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Ryan N. Smith

University of Hawaii
Ocean & Resources Engineering Department, Honolulu, HI 96822, USA

George Wilkens

University of Hawaii
Department of Mathematics, Honolulu, HI 96822, USA

(Communicated by Urszula Ledzewicz)

Abstract. Designing trajectories for a submerged rigid body motivates this
paper. Two approaches are addressed: the time optimal approach and the
motion planning approach using a concatenation of kinematic motions. We
focus on the structure of singular extremals and their relation to the existence of
rank-one kinematic reductions; thereby linking the optimization problem to the
inherent geometric framework. Using these kinematic reductions, we provide
a solution to the motion planning problem in the under-actuated scenario, or
equivalently, in the case of actuator failures. We finish the paper comparing a
time optimal trajectory to one formed by a concatenation of pure motions.

1. Introduction. The need to use autonomous robots provides some of the moti-
vation for research on the control of mechanical systems. The focus in this paper
is on autonomous underwater vehicles (AUVs). These fall into the class of simple
mechanical systems ; their Lagrangians are of the form kinetic energy minus po-
tential energy. Geometric control theory provides useful framework for the study
of simple mechanical systems. We address some of the complex non-linearities in
these systems by exploiting their natural geometric structures, such as Lie sym-
metry groups, distributions of vector fields, and affine connections. We use these
techniques to study the motion planning problem and an optimization problem.

Previous work based on a geometrical approach to analyze specific motion prop-
erties of underwater vehicles can be found in [11, 12]. Also, the time minimum
problem for underwater vehicles in an ideal fluid has been examined in [5, 6, 7]
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under a geometric framework, which mainly focuses on conditions for an extremal
to be singular. Here we revisit these results on extremality and generalize them
to include a rigid body submerged in a viscous fluid, i.e. subject to dissipative
forces. We establish a relationship between singular extremals and the geometric
notion of decoupling vector fields [2]. Here, decoupling vector fields are identified
for under-actuated scenarios of a six degree-of-freedom (DOF) underwater vehicle
submerged in an ideal fluid. Characterizing and identifying decoupling vector fields
for a vehicle submerged in a real fluid is an open problem and an area of current re-
search. We use the geometric properties of singular extremals and their relationship
with decoupling vector fields to examine this problem. This theoretical geometric
analysis is also important in the practical use and motion planning of mechanical
systems, see [3]. Through the study of decoupling vector fields for under-actuated
scenarios for underwater vehicles, we can provide solutions to the motion planning
problem for a vehicle in a distressed situation. Also, for a realistic scenario, we
provide the minimal conditions, in terms of actuation, for which the vehicle is still
kinematically controllable.

Finally, let us mention that in [4] we examine the implementation of different
trajectory structures on a testbed AUV with the goal of minimizing time. The
concatenation of pure motion trajectories through configurations at rest, although
practical and easy to implement, is far from time optimal. The same holds true when
considering energy consumption as the optimization cost. Moreover, implementing
a theoretically computed time optimal trajectory is impractical due to its highly
complex control structure. Thus, we must consider a middle ground that is time
efficient, but takes advantage of the piecewise constant control structure of the
pure motions. Analysis and characterization of decoupling vector fields for the
mechanical system can help with this hybridization.

2. Equations of motion. We derive the equations of motion for a controlled rigid
body immersed in an ideal fluid (air) and in a real fluid (water). By real fluid, we
mean a fluid which is viscous and incompressible with rotational flow. Here, we
consider water to be a viscous fluid (real fluid) in order to emphasize the inclusion
of the dissipative terms in the equations of motion. This motivation comes from
our desire to apply our results to the design of trajectories for test-bed underwater
vehicles.

In the sequel, we identify the position and the orientation of a rigid body with an
element of SE(3): (b, R). Here b = (b1, b2, b3)

t ∈ R3 denotes the position vector of
the body, and R ∈ SO(3) is a rotation matrix describing the orientation of the body.
The translational and angular velocities in the body-fixed frame are denoted by
ν = (ν1, ν2, ν3)

t and Ω = (Ω1,Ω2,Ω3)
t respectively. Notice that our notation differs

from the conventional notation used for marine vehicles. Usually the velocities
in the body-fixed frame are denoted by (u, v, w) for translational motion and by
(p, q, r) for rotational motion, and the spatial position is usually taken as (x, y, z).
However, since this paper focuses on the theory, the chosen notation will prove more
efficient especially for the use of summation notation in our results.

It follows that the kinematic equations for a rigid body are given by:

ḃ = Rν (1)

Ṙ = R Ω̂ (2)
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where the operator ˆ : R3 → so(3) is defined by ŷ z = y × z; so(3) being the space
of skew-symmetric 3 × 3 matrices.

To derive the dynamic equations of motion for a rigid body, we let p be the total
translational momentum and π be the total angular momentum, in the inertial
frame. Let P and Π be the respective quantities in the body-fixed frame. It follows

that ṗ =
∑k

i=1 fi, π̇ =
∑k

i=1(x̂i fi) +
∑l

i=1 τi where fi (τi) are the external forces
(torques), given in the inertial frame, and xi is the vector from the origin of the
inertial frame to the line of action of the force fi. To represent the equations of

motion in the body-fixed frame, we differentiate the relations p = RP , π = RΠ+ b̂ p
to obtain

Ṗ = P̂ Ω + EF (3)

Π̇ = Π̂Ω + P̂ ν +

k∑

i=1

(Rt (xi − b)) ×Rt fi + ET (4)

where EF = Rt (
∑k

i=1 fi) and ET = Rt (
∑l

i=1 τi) represent the external forces and
torques in the body-fixed frame respectively.

