds

de1 = −ε e0 ds+ e1 κ ds.

A standard argument shows that the centro-affine arc-length and the centro-affine
curvature determine the curve x(u) up to a GL(2,R)-motion. It is also easy to
check that if you reverse the orientation of the curve, then κ changes sign. Thus
the centro-affine arc-length and the absolute value of κ determine unoriented curves
up to a GL(2,R)-motion.

Structure theory of centro-affine curves. We can collect the previous
results into a classification theorem for centro-affine curves. Essentially the same
results appear in the Shirokows’ book on affine geometry [SS62,pp. 49–51, pp.
57–61]. They attribute these results to Mayer and Myller [MM33].

Theorem (Mayer and Myller). Let I ⊂ R be an open interval and let
x : I → R2

0 be a smooth immersed curve. We have the following three regular
classes of curves.

• If x(u) and x′(u) are linearly dependent for all u in I, then the curve lies
on a ray emanating from the origin.
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• If x(u) and x′(u) are linearly independent and x′(u) and x′′(u) are linearly
dependent for all u in I, then the curve lies on an affine line.

• If x(u) and x′(u) are linearly independent and x′(u) and x′′(u) are linearly
independent for all u in I, then the curve possesses a GL(2,R)-invariant arc-
length s and a GL(2,R)-invariant frame (e0(s), e1(s)) satisfying structure
equations (3). The arc-length s and the curvature κ(s) determine the curve
up to a GL(2,R)-motion.

The following observation provides some insight to the meaning of the arc-
length parameter s. If the position vector and the velocity vector of the curve are
linearly independent, then we can use x(u) and x′(u) as a basis for R2

0. Therefore,
we can write the acceleration vector in terms of this basis, giving

x′′(u) = α(u)x(u) + β(u)x′(u).

If we reparametrize the curve, letting u = u(t), then we get

x′′(t) = α̂(t)x(t) + β̂(t)x′(t), where α̂(t) = u′(t)2 α(u(t)).

We can always reparametrize the curve so that α̂(t) = −ε, ε = ±1. With this
parametrization we have x′′(t) = −εx(t) + β̂(t)x′(t). If we write this as a system
of equation, x′(t) = e1(t), e′1(t) = −εx(t) + β̂(t) e1(t), we see that this system
exactly matches the structure equations (3) (recall that e0 is the position vector,
x). Thus t must be the arc-length parameter s and β̂ must be the curvature κ.
We see that the arc-length parameter is the one which normalizes the coefficient of
x when we express the acceleration vector in terms of the position vector and the
velocity vector. The coefficient of x′ is then the curvature. Another interpretation
of the arc-length parameter is that it is the parameter for which det(x′′(s),x′(s)) =
−ε det(x(s),x′(s)), since in a general parameter we would have det(x′′(u),x′(u)) =
α(u) det(x(u),x′(u)).

The previous paragraph gives us one interpretation of the curvature κ, it is
the coefficient of the velocity vector when we express the acceleration in terms of
the position vector and the velocity vector (all derivatives are with respect to arc-
length). However, this is not a very satisfying description of the curvature. To get a
better description of the curvature, notice that the frame (e0(s), e1(s)) determines
the volume element e0∧e1 at each point of the curve. If we differentiate this volume
element with respect to arc-length and use the structure equations (3), we get

d(e0 ∧ e1) = de0 ∧ e1 + e0 ∧ de1 = e0 ∧ e1 κ(s) ds.

We see that the curvature is the relative rate of change of the volume element
e0 ∧ e1 with respect to arc-length. In terms of determinants, this is equivalent
to κ(s) = d[ln |det(x(s),x′(s))|]/ds. Those curves for which κ is identically zero
satisfy Kepler’s second law of sweeping out equal area in equal time, although for
centro-affine curves time is replaced by arc-length.

We can give a good description of the curves with constant centro-affine cur-
vature. Structure equations (3) imply that a centro-affine curve must satisfy the
second order differential equation x′′(s) = κx′(s)− εx(s). The characteristic equa-
tion for this differential equation is r2 − κ r + ε = 0. The two roots λ1 and λ2 are
such that λ1 + λ2 = κ and λ1 λ2 = ε.