To obtain the equations of motion of a rigid body in terms of the linear and
angular velocities, we need to compute the total kinetic energy of the system. The
kinetic energy of the rigid body, Tbody, is given by:

Tbody =
1

2

(
v
Ω

)t(
mI3 −m r̂CG

m r̂CG
Jb

)(
v
Ω

)
(5)

where m is the mass of the rigid body, I3 is the 3 × 3-identity matrix and rCG
is a

vector which denotes the location of the body’s center of gravity with respect to the
origin of the body-fixed frame. Jb is the body inertia matrix. Based on Kirchhoff’s
equations [10] we have that the kinetic energy of the fluid, Tfluid, is given by:

Tfluid =
1

2

(
v
Ω

)t(
Mf Ct

f

Cf Jf

)(
v
Ω

)
(6)

where Mf , Jf and Cf are respectively referred to as the added mass, the added
mass moments of inertia and the added cross-terms. These coefficients depend
on the density of the fluid as well as the body geometry. Summarizing, we have
obtained that the total kinetic energy of a rigid body submerged in an unbounded
ideal or real fluid is given by:

T =
1

2

(
v
Ω

)t(
I11 I12

It
12 I22

)(
v
Ω

)
, (7)

(
I11 I12

It
12 I22

)
=

(
mI3 +Mf −m r̂CG

+ Ct
f

m r̂CG
+ Cf Jb + Jf

)
(8)

This can also be written as T = 1
2 (νtI11ν + 2νtI12Ω + ΩtI22Ω). Using P = ∂T

∂ν
and

Π = ∂T
∂Ω , we have:

(
P
Π

)
=

(
mI3 +Mf −m r̂CG

+ Ct
f

m r̂CG
+ Cf Jb + Jf

)(
ν
Ω

)
. (9)

The kinetic energy of a rigid body in an interconnected-mechanical system is rep-
resented by a positive-semidefinite (0, 2)-tensor field on the configuration space Q.
The sum over all the tensor fields of all bodies included in the system is referred
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to as the kinetic energy metric for the system. In this paper, the mechanical sys-
tem is composed of only one rigid body, and the kinetic energy metric is actually a
Riemannian metric given by on Q = SE(3) × R3:

G =

(
M 0
0 J

)
(10)

For the rest of this paper, we take the origin of the body-fixed frame to be CG,
in other words, r̂CG

= 0. Moreover, we assume the body to have three planes of
symmetry with body axes that coincide with the principal axes of inertia. This
implies that Jb, Mf and Jf are diagonal, while Cf is zero. We have the equations
P = (mI3 +Mf)ν = Mν and Π = (Jb + Jf )Ω = JΩ where M = mI3 +Mf and
J = Jb + Jf . It follows from equations (3) and (4) that

Mν̇ = Mν × Ω + EF (11)

JΩ̇ = JΩ × Ω +Mν × ν +

k∑

i=1

(Rt(xi − b)) ×Rtfi + ET (12)

The terms Mν × Ω, JΩ × Ω and Mν × ν account for the Coriolis and centripetal
effects. These effects can also be expressed in the language of differential geometry
via a connection, see [2] for a treatise on affine differential geometric control. A
Riemannian metric determines a unique affine connection which is both symmetric
and metric compatible. This Levi-Civita connection provides the appropriate notion
of acceleration for a curve in the configuration space by guaranteeing that the
acceleration is in fact a tangent vector field along γ. This setting for acceleration
is handled by jet bundles which can be studied in depth in [21]. Explicitly, if
γ(t) = (b(t), R(t)) is a curve in SE(3), and γ ′(t) = (ν(t),Ω(t)) is its pseudo-velocity,
the acceleration is given by

∇γ ′γ ′ =

(
ν̇ +M−1

(
Ω ×Mν

)

Ω̇ + J−1
(
Ω × JΩ + ν ×Mν

)
)
, (13)

where ∇ denotes the Levi-Civita connection and ∇γ ′γ ′ is the covariant derivative
of γ ′ with respect to itself. The affine connection formulation of our system will be
used later in our paper to establish a relationship between singular extremals and
decoupling vector fields.

Gravity, buoyancy and dissipative forces can be modeled by adding external
forces and torques fi and τi. We assume the vehicle to be neutrally buoyant, which
means that the buoyancy force and the gravitational force are equal. Since the
origin of the body-fixed frame is CG, the only moment due to the restoring forces
is the righting moment −rCB

× RtρgVk, where rCB
is the vector from CG to the

center of buoyancy CB, ρ is the fluid density, g the acceleration of gravity, V the
volume of displaced fluid and k the unit vector pointing in the direction of gravity.

Additional hydrodynamic forces experienced by a rigid body submerged in a real
fluid are due to normal pressure stresses acting on the body surface resulting in
hydrodynamic pressure drag. The contribution of these forces is usually presented
as quadratic with respect to the velocities, see [9, 18]; more precisely we have Drag
= CDρA|vi|vi where ρ is the density of the fluid, CD is the drag coefficient, vi

represents the velocity and A is the projected surface area of the object. The drag
force and moment are then non differentiable functions. This presents difficulties
for theoretical analysis as well as numerical handling of the underlying optimal
control problem. Moreover, the drag coefficient is nonlinear with respect to vehicle
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velocity (see [18] p. 15) and changes significatively in the transition region between
the turbulent and laminar flow regimes. Experimental results on our test-bed AUV
suggest that the total drag force versus velocity can be approximated by a cubic
function with no quadratic or constant term. This approximation is what we assume
here. To summarize, the translational drag is given by Dν(ν) = diag(Di1

ν ν
3
i +

Di2
ν νi) and the rotational drag by DΩ(Ω) = diag(Di1

Ω Ω3
i +Di2

Ω Ωi) where Dij
ν , D

ij
Ω

are constant drag coefficients. We emphasize that this unconventional function for
drag force is driven directly by experimental results obtained from our particular
test-bed vehicle in a small range of typical operational velocities.

Definition 2.1. Under our assumptions, the equations of motion in the body-fixed
frame for a rigid body submerged in a real fluid are given by:

Mν̇ = Mν × Ω +Dν(ν)ν + ϕν

JΩ̇ = JΩ × Ω +Mν × ν +DΩ(Ω)Ω − rCB
×RtρgVk + τΩ

(14)

where M accounts for the mass and added mass, J accounts for the body moments
of inertia and the added moments of inertia. The matrices Dν(ν), DΩ(Ω) represent
the drag force and drag moment, respectively. The term −rCB

× RtρgVk is the
righting moment induced by the buoyancy force. Finally, ϕν = (ϕν1 , ϕν2 , ϕν3)

t and
τΩ = (τΩ1 , τΩ2 , τΩ3)

t account for the control. For a rigid body moving in an ideal
fluid (air), we neglect the drag effects: Dν(ν) = DΩ(Ω) = 0.

Remark 1. In equation (14) we assume that we have three forces acting at the
center of gravity along the body-fixed axes and that we have three pure torques
about these three axes. We will refer to these controls as the six DOF controls.
This is not realistic from a practical point of view since underwater vehicle controls
may represent the action of the vehicle’s thrusters or actuators. The forces from
these actuators generally do not act at the center of gravity and the torques are
obtained from the moments created by the forces. As a consequence, to set up
experiments with a real vehicle, we must compute the transformation between the
six DOF controls and the controls corresponding to the thrusters. We address such
a transformation for our actual test-bed vehicle in [4].