In the concave case, ε = −1 which means that the roots have opposite sign.
Let λ1 be the positive root. There are two vectors w1 and w2 such that x(s) =
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w1 e
λ1 s + w2 e

λ2 s. Since x(0) and x′(0) must be linearly independent, w1 and w2

must also be linearly independent. Thus, we can apply a GL(2,R) matrix to the
curve and put it in the standard form x(s) = t(1, 0) eλ1 s + t(0, 1) eλ2 s. We see that
the curve is a saddle solution to a linear ordinary differential equation, and up to
a general linear action lies on the curve yλ1 = xλ2 , λ1 λ2 = −1, λ1 + λ2 = κ.

The convex case branches into three subcases depending on the sign of κ2 − 4.
If |κ| > 2, then we have distinct real roots λ1 and λ2 and the solution curve can be
put in the standard form x(s) = t(1, 0) eλ1 s + t(0, 1) eλ2 s, λ1 λ2 = 1, λ1 + λ2 = κ.
We see that the curve is a nodal solution to a linear ordinary differential equation,
and up to a general linear action lies on the curve yλ1 = xλ2 .

If |κ| = 2, then we have two equal real roots λ. Since 2λ = κ, λ is either 1 or −1.
The solution curve can be put in the standard form x(s) = t(1, 0) eλ s + t(0, 1) s eλ s.
We see that the curve is an improper node, and lies on the curve λ y = x ln(x).
If κ = 2, then λ = 1 and x(s) moves away from the origin, while if κ = −2, then
λ = −1 and x(s) moves toward from the origin.

If |κ| < 2, then we have a non-real conjugate pair of roots, λ and λ̄, with κ being
two times the real part of λ. If we let λ be the root with positive imaginary part,
then λ = κ/2+

√
−1 b, where b is the positive root of the equation κ2/4+b2 = 1. We

can put the solution curve into the standard form x(s) = eκ s/2[t(1, 0) cos(b s) +
t(0, 1) sin(b s)]. If |κ| > 0 we have a spiral solution which moves away from the
origin if κ is positive and moves towards the origin if κ is negative. When κ = 0
we have a circle centered at the origin.

Notice that when κ = 0, our curve is a hyperbola in the concave case and a circle
in the convex case. Thus κ = 0 exactly picks out the non-degenerate quadric curves
centered at the origin. This fits in with the centro-affine theory of hypersurfaces. In
this lowest dimensional case, the symmetric form ω0

1 ω
1
0 = −ε (ds)2 is the Blaschke

form, and κ (ds)3 is the Pick form [Bl23]. It is exactly the vanishing of the Pick
form that characterizes the non-degenerate quadric hypersurfaces.

2. Two state scalar control

Our goal in this section is to use our new intuition for centro-affine curves to
compute the feedback invariants of a two state, single input control system. We will
also have the benefit of a geometric interpretation of these invariants. The motiva-
tion for considering centro-affine geometry comes from viewing a control system as
a submanifold of the tangent bundle, and observing the effect that feedback has on
this submanifold.

Consider the control system

(4) ẋ = f(x, u),

where x = t(x1, x2) ∈ R2, u ∈ R and f(x1, x2, u) is a smooth function from R2×R
to R2. For each (x, u), f(x, u) represents a tangent to vector to R2 at x. Thus the
mapping from R to TxR2 defined by u 7→ f(x, u) is a curve in the tangent space to
x. Therefore the mapping V : R2×R → TR2 defined by (x, u) 7→ (x, f(x, u)) gives
a submanifold of the tangent bundle whose intersection with each tangent space is
a curve parametrized by u.

Let (x̄, ū) = Φ(x, u) = (φ(x), ψ(x, u)) be a feedback transformation and apply
it to the control system (4). Using the chain rule we compute the new control
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system

f̄(x̄, ū) =
dx̄
dt

=
∂φ

∂x
· dx
dt

=
∂φ

∂x
· f(x, u),

and since φ(x) can be an arbitrary diffeomorphism, we see that the curve f(x, u)
can be acted on by an arbitrary GL(2,R) matrix. Further, since ū = ψ(x, u), we see
that feedback allows the curve f(x, u) to be reparametrized. Thus the action on the
curve is a centro-affine action, and we should expect to see centro-affine invariants
in the feedback invariants of the control system (4).

To make effective use of the previous section, we introduce the frame bundle on
R2. Let F denote the bundle of frames on R2. A point e ∈ F is a linear isomorphism
from a tangent space TxR2 to R2. The mapping e 7→ x is the projection from F
to R2. The point e determines a triple (x, e0, e1), where (e0, e1) is the basis of
TxR2 that e maps to the standard basis of R2. In other words, e(e0) = t(1, 0)
and e(e1) = t(0, 1). We may view x, e0 and e1 as functions from F to R2. The
derivatives of these maps determine the structure equations of F ,

(5)

dx = e0σ
0 + e1σ

1

de0 = e0ω
0
0 + e1ω

1
0

de1 = e0ω
0
1 + e1ω

1
1

dσ0 = −ω0
0 ∧ σ0 − ω0

1 ∧ σ1

dσ1 = −ω1
0 ∧ σ0 − ω1

1 ∧ σ1

dωi
j = −ωi

0 ∧ ω0
j − ωi

1 ∧ ω1
j 0 ≤ i, j ≤ 1.

The six 1-forms σ0, σ1, ω0
0, ω

0
1, ω

1
0, ω

1
1 form a basis for the 1-forms on F . Notice

that the structure equations for e0, e1 and ω0
0, ω

0
1, ω

1
0, ω

1
1 agree with (1) and

reflect the GL(2,R), or centro-affine, structure on each tangent space.

Zeroth order frames. The first step for centro-affine curves is to let e0 be the
position vector of the curve. We apply the same technique here and define the zeroth
order frame bundle F (0)

f to be the set of all frames with e0 = f(x, u). Thus a zeroth
order frame can be viewed as a triple (x, f(x, u), e1), where f and e1 are linearly
independent. Notice that the formula for dx in (5) becomes dx = f σ0+e1σ

1, which
implies, on using 〈, 〉 to denoting the pairing of vectors with forms, that

〈
f , σ0

〉
= 1

and
〈
f , σ1

〉
= 0.

We wish now to compute the centro-affine invariants of the curves in each
tangent space. Since a tangent space is determined by setting x equal to a constant,
all we have to do is compute the derivatives modulo dx1 and dx2.

Since e0 = f , the equation for de0 in (5) shows that ω0
0 and ω1

0 are multiples
of du, dx1 and dx2. We therefore know that ω0

0 ≡ m0du and ω1
0 ≡ m1du modulo

dx1, dx2. We would like to choose e1 so that it points in the same direction as
∂f/∂u, but since e0 and e1 must be linearly independent, we can only do that if
e0 = f and ∂f/∂u are linearly independent. Being independent is equivalent to
ω1

0 being nonzero modulo dx1, dx2, which is the same as the function m1 being
nonzero. If m1 is identically zero, then f(x, u) lies on a ray emanating from the
origin of TxR2, for each x ∈ R2. Thus there is a feedback transformation taking
f(x, u) to a control linear normal form g(y) v, where (y, v) = Φ(x, u).

First order frames. We will assume thatm1 is always nonzero. Then we may
define the first order frames F (1)

f by requiring e1 to point in the same direction as
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∂f/∂u, which implies that ω0
0 ≡ 0 (mod dx1, dx2). As in the curve case, this

condition implies that ω0
1 ≡ aω1

0 (mod dx1, dx2). Differentiation shows that a
is acted on by a square, and we have three cases. If a is identically zero, then
f(x, u) lies on an affine line in each tangent space and thus there is a feedback
transformation taking f(x, u) to a control linear normal form g0(y) + g1(y) v. We
will now consider the final case.

Second order frames. If a is never zero, then we may define the second order
frames F (2)

f by choosing e1 so that a = −ε, where ε = ±1. This determines the
centro-affine arc-length in each tangent space. In fact, using the arc-length formula
derived in the previous section, we see that

ω1
0 ≡

√√√√∣∣∣∣∣det( ∂2f
∂u2 ,

∂f
∂u )

det(f , ∂f
∂u )

∣∣∣∣∣ du (mod dx1, dx2).

Comparing again with centro-affine curves, we see that ω1
1 must be congruent to a

multiple of ω1
0, say ω1

1 ≡ κ(x, u)ω1
0 (mod dx1, dx2), and for each tangent space

TxR2, κ(x, u) is the centro-affine curvature of f(x, u).
Taken together, we see that we may choose frames adapted to the control

system f so that in each tangent space, the frames satisfy the structure equations
for centro-affine plane curves. We can summarize the above congruences with the
matrix equation(

ω0
0 ω0

1

ω1
0 ω1

1

)
≡

(
0 −ε
1 κ(x, u)

)
ω1

0 (mod dx1, dx2).