Together, equations (1), (2) and (14) form a first-order affine control system
on the tangent bundle T SE(3) which represents the second-order forced affine-
connection control system on SE(3)

∇γ ′γ ′ =

(
M−1

(
Dν(ν)ν + ϕν

)

J−1
(
DΩ(Ω)Ω − rCB

×RtρgVk + τΩ
)
)
. (15)

Introducing σ = (ϕν , τΩ), equation (15) takes the form:

∇γ ′γ ′ = Y (γ(t)) +

6∑

i=1

I
−1
i (γ(t))σi(t) (16)

with I
−1
i being column i of the matrix I−1 =

(
M−1 0

0 J−1

)
and Y (γ(t)) accounts for

the external forces (a restoring force rCB
×RtρgVk, a drag moment DΩ(Ω)Ω, and a

drag force Dν(ν)ν). In the absence of these external forces the equations of motion
in (15) represent a left-invariant affine-connection control system on the Lie group
SE(3),

∇γ ′γ ′ =

(
M−1ϕν

J−1τΩ

)
. (17)
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More generally, just as equation (15) on SE(3) is equivalent to equations (1), (2)
and (14) on T SE(3), a forced affine-connection control system on a manifold Q
is equivalent to an affine control system on TQ with a drift. This equivalence is
realized via the geodesic spray of an affine-connection and the vertical lift of tangent
vectors to Q.

Definition 2.2. Let v ∈ TqQ ⊂ TQ, then the vertical lift at v is a map vlftv :

TqQ → TvTQ. For w ∈ TqQ, we define vlftv(w) = d
dt

(v + tw)|t=0. In components,

vlftv(w) =

(
0
w

)
∈ TvTQ.

Definition 2.3. The geodesic spray of ∇ is the vector field S, on TQ, that generates
geodesic flow. Specifically, for v ∈ TqQ, S(v) = d

dt
γ ′

v(t)|t=0 where γv is the unique
∇-geodesic such that γv(0) = q and γv

′(0) = v.

From Equation (13), in the special case of our Levi-Civita connection, the geo-
desic spray is given by:

S(b, R, ν,Ω) =





ν
Ω

−M−1
(
Ω ×Mν

)

−J−1
(
Ω × JΩ + ν ×Mν

)



 .

For this presentation of S(b, R, ν,Ω), the components are expressed relative to the
standard left-invariant basis of vector fields on T SE(3) rather than coordinate vector

fields. Equations (1) and (2) can be used to recover expressions for ḃ and Ṙ.
Now, the affine control system on T SE(3) with its associated drift is as follows.

We denote by η = (b1, b2, b3, φ, θ, ψ)t the position and orientation of the vehicle
with respect to the earth-fixed reference frame. The coordinates φ, θ, ψ are the
Euler angles for the body frame. We introduce χ = (η, ν,Ω), and let χ0 = χ(0) and
χT = χ(T ) be the initial and final states for our submerged rigid body. Then our
equations of motion can be written as:

χ̇(t) = Y0(χ(t)) +

6∑

i=1

Yi(t)σi(t) (18)

where the drift Y0 is given by

Y0 =





Rν
ΘΩ

M−1[Mν × Ω +Dν(ν)ν]
J−1[JΩ × Ω +Mν × ν +DΩ(Ω)Ω − rCB

×RtρgVk]



 (19)

where Θ is the transformation matrix between the body-fixed angular velocity vector
(Ω1,Ω2,Ω3)

t and the Euler rate vector (φ̇, θ̇, ψ̇)t, see [9].
The input vector fields are given by Yi = (0, 0, I−1

i )t, or in other words Yi =

vlft(I−1
i ). In [2, p224] the authors show that trajectories for the affine-connection

control system on Q map bijectively to trajectories for the affine control system on
TQ whose initial points lie on the zero-section. The bijection maps the trajectory
γ : [0, T ] → Q to the trajectory Υ = γ ′ : [0, T ] → TQ.

In local coordinates, the equations of motion for a submerged rigid body are
derived as follows. The coordinates corresponding to translational and rotational
velocities in the body frame are ν = (ν1, ν2, ν3)

t and Ω = (Ω1,Ω2,Ω3)
t. Equations
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(1) and (2) can be written in local coordinates as η̇ =

(
R 0
0 Θ

)(
ν
Ω

)
where

R(η) =




cosψ cos θ R12 R13

sinψ cos θ R22 R23

− sin θ cos θ sinφ cos θ cosφ



 (20)

and

Θ(η) =




1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sin φ
cos θ

cos φ
cos θ



 (21)

where R12 = − sinψ cosφ + cosψ sin θ sinφ, R13 = sinψ sinφ + cosψ cosφ sin θ,
R22 = cosψ cosφ + sinφ sin θ sinψ and R23 = − cosψ sinφ + sinψ cosφ sin θ. No-
tice that the transformation depends on the convention used for the Euler angles.
Our choice reflects the fact that the rigid body goes through a singularity for an
inclination of ±π

2 .

To ease notation in the sequel we will usemi = m+Mνi

f and ji = Jbi
+JΩi

f , where
we denote the diagonal elements of the added mass matrix, the inertia matrix, and
the added inertia matrix by {Mν1

f ,Mν2

f ,Mν3

f }, {Jb1 , Jb2 , Jb3} and {JΩ1

f , JΩ2

f , JΩ3

f },
respectively. The restoring forces in local coordinates are:

− rCB
×RtρgVk = −ρgV




yB cos θ cosφ− zB cos θ sinφ
−zB sin θ − xB cos θ cosφ
xB cos θ sinφ+ yB sin θ



 (22)

where rCB
= (xB , yB, zB).

Lemma 2.4. The equations of motion for a submerged rigid body in a real fluid
with external forces expressed in coordinates are given by the following affine control
system:

ḃ1 = ν1 cosψ cos θ + ν2R
12 + ν3R

13 (23)

ḃ2 = ν1 sinψ cos θ + ν2R
22 + ν3R

23 (24)

ḃ3 = −ν1 sin θ + ν2 cos θ sinφ+ ν3 cos θ cosφ (25)

φ̇ = Ω1 + Ω2 sinφ tan θ + Ω3 cosφ tan θ (26)

θ̇ = Ω2 cosφ− Ω3 sinφ (27)

ψ̇ =
sinφ

cos θ
Ω2 +

cosφ

cos θ
Ω3 (28)

ν̇1 =
1

m1
[−m3ν3Ω2 +m2ν2Ω3 +Dν(ν1) + ϕν1 ] (29)

ν̇2 =
1

m2
[m3ν3Ω1 −m1ν1Ω3 +Dν(ν2) + ϕν2 ] (30)
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ν̇3 =
1

m3
[−m2ν2Ω1 +m1ν1Ω2 +Dν(ν3) + ϕν3 ] (31)

Ω̇1 =
1

j1
[(j2 − j3)Ω2Ω3 + (m2 −m3)ν2ν3 +DΩ(Ω1)

+ρgV(−yB cos θ cosφ+ zB cos θ sinφ) + τΩ1 ] (32)

Ω̇2 =
1

j2
[(j3 − j1)Ω1Ω3 + (m3 −m1)ν1ν3 +DΩ(Ω2)

+ρgV(zB sin θ + xB cos θ cosφ) + τΩ2 ] (33)

Ω̇3 =
1

j3
[(j1 − j2)Ω1Ω2 + (m1 −m3)ν1ν2 +DΩ(Ω3)

+ρgV(−xB cos θ sinφ− yB sin θ) + τΩ3 ] (34)

where Dν(νi) = Di1
ν ν

3
i +Di2

ν νi and DΩ(Ωi) = Di1
Ω Ω3

i +Di2
Ω Ωi. ϕν = (ϕν1 , ϕν2 , ϕν3)

and τΩ = (τΩ1 , τΩ2 , τΩ3) represent the control.

As mentioned previously, the control represents the actuation of thrusters. A
consequence is that the components of the control are bounded. Here we put a
bound on the six DOF control, assuming each component is independently bounded
from the others. See [4] for a discussion about translating these bounds to the actual
control for our test-bed vehicle.

Definition 2.5. An admissible control is a measurable bounded function (ϕν , τΩ) :
[0, T ] → F × T where:

F = {ϕν ∈ R
3|αmin

νi
≤ ϕνi

≤ αmax
νi

, αmin
νi

< 0 < αmax
νi

, i = 1, 2, 3}
T = {τΩ ∈ R3|αmin

Ωi
≤ τΩi

≤ αmax
Ωi

, αmin
Ωi

< 0 < αmax
Ωi

, i = 1, 2, 3} (35)

3. Singular extremals. In this section we study the singular arcs as defined by
the Maximum Principle for the time minimal problem.

3.1. Maximum principle. Assume that there exists an admissible time-optimal
control σ = (ϕν , τΩ) : [0, T ] → F × T , such that the corresponding trajectory
χ = (η, ν,Ω) is a solution of equations (23)-(34) and steers the body from χ0 to χT .
For the minimum time problem, the Maximum Principle, see [20], implies that there
exists an absolutely continuous vector λ = (λη, λν , λΩ) : [0, T ] → R12, λ(t) 6= 0 for
all t, such that the following conditions hold almost everywhere:

η̇ =
∂H

∂λη

, ν̇ =
∂H

∂λν

, Ω̇ =
∂H

∂λΩ
, λ̇η = −∂H

∂η
, λ̇ν = −∂H

∂ν
, λ̇Ω = −∂H

∂Ω
, (36)

where the Hamiltonian function H is given by:

H(χ, λ, σ) = λt
η(Rν,ΘΩ)t + λt

νM
−1[Mν × Ω +Dν(ν)ν + ϕν ]

+λt
ΩJ

−1[JΩ × Ω +Mν × ν +DΩ(Ω)Ω − rB ×RtρgVk + τΩ]. (37)

Furthermore, the maximum condition holds:

H(χ(t), λ(t), σ(t)) = max
σ∈F×T

H(χ(t), λ(t), σ) (38)

The maximum of the Hamiltonian is constant along the solutions of (36) and must
satisfy H(χ(t), λ(t), σ(t)) = λ0, λ0 ≥ 0. A triple (χ, λ, σ) which satisfies the Max-
imum Principle is called an extremal, and the vector function λ(·) is called the
adjoint vector.
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The maximum condition (38), along with the control domain F×T , is equivalent
almost everywhere to (M,J diagonal and positive), i = 1, 2, 3:

ϕνi
(t) = αmin

νi
if λνi

(t) < 0 and ϕνi
(t) = αmax

νi
if λνi

(t) > 0 (39)

τΩi
(t) = αmin

Ωi
if λΩi

(t) < 0 and τΩi
(t) = αmax

Ωi
if λΩi

(t) > 0 (40)

Clearly, the zeros of the functions λνi
and λΩi

) determine the structure of the
solutions to the Maximum Principle, and hence of the time-optimal control.

Definition 3.1. We denote the ith switching function by:

δi(t) = λt(t)Yi, (41)

for i = 1, . . . , 6.

Definition 3.2. We say that a component σi of the control is bang-bang on a given
interval [t1, t2] if it’s corresponding switching function δi is nonzero for almost all
t ∈ [t1, t2]. A bang-bang component of the control only takes values in {αmin

νj
, αmax

νj
}

if σi = ϕνj
, and in {αmin

Ωj
, αmax

Ωj
} if σi = ϕΩj

for almost every t ∈ [t1, t2], i = 1, · · · , 6.

Definition 3.3. If there is a nontrivial interval [t1, t2] such that a switching function
is identically zero, the corresponding component of the control is said to be singular
on [t1, t2]. A singular component control is said to be strict if the other controls are
bang.

Assume a given component of the control to be piecewise constant; for example,
when the component is bang-bang. Then, we say that ts ∈ [t1, t2] is a switching
time for this component if, for each interval of the form ]ts−ε, ts +ε[∩[t1, t2], ε > 0,
the component is not constant.

3.2. Switching functions.

Lemma 3.4. The first derivative of the switching function δi is an absolutely con-
tinuous function. Using Y0, . . . , Y6 and σ1, . . . , σ6 from equation (18), the first and
second derivatives of δi are given by:

δ̇i(t) = λt(t)[Y0, Yi](χ(t)) (42)

δ̈i(t) = λt(t)ad2
Y0
Yi(χ(t)) +

6∑

j=1

λt(t)[Yj , [Y0, Yi]](χ(t))σj(t) (43)

where [ , ] denotes the Lie bracket of vector fields.