Comparing the expression for dx in equations (5) with the expression

dx =
∂

∂x1
dx1 +

∂

∂x2
dx2

we see that σ0, σ1 must be a nonsingular linear combination of dx1, dx2. Thus any
congruence modulo dx1, dx2 is equivalent to a congruence modulo σ0, σ1. We can
therefore rewrite the last equation as

(6)
(
ω0

0 ω0
1

ω1
0 ω1

1

)
≡

(
0 −ε
1 κ(x, u)

)
ω1

0 (mod σ0, σ1).

Equation (6) shows how f varies in a given tangent space, but we also need
to know how f varies as we move from tangent space to tangent space, that is as
we vary the state variables x. We do so by putting equation (6) back into the
derivative equations for dσ0, dσ1 in (5). Writing these equations in matrix form,
we have (

dσ0

dσ1

)
= −

(
0 −ε
1 κ(x, u)

)
ω1

0 ∧
(
σ0

σ1

)
+

(
Aσ0 ∧ σ1

B σ0 ∧ σ1

)
.

A short calculation shows that by adding terms to ω1
0 we can rewrite this as

(7)
(
dσ0

dσ1

)
= −

(
0 −ε
1 κ(x, u)

)
[ω1

0 + εAσ0 + (B + ε κA)σ1] ∧
(
σ0

σ1

)
.

Notice that equation (6), which was arrived at by considering the centro-affine
structure of f on each tangent space, only defines ω1

0 up to linear combinations of
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σ0 and σ1. Thus we may add such linear terms to ω1
0 and preserve equation (6),

equivalently we preserve the centro-affine structure equations for f . We therefore
define a new 1-form, µ = ω1

0 + εAσ0 + (B + ε κA)σ1. Substituting into (7) gives

(8)
(
dσ0

dσ1

)
= −

(
0 −ε
1 κ(x, u)

)
µ ∧

(
σ0

σ1

)
.

It is easy to see that equation (8) determines µ uniquely. Suppose µ̄ also satisfied
equation (8). Then setting the two expressions equal and subtracting gives two
equations, ε(µ̄ − µ) ∧ σ1 = 0 and (µ̄ − µ) ∧ σ0 + κ(µ̄ − µ) ∧ σ1 = 0. The first
equations implies that there is a function p such that µ̄ − µ = p σ1. Substituting
into the second equation gives p σ1 ∧ σ0 = 0, thus p = 0 and µ̄ = µ.

We are now at an important point. The three independent 1-forms, σ0, σ1

and µ, form a basis for the 1-forms on state-control space, R2 ×R. Moreover, this
basis remains invariant under the action of feedback transformations. We see this
in the following way. To each control system, we assign the centro-affine “Frenet
frame” (e0, e1) in each tangent space. Since a feedback transformation induces a
centro-affine action in each tangent space, this frame is feedback invariant. The
1-forms σ0, σ1 are dual to the frame (e0, e1), and are defined by the equation
dx = e0 σ

0 + e1 σ
1. Since the frame is feedback invariant, so are the 1-forms σ0

and σ1. Equation (8) determines the 1-form µ. Since feedback preserves σ0 and σ1,
feedback must also preserve equation (8). Therefore, since equation (8) determines
µ uniquely, feedback must also preserve µ.

Using (8) we compute that 0 = d2σ0 = ε dµ ∧ σ1, thus dµ has the form

dµ = −K σ0 ∧ σ1 − J µ ∧ σ1.

For any function h(x1, x2, u), the functions hσ0 , hσ1 and hµ are uniquely defined
by the equation dh = hσ0 σ0 +hσ1 σ1 +hµ µ. With this notation and with equation
(8) we compute

0 = d2σ1 = J µ ∧ σ1 ∧ σ0 − dκ ∧ µ ∧ σ1 = (J − κσ0)µ ∧ σ1 ∧ σ0.

From this we see that J is a derivative of κ. Finally, computing d2µ = 0 gives the
relation

Jσ0 + κK −Kµ = 0.
The above discussion leads to the following structure theorem for two state,

single input systems.

Theorem. There are three regular classes for the two state, single input control
system (4).

• If f(x, u) and ∂f
∂u (x, u) are linearly dependent for all (x, u), then in each

tangent space f(x, u) lies on a ray emanating from the origin and is therefore
feedback equivalent to the form ẏ = g(y) v.