Proof. It is a standard fact that the derivative of δi along an extremal is given

by δ̇i(t) = λt(t)[Y0, Yi](χ(t)) +
∑6

j=1 λ
t(t)[Yj , Yi](t)σj(t). The vector fields Yi are

vertical lifts; it follows that their Lie brackets are zero. Differentiating once more,
we obtain (43).

Remark 2. Instead of the Lie brackets, we can use the Poisson brackets. In-

deed, if we write the Hamiltonian function as H = H0 +
∑6

i=1Hiσi where H0 =

λtY0, Hi = λtYi, equations (42), (43) become: δ̇i(t) = {H0, Hi}(χ(t)) and δ̈i(t) =

{H0, {H0, Hi}}(χ(t)) +
∑6

j=1{Hj, {H0, Hi}}(χ(t))σj(t).

Another direct consequence of the form of the input vector fields Yi is the sym-
metric property described in Lemma 3.5. It will play a major role when computing
the second derivative of the switching functions. Notice that this lemma holds with
or without external forces.
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Lemma 3.5. For i, j = 1, · · · , 6 we have

[Yi, [Y0, Yj ]] = [Yj , [Y0, Yi]]. (44)

Proof. Since Yi and Yj are vertical lifts, [Yi, Yj ] = 0. The result then follows from
the Jacobi identity.

To derive conclusions about the singular arcs for our system, such as their order,
we need to explicitly describe the Lie brackets involved in (42) and (43). Let
S = ( R 0

0 Θ ) be the transformation matrix between the coordinates expressed in the
inertial frame and the coordinates expressed in the body-fixed frame, and let Si be
the i-th column. We begin by deriving the results for the simplified case of a rigid
body moving in an ideal fluid (air).

For our computations, we introduce U = {1, 2, 3} and V = {4, 5, 6}. The next
three propositions are a result of straightforward but heavy computations. We
decided to omit these computations since only the results are important for the rest
of the paper. The vectors ei for i ∈ U represent the standard basis for R3.

Proposition 1. For a rigid body moving in an ideal fluid, we have that:

[Y0, Yi]ideal =





( 1
mi

)Si
∑

j 6=i,k∈U\{i,j}

εi

Ωk

mj

ej

∑

j 6=i,k∈U\{i,j}

εi

νk

jj
(1 − mk

mi

)ej




, (45)

for i ∈ U , εi = sgn(k − i) and

[Y0, Yi]ideal =





( 1
ji−3

)Si∑

j 6=i,k∈U\{i−3,j−3}

εi

mkνk

mjji−3
ej

∑

j 6=i,k∈U\{i−3,j−3}

εi

Ωk

jj
(1 − jk

ji−3
)ej




, (46)

for i ∈ V, εi = sgn(k − i+ 3).

To study the Lie brackets [Yi, [Y0, Yj ]]ideal, let us introduce a new piece of no-
tation. Without loss of generality we may assume i ≤ j from Lemma 3.5. We
define:

[Yi, [Y0, Yj ]]ideal =






Uij i, j ∈ U
Wi,j−3 i ∈ U , j ∈ V .
Vi−3,j−3 i, j ∈ V

(47)

Then, we get the following Proposition.

Proposition 2. For a rigid body moving in an ideal fluid, we have

Uij = Vi−3,j−3 =
1

jk

(
1

mj

− 1

mi

)(
0
ek

)
(48)

Wi,j−3 =
1

mkjj−3

(
ek

0

)
, (49)

where k 6= i, j for Uij, k 6= i− 3, j − 3 for Vi−3,j−3, and k 6= i, j − 3 for Wi,j−3.
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We now extend the computations to incorporate motion in a real fluid. Remem-
ber here that we consider dissipative forces acting on the vehicle. However, notice
that the restoring forces do not play any role in the expression of the Lie brackets,
yet the drag forces have a significant impact.

Proposition 3. For a rigid body moving in a real fluid, we have that:

[Y0, Yi]real = [Y0, Yi]ideal +




06

−3Di1
ν ν2

i +Di2
ν

m2
i

ei

03



 (50)

for i ∈ U , and

[Y0, Yi]real = [Y0, Yi]ideal +




06

3D
(i−3)1
Ω Ω2

i +D
(i−3)2
Ω

j2
i−3

ei−3

03



 (51)

for i ∈ V. Moreover:

[Yi, [Y0, Yj ]]real = [Yi, [Y0, Yj ]]ideal +






(
−6Di1

ν νi

m3
i

)
Yi if i, j ∈ U

(
6D

(i−3)1
Ω Ωi−3

j3
i−3

)
Yi if i, j ∈ V .

0 if i ∈ U , j ∈ V
Remark 3. More explicitly, for the Lie brackets of order 2 the above proposition
says that:

[Yi, [Y0, Yj ]]real = 0, i = j − 3; i ∈ U , j ∈ V (52)

[Yi, [Y0, Yj ]]real = (
−6Di1

ν νi

m3
i

)Yi, i = j; i, j ∈ U (53)

[Yi, [Y0, Yj ]]real =

(
6D

(i−3)1
Ω Ωi−3

j3i−3

)
Yi, i = j; i, j ∈ V (54)

[Yi, [Y0, Yj ]]real =
mi −mj

mimj

Yk (55)

for i 6= j; i, j ∈ U ; k ∈ U\{i, j}

[Yi, [Y0, Yj ]]real =
ji−3 − jj−3

ji−3jj−3
Yk (56)

for i 6= j; i, j ∈ V ; k ∈ V\{i, j}

[Yi, [Y0, Yj ]]real =
1

mkjj−3
Yk (57)

for i ∈ U ; j ∈ V ; k ∈ U\{i, (j − 3)}

An important consequence of the previous computations that we will exploit in
this paper is stated in Proposition 4.

Proposition 4. For a rigid body moving in an ideal fluid, we have that:

[Yi, [Y0, Yi]]ideal(χ) = 0, i = 1, . . . , 6. (58)

In a real fluid, the previous Lie bracket is not zero but satisfies:

[Yi, [Y0, Yi]]real(χ) ∈ Span{Yi}, i = 1, . . . , 6. (59)
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Proof. This result is a direct consequence of our computations on Lie brackets.
Indeed, equation (58) comes from the fact that (48) implies that Uii and Vi−3,i−3

equal zero. The factors multiplying Yi in (59) are given by (53) and (54).

3.3. Order of the singular arcs. We now demonstrate that Proposition 4 can
be stated in terms of the order of singular extremals.