• If f(x, u) and ∂f
∂u (x, u) are linearly independent and ∂f

∂u (x, u) and ∂2f
∂u2 (x, u)

are linearly dependent for all (x, u), then in each tangent space f(x, u) lies
on an affine line and is therefore feedback equivalent to the form ẏ = g0(y)+
g1(y) v.

• If f(x, u) and ∂f
∂u (x, u) are linearly independent and ∂f

∂u (x, u) and ∂2f
∂u2 (x, u)

are linearly independent for all (x, u), then in each tangent space we may
assign a centro-affine frame (e0, e1) to f . This frame uniquely determines
dual 1-forms σ0 and σ1 satisfying the equation dx = e0 σ

0 + e1 σ
1. The
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1-form µ together with ε = ±1 and the function κ are uniquely determined
by equation (8). They additionally satisfy the equations

(9)
de0 ≡ e1 µ

de1 ≡ −e0 ε µ+ e1 κµ

}
(mod σ0, σ1),

which imply, when we restrict to a fixed tangent space on the states, that
µ is the centro-affine arc-length and κ is the centro-affine curvature of f .
Finally, the derivative of µ has the form

(10) dµ = −K σ0 ∧ σ1 − J µ ∧ σ1,

and the functions κ, K and J are a fundamental set of feedback invariant
functions on state-control space. These functions must further satisfy the
integrability relations

(11)
0 = J − κσ0

0 = Jσ0 + κK −Kµ.

Writing equations (8) and (10) as

dσ0 = ε µ ∧ σ1

dσ1 = −µ ∧ σ0 − κµ ∧ σ1

dµ = −K σ0 ∧ σ1 − J µ ∧ σ1,

we see that they agree (up to sign) with the structure equations that R. Gardner
derives using Cartan’s equivalence method [Ga89]. (Comparing with Gardner’s
equation, η1 = σ0, η2 = σ1, and I = −κ.) We arrived at the same set of structure
equations, and entirely bypassed the equivalence method. Moreover, we have a
geometric interpretation of the quantities. The 1-form µ represents the centro-
affine arc-length of f in each tangent space, and κ(x, u) represents the centro-affine
curvature in each tangent space. The sign of ε determines the convexity of f . The
functions K(x, u) and J(x, u) describe the variation of f from one tangent space to
another.

3. Examples

The fundamental invariants are constant. Suppose now that κ, K and J
are constant. We see from (11) that J must be 0 and κK = 0. We will consider
the case κ 6= 0 first. Thus K = 0 and ε = ±1. We will examine the case ε = −1,
the other case being similar. We begin by recalling that a curve in the centro-affine
plane with structure equations (3), ε = −1, and κ equal to a constant is equivalent
to the standard form x(s) = t(1, 0) eλ1s + t(0, 1) eλ2s, where λ1 and λ2 are the roots
of r2 − κ r − 1 = 0. We arrived at this form by using the fact that equations (3)
imply that x(s) satisfies the differential equation x′′(s)−κx′(s)−x(s) = 0. In this
form we see that κ = λ1 + λ2. The equivalent normal form

x(s) =
[(

cosh(
√
κ2 + 4 s/2)
0

)
+

(
0

sinh(
√
κ2 + 4 s/2)

)]
eκ s/2



330 GEORGE R. WILKENS

has the advantage that the constant κ is easier to read off. What we shall show is
that, under the current assumptions, the control system f(x, u) is feedback equiv-
alent to the nonlinear system

g(y, v) = g(v) =
[(

cosh(
√
κ2 + 4 v/2)
0

)
+

(
0

sinh(
√
κ2 + 4 v/2)

)]
eκ v/2

=
(

cosh(
√
κ2 + 4 v/2)

sinh(
√
κ2 + 4 v/2)

)
eκ v/2.

(12)

Since J and K vanish, the structure equations (8) and (10) are

(13)
dσ0 = −µ ∧ σ1

dσ1 = −µ ∧ σ0 − κµ ∧ σ1

dµ = 0.