Definition 3.6. Along a strict σi-singular arc, let q be such that d2q

dt2q δi is the lowest
order derivative in which σi appears explicitly with a nonzero coefficient. We define
q as the order of the singular control σi.

This definition uses the well known result that a singular control σi first appears
explicitly in an even order derivative of δi, see [19].

Proposition 5. Let χ be an extremal that is strictly singular for the component σi

of the control. Then, for a submerged rigid body the order of the singular control is
at least 2.

Proof. Let χ be a strict σi-singular extremal. By definition, the function δi is identi-
cally zero along the extremal. The singular control σi is obtained from equation (43)
providing that the term λt[Yi, [Y0, Yi]](χ) is non zero. However, from Proposition 4,
this is zero for movement in an ideal fluid (air) and is a multiple of λtYi for motion
in a real fluid. But since along a σi-singular extremal we have δi = λtYi = 0, then
λt[Yi, [Y0, Yi]](χ) is zero in a real fluid as well. This means that we must compute at
least the fourth derivative of the switching function to obtain the singular control
as a feedback.

Remark 4. For a rigid body moving in an ideal fluid, the term λt[Yi, [Y0, Yi]](χ) is
identically zero everywhere. In this case, we say that the order is intrinsic. For a
real fluid, λt[Yi, [Y0, Yi]](χ) is zero only along the singular arc.

To determine the exact order of strict singular controls, we need to compute the
fourth derivative of the switching functions. The coefficient of the singular control

σi in δ
(4)
i is represented by the following Lie brackets: λt[Yi, [Y0, [Y0, [Y0, Yi]]]]. The

computations in 3-dimensions are very complicated due to the complexity of the
equations. Based on previous results in [5] on a simplified 2-dimensional model, we
state the following conjecture.

Conjecture 1. For a 3-dimensional rigid body moving in a real fluid, the singular
arcs are of the following orders:

1. mi = mj. The ϕνi
-singular arcs are of infinite order. The τΩi

-singular arcs
are of intrinsic order 2.

2. mi 6= mj. The ϕνi
-singular and τΩi

-singular arcs are of order 2.

Remark 5. The order of the singular arcs in the translational velocities is related
to the symmetry of the rigid body.

3.4. Chattering arcs. It has been established in [22] that there is a close relation-
ship between the existence of chattering arcs and singular extremals of order two.
Such arcs are very interesting from a theoretical point of view, however these arcs
are impossible to implement in practice. Let us consider a simplified situation to
carry out the computations such as in [5]. We will assume that the vehicle moves in
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the xz-plane and is submerged in an ideal fluid. The equations of motion, in local
coordinates, are given by (60)-(65).

ḃ1 = ν1 cos θ + ν3 sin θ (60)

ḃ3 = ν3 cos θ − ν1 sin θ (61)

θ̇ = Ω2 (62)

ν̇1 = −ν3Ω2 +
ϕν1

m
(63)

ν̇3 = ν1Ω2 +
ϕν3

m
(64)

Ω̇2 =
τΩ2

J
(65)

In the above equations, we assume Mν1

f = Mν3

f . Hence we write m = m1 = m3 and
J = j2.

Remark 6. Kelley’s strict necessary condition for the singular control τΩ2 to be

optimal holds. Indeed, it is an easy computation to show that λ
(4)
Ω = A4 + τΩ2B4

where B4 = −λν3ϕν3 + λν1ϕν1

mJ2
. Since along a strict τΩ2 -singular arc the controls

ϕν1 and ϕν3 are bang, B4 = −|λν3 | + |λν1 |
mJ2

is strictly negative: B4 < 0.

Analysis of the τΩ2 -singular arcs follows the procedure described in [22]. First,
we put the Hamiltonian system (36) into a semi-canonical form. We assume that
ϕν1 and ϕν3 are bang. Since a τΩ2 -singular arc is of intrinsic order two, the four first
coordinates of the new system (κ, ξ) are κ = (κ1, κ2, κ3, κ4), where κ1 = λΩ/J , κ2 =

λ̇Ω/J = (−λθ + λν1ν3 − λν3ν1)/J , κ3 = λ̈Ω/J = (−λν1ϕν1 + λν1ϕν3)/(mJ), κ4 =

λ
(3)
Ω /J = ((λb1 cos θ−λb3 sin θ+Ω2λν3)ϕν3−(λb1 sin θ+λb3 cos θ−λν1Ω2)ϕν1)/(mJ).

To completely define a new coordinate system we need to find ξ such that the
Jacobian D(κ, ξ)/D(χ, λ) is of full rank. We suggest






ξ1 = b1 , ξ5 = λb1 cos θ − λb3 sin θ
ξ2 = b3 , ξ6 = λb1 sin θ + λb3 cos θ
ξ3 = θ , ξ7 = λθ

ξ4 = ν1 , ξ8 = λν1

(66)

The corresponding D(κ, ξ)/D(χ, λ) is then of full rank and the canonical Hamilton-
ian system is






κ̇1 = κ2, κ̇2 = κ3, κ̇3 = κ4

κ̇4 = Ω2(2ξ5 + 2ξ6 + Ω2λν3 − Ω2ξ8)/(mJ) − (ξ8ϕν1 + λϕ3ϕν3)τΩ2/(mJ
2)

ξ̇1 = ξ4 cos ξ3 + ν3 sin ξ3, ξ̇2 = ν3 cos ξ3 − ξ4 sin ξ8, ξ̇3 = Ω2

ξ̇4 = −Ω2ν3 + ϕν1/m, ξ̇5 = −Ω2ξ6, ξ̇6 = Ω2ξ5
ξ̇7 = ξ4ξ6 − ν3ξ5, ξ̇8 = −ξ5 − λν3Ω2

(67)
where 





λν3 = (ξ8ϕν3 −mJκ3)/ϕν1

ν3 = (ξ7 + λν3ξ4 − Jκ2)/ξ8
Ω2 = (mJκ4 − ξ5ϕν3 + ξ6ϕν1)/(λν3ϕν3 + ξ8ϕν1)

(68)

Since we were able to reduce our system to a semi-canonical form, using Remark 6
it is clear that Kelley’s condition holds; it is now possible to apply the results from
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[22]. In this reference, the authors describe the behavior of all extremals in the
vicinity of the singular manifold S = {(χ, λ)|κi = 0, i = 1, · · · , 4}. In particular, we
can conclude that for each point (χ0, λ0) in S there exists a 2-dimensional integral
manifold of the Hamiltonian system such that the behavior of the solutions inside
this manifold is similar to that of the chattering arcs in the Fuller problem (we
also have the existence of untwisted chattering arcs). To be more specific, there is
a one-parameter family of solutions of system (67) which reach (χ0, λ0) in a finite
time. However, there are infinitely many switching times for the τΩ2 control and
the switching times follow a geometric progression. It is important to notice that
this result does not imply the optimality of such trajectories, nor does it imply
(assuming ϕν1 , ϕν3 are constants) that every junction between a τΩ2 -singular and
a τΩ2 bang-bang trajectory includes chattering in the control. In order for such a
junction to have chattering, the control must be discontinuous, [17]. This is realized
at the junction where the angular velocity vanishes (i.e. Ω2 = 0). In [7] the reader
can see an example of a chattering junction computed in the non-symmetric case.

3.5. Time optimal trajectories. In this subsection, we display an example of
a time optimal trajectory for a submerged rigid body in a real fluid containing
singular arcs.

The initial configuration of the body is set to be the origin, and we wish to
reach a final configuration ηf = (6, 4, 1, 0, 0, 0), with both configurations being at
rest. The experimental values of the hydrodynamic coefficients and the bounds
on the control that we assume for these simulations can be found in [4]. Figure
1 shows the time optimal strategy numerically computed using a direct method.
The time for this trajectory is ≈ 25.85s. The structure is mostly bang-bang, except
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Figure 1. Time Optimal thrust strategy ending at ηf = (6, 4, 1, 0, 0, 0).

for the τΩ3 control which contains singular arcs. These singular arcs depend on
our choice of initial and final configurations. In this case, orientation is the key to
optimality; first orient, then move. We orient the vehicle such that we can use the
maximum available translational thrust to realize the motion, and the vehicle needs
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to maintain this orientation over the entire trajectory. Singular arcs do not appear
in τΩ1 and τΩ2 because their full power is needed to offset the righting moments.
The translational controls ϕν1,ν2,ν3 are used to their full extent, as one would expect
for a time optimal translational displacement.

4. Kinematic motions. In terms of affine differential geometry, Proposition 4
has important consequences. Indeed, there is a relation between our result and
the existence of kinematic motions along decoupling vector fields. This is what we
establish in this section.

We consider a rigid body moving in an ideal fluid (air). Moreover, we make
the following additional assumptions. We assume CG coincides with CB . Since we
also assume the vehicle to be neutrally buoyant, there are no restoration forces or
moments acting on the vehicle. In other words, the system is void of external forces.

We remind the reader of the notation introduced in section 2; we use mi =
m+Mνi

f and ji = Ibi
+ JΩi

f . As we will see, our results depend on the symmetries
of the rigid body, hence we introduce some terminology.

Definition 4.1. We call our system kinetically unique if all the eigenvalues in the
kinetic energy metric G are distinct.

In particular, Definition 4.1 implies that for a kinetically unique system the added
mass (mi) and added mass moment of inertia (ji) coefficients are all distinct. Since
the added mass is a measure of the fluid that must be accelerated with the body,
unique mi’s imply that the view of the body along each body-frame axis is different.
Note that you can have 3 axes of symmetry with 3 unique added mass coefficients,
as is the case with an ellipsoidal body with three distinct axis lengths. Unique ji’s
imply a nonuniform mass distribution for the body. In practice, this is generally
the case.

Under our assumptions, the equations of motion have the form:

∇γ ′γ ′ =

6∑

i=1

σi(t)I
−1
i (γ(t)). (69)

In the sequel we denote by I−1 the set of input vector fields to our system: I−1 =
{I

−1
1 , . . . , I−1

6 }. We note here that under our assumptions, I−1 is diagonal, and thus
each I

−1
i , i = 1, ..., 6, is a single degree of freedom input to the system.

Definition 4.2. We refer to I
−1
i , i ∈ U as the translational control vector fields and

I
−1
j , j ∈ V as the rotational control vector fields.

4.1. Decoupling vector fields. In this paper we are interested in kinematic re-
ductions of rank one for the system in (69); namely decoupling vector fields. Let us
first introduce some definitions and terminology.

Suppose we have a general affine-connection control system given by

∇γ ′(t)γ
′(t) =

k∑

a=1

ua(t)Za(γ(t)), (70)

where u1(t), . . . , uk(t) are measurable controls and {Z1, . . . , Zk} is a set of locally
defined independent vector-fields on the configuration space M whose images lie in
a rank-k smooth distribution Z ⊂ TM .
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Definition 4.3 (see [2]). A decoupling vector field for an affine-connection control
system is a vector field V on M having the property that every reparametrized
integral curve for V is a trajectory for the affine-connection control system. More
precisely, let γ : [0, S] → M be a solution for γ ′(s) = V (γ(s)) and let s : [0, T ] →
[0, S] satisfy s(0) = s′(0) = s′(T ) = 0, s(T ) = S, s′(t) > 0 for t ∈ (0, T ), and
(γ ◦ s)′ : [0, T ] → TM is absolutely continuous. Then γ ◦ s : [0, T ] → M is a
trajectory for the affine-connection control system. Additionally, an integral curve
of V is called a kinematic motion for the affine-connection control system.

A necessary and sufficient condition for V to be a decoupling vector field for the
affine-connection control system (70) is that both V and ∇V V are sections of Z [2,
p. 426]. Notice that if Z = TM (i.e. (70) is fully-actuated) then every vector field
is a decoupling vector field, and if Z has rank k = 1 (i.e. (70) is single-input) then
V is a decoupling vector field if and only if both V and ∇V V are multiples of Z1.

In the under-actuated setting, decoupling vector fields are found by solving a
system of homogeneous quadratic polynomials in several variables. Given a vector

field V , we must have that V =
∑k

a=1 h
aZa since V ∈ Span {Z1, . . . , Zk}. Now,

since ∇V V ∈ Span {Z1, . . . , Zk} we want

∇V V = ∇∑
haZa

∑
hbZb ≡ 0 (mod Z). (71)

Starting with the middle of the above equation, we get that

∇∑
haZa

∑
hbZb =

∑
ha∇Za

∑
hbZb =

∑∑
ha∇Za

(hbZb)

=
∑∑

ha[Za(hb)Zb + hb∇Za
Zb]

≡
∑∑

hahb∇Za
Zb (mod Z).