We see that there is a function v = v(x, u), defined up to a constant, such that
µ = dv. Choose v(x, u) so that 0 is in its range. Since σ0, σ1 and µ are independent,
and since σ0 and σ1 are linear combinations of dx1 and dx2 only, we see that
∂v/∂u 6= 0. Recalling that e0 = f(x, u), equations (9) imply that e1 = ∂f/∂v
and ∂2f/∂v2 − κ ∂f/∂v − f = 0. We will now restrict to the two dimensional
submanifold defined by v = 0. Equations (13) show that, along v = 0, the Lie
bracket [e0, e1] = 0. Thus, we may apply a change of state variable, y = φ(x) such
that

(14)
e0|v=0 =

∂

∂y1

e1|v=0 =
κ

2
∂

∂y1
+
√
κ2 + 4

2
∂

∂y2
.

Together, y and v determine a feedback transformation that transforms f(x, u)
to g(y, v), where g(y, 0) = ∂/∂y1 and ∂g/∂v(y, 0) = κ/2 ∂/∂y1+

√
κ2 + 4/2 ∂/∂y2.

Moreover, since all of our centro-affine structure is preserved under feedback, we
must also have that g satisfies the same differential equation as f , namely for all y,
∂2g/∂v2 − κ ∂g/∂v − g = 0, with the initial conditions at v = 0 given above. The
function given in (12) satisfies this differential equation and these initial conditions,
so g(y, v) must be equal to (12). Thus we have a normal form for control systems
of this type.

If ε = +1 and κ 6= 0, a similar argument gives one of three normal forms. The
particular form depends on whether κ2 − 4 is positive, zero or negative. We find
that f(x, u) is respectively equivalent to either

• g(y, v) = t(cosh[
√
κ2 − 4 v/2], sinh[

√
κ2 − 4 v/2])eκ v/2,

• g(y, v) = t(1, v)e±v, or
• g(y, v) = t(cos[

√
4− κ2 v/2], sin[

√
4− κ2 v/2])eκ v/2.

The case κ = 0. With κ = 0, we still must have that J = 0, but K can be
nonzero. Equations (8) and (10) become

(15)

dσ0 = ε µ ∧ σ1

dσ1 = −µ ∧ σ0

dµ = −K σ0 ∧ σ1.
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We recall that the centro-affine curvature of a plane curve vanishes if and only if
the curve lies on a quadric (convex when ε = 1, concave when ε = −1). Since we are
assuming that κ = 0, we see that the control system f(x, u) determines a quadric
curve in each tangent space. We can use this curve to define the length of a tangent
vector. We do this by declaring ‖f(x, u)‖ to be 1 for all (x, u). This suggests that
we have either a Riemannian or a pseudo-Riemannian metric on the state space.
In fact, we can show that this metric is given by ‖w‖2 = σ0(w)2 + ε σ1(w)2, for
any w ∈ TxR2. We have to be a bit careful here, because the 1-forms σ0 and σ1

are defined on (x, u)-space, and we are claiming that the quadratic combination
(σ0)2 + ε (σ1)2 is well defined on x-space. To show this, let Z be any vector field
tangent to the fiber of (x, u)-space over x space, that is, tangent to the fiber of state-
control space over state space. Since σ0, σ1 are nonsingular linear combinations
of dx1, dx2, we see that every such vector Z is defined by the equations 〈Z, σ0〉 =
〈Z, σ1〉 = 0. Using Cartan’s formula for Lie derivative, LZ θ = Z dθ + d(Z θ),
and using equations (15) we can compute the Lie derivative LZ (σ0)2 + ε (σ1)2 =
2(σ0LZ σ

0 + ε σ1LZ σ
1) = 2〈Z, µ〉(ε σ0 σ1 − ε σ1 σ0) = 0. Since Z is an arbitrary

vertical vector field, this shows that (σ0)2 + ε (σ1)2 is a well defined metric on state
space. Moreover, we can interpret our control system f(x, u) as simply saying that
we move along the state space at unit speed.

Since the 1-forms σ0 and σ1 diagonalize the Riemannian metric, we recognize
that equations (15) are simply the structure equations of a surface, with µ represent-
ing the Levi-Civita connection 1-form and K representing the Gaussian curvature
of the surface. We see instantly that if K is constant, then our control system must
be equivalent to a control system that parametrizes unit speed curves on constant
curvature surfaces. For example, in the ε = 1 case, if (σ0)2 + (σ1)2 is isometricly
equivalent to the constant curvature metric

(dy1)2 + (dy2)2(
1 + K

4 [(y1)2 + (y2)2]
)2

then the control system ẋ = f(x, u) must be feedback equivalent to the control
system

ẏ = g(y, v) =
(

cos v
sin v

) (
1 +

K

4
[
(y1)2 + (y2)2

])
,

since this is equivalent to the metric norm being equal to one, ‖ẏ‖2 = 1.

Constant κ in each fiber. Suppose now that in each fiber, f(x, u) defines a
constant curvature centro-affine curve, but that the constant can vary as we move to
different fibers. In other words, assume that κ is a nonconstant function depending
only on x. We can construct examples of this kind of system by taking a normal
form such as (12) and allow κ to be a function of x. For this kind of system, we can
see that J is arrived at in a very natural way. Since κ only depends on x, κµ = 0
and therefore dκ = κσ0 σ0 + κσ1 σ1. Since 〈f , σ0〉 = 1 and 〈f , σ1〉 = 0, we see that
〈f , dκ〉 = κσ0 , but κσ0 = J by (11), so we see that J is simply the derivative of
κ by the control vector field f . So, in this case at least, we have a nice geometric
interpretation of J . It is giving us the rate at which the centro-affine curvature
changes as we move from fiber to fiber along the state space in the direction of our
control.
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A Gauss-Bonnet theorem. Suppose that in each fiber f(x, u) defines a
strictly convex simple closed curve surrounding the origin. Then we may view
these curves as the unit vectors, or indicatrix, for a Finsler metric on state space.
Equations (8) and (10) are the structure equations for a Finsler surface. We have
already seen that the vanishing of κ means that the Finsler metric is in fact a
Riemannian metric, K is the Gaussian curvature and µ is the connection 1-form.

Let Sx ⊂ TxR2 denote the indicatrix at x. The centro-affine perimeter of Sx

is given by

Px =
∫

Sx

µ.

Computing the variational derivative δ
∫
µ = 0 shows that Px is constant exactly

when the invariant J vanishes. These are the Landsberg surfaces. Assuming that
J vanishes, equation (10) gives

dµ = −K σ0 ∧ σ1.

From this equation we see that the 2-form K σ0 ∧ σ1 is well defined on state space.
We also see that µ is a transgression for K σ0 ∧ σ1 on state-control space. These
observations show how we may directly translate the proofs of the standard Gauss-
Bonnet theorems into this setting, with the constant perimeter Px replacing 2π.

4. Closing

When we view a control system as a family of submanifolds of the linear tangent
spaces to the state space, we see that the action of the feedback group on each
unparametrized submanifold is exactly a centro-affine action. This observation
suggests that we take a look at centro-affine geometry, that is, the geometry of
submanifolds of Rn under the action of GL(n,R), in the hope that we will gain
geometric insight into the overall geometry of the control system.

We studied the very simplest case in this paper, that is the case of curves
in the plane. These dimensions correspond exactly to the case of a single input
control system on the plane. More generally, centro-affine curves in Rn correspond
to single input control systems on Rn. We gave a complete description of the
invariants of centro-affine plane curves, along with a collection of normal forms.
We carried this understanding of centro-affine curves over to the two state, single
input control problem. The strength of our approach is that it allows us to analyze
very nonlinear systems on the plane. In fact, the system must be so nonlinear that
is cannot even lie on an affine line in each tangent space. Another advantage to this
approach is that we find the same fundamental invariants and structure equations
we are led to using Cartan’s method of equivalence. Moreover, we gain a geometric
interpretation of the invariants and of the structure equations that is difficult to
discern from the equivalence method.

We found normal forms for several nonlinear systems, as well as a class of sys-
tems possessing a Riemannian metric. In fact, the presence of this metric, which
corresponds to the vanishing of κ, is easily predicted from centro-affine consider-
ations. We know that for centro-affine curves, the vanishing of κ is equivalent to
having a quadric curve centered at the origin. Knowing this, the vanishing of the
feedback invariant κ gives a quadric curve in each tangent space. We may use these
curves as a set of unit vectors in each tangent space, which defines the metric on
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state space. The control system itself may then be interpreted as requiring that a
particle move through state space at unit speed.

To extend this study to higher dimensions, we need to study higher dimensional
centro-affine geometries. This has been done in part. We have computed the
structure of centro-affine hypersurfaces in Rn and applied these results to feedback
control [GW96], [Wi96]. We have also computed the structure of centro-affine
curves in Rn [GW97] and applications to feedback control are under way.
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