(72)

Thus, we are concerned with calculating ∇Za
Zb for a, b ∈ {1, ..., k} to find the

coefficients h1, . . . , hk such that V is decoupling.
The equations of motion (69) for a submerged body in an ideal fluid are fully

actuated. As mentioned previously, in this case there are no quadratic polynomials
to solve and every left-invariant vector field is a decoupling vector field. However,
the situation is not as straightforward in the under-actuated scenario; practically
speaking, the case of actuator failure. In this situation, the body may be unable
to apply a force or torque in one or more of the six DOF, limiting the vehicle’s
controllability. This is an interesting case because it is likely that an underwater
vehicle loses actuator power for one reason or another but still needs to move. For
example, we would like the vehicle to be able to return home in a distressed situation.
Decoupling vector fields give possible trajectories for the return home which the
vehicle is able to realize in an under-actuated condition. In [3], the authors consider
an under-actuated situation that differs from the ones we are considering here (they
assume three body-fixed control forces that are applied at a point different from the
center of gravity). Here we assume that actuator failure results in the ability to
control less than six DOF.

In other words, we consider the under-actuated systems

∇γ ′(t)γ
′(t) =

k∑

i=1

σi(t)̃I
−1
i (γ(t)), (73)

with k < 6, {Ĩ
−1
1 , . . . , Ĩ−1

k } an independent subset of I
−1, and σ̃1, . . . , σ̃k the cor-

responding controls; see (16). We define I−1
k = {Ĩ

−1
1 , . . . , Ĩ−1

k }. We first give a
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classification of the decoupling vector fields with respect to the number of degrees
of freedom we can input to the system; a one-input system can be controlled in
only one degree of freedom. More details on this classification can be found in a
forthcoming article [8].

Let us first discuss the degenerate situation of one single DOF input vector field,
k = 1. This can also be viewed as a loss of five DOF situation. Clearly the only
possible motion for the body is a motion along or about a single principle axis
of inertia. Since in our case ∇Ii

−1Ii
−1 = 0, the decoupling vector fields of the

single input system ∇γ ′(t)γ
′(t) = Ii

−1(γ(t))σi(t) are multiples of the input vector

field Ii
−1. These motions are then either purely translational or purely rotational

corresponding to exactly one principal axis of inertia. This gives us the following
definition.

Definition 4.4. A pure vector field is a single input vector field I
−1
i . Its action

corresponds to a single principal axis of inertia of the vehicle; the integral curves
of the vector field are either purely translational or purely rotational. We call the
integral curves of such a vector field pure motions.

Note that generic single-input affine-connection control systems have no decoupling
vector fields since a generic vector field will not satisfy the condition that ∇ZZ ∈
Span{Z}. However, if a vector field Z does satisfy ∇ZZ ∈ Span{Z}, then via a
reparametrization we get ∇ZZ = 0. Geometrically, we refer to Z as auto-parallel ;
the integral curves of Z are geodesics for the corresponding connection ∇.

Suppose now that we use two input vector fields; k = 2. A calculation of the terms
G(∇

I
−1
i

I
−1
j , I−1

k ) with I
−1
i , I−1

j , I−1
k ∈ I−1 shows the following (see also Equation

(72)). Fix i, j ∈ {1, ..., 6} where i < j. Let V = hi I
−1
i + hj I

−1
j and ǫijk be the

standard permutation symbol. We have:

∇V V ≡






hihj

(
(−1)k 1

jk
(mi −mj)I

−1
k+3

)

if i, j ∈ U and k ∈ U\{i, j}
hihj

(
(−1)k+1 1

jk
(jj − ji)I

−1
k

)

if i, j ∈ V and k ∈ V\{i, j}
hihj

(
ǫijk( mi

mk
)I−1

k

)

if i ∈ U and j ∈ V and k ∈ U\{i, j − 3}
0 j = i+ 3

(mod {I
−1
i , I−1

j })

(74)

We can deduce that given a kinetically unique two-input system I−1
2 = {Ĩ

−1
1 , Ĩ−1

2 } in
which both inputs do not act upon the same principle axis of inertia, a vector field
V is decoupling if and only if V ∈ SpanI−1

2 and has all but one of its components

equal to zero. In particular, it has the form V = h1Ĩ
−1
1 or V = h2Ĩ

−1
2 . These

are pure vector fields. If both inputs act on the same principle axis of inertia
(i ∈ U , I−1

2 = {I
−1
i , I−1

3+i}), every vector field V ∈ SpanI−1
2 is decoupling since

∇V V ∈ SpanI−1
2 . If we loosen the kinetically unique assumption and let mi = mj

for i, j ∈ U or jk = jl k, l ∈ V , then every vector field V ∈ SpanI−1
2 is decoupling if

and only if i, j are both in U , both in V or i+ 3 = j.
After introducing some additional terminology, we will summarize the results

pertaining to all mutli-inputs systems in a theorem.
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Definition 4.5. A vector field V is called an axial vector field if it is of the form
V = hi I

−1
i + hi+3 I

−1
i+3 where i ∈ U .

We use the term axial motions since the corresponding kinematic motions are a
translation and rotation acting on the same principle axis of inertia. We call these
integral curves axial motions. They can be seen as an extension of the pure motions.

Definition 4.6. A vector field V is called a coordinate vector field if it is of the
form V = hi I

−1
i + hj I

−1
j + hk I

−1
k where i = 1 or 4, j = 2 or 5 and k = 3 or 6.

We choose the term coordinate vector field since all three principal axes of the
inertial coordinate frame are represented. A kinematic motion for such a vector is
referred to as a coordinate motion.

Theorem 4.7. Under our assumptions on a submerged rigid body in an ideal fluid
we have the following characterization for the decoupling vector fields in terms of
the number of degrees of freedom we can input to the system.

Case 1:: Single-input system, I−1
1 = {Ĩ

−1
1 }. The decoupling vector fields are

multiples of Ĩ
−1
1 ; these are pure vector fields.

Case 2:: Two-input system, I−1
2 = {Ĩ

−1
1 , Ĩ−1

2 } in which both inputs do not act
upon the same principle axis of inertia. Then, for a kinetically unique system,
a vector field V ∈ SpanI−1

2 is decoupling if and only if V has all but one of

its components equal to zero. In particular, it has the form V = h1 Ĩ
−1
1 or

V = h2 Ĩ
−1
2 ; these are pure vector fields. If the input vector fields act on the

same principal axis of inertia, then every vector field in SpanI−1
2 is decoupling.

Assuming mi = mj for i, j ∈ U or jk = jl k, l ∈ V, then every vector field

V ∈ SpanI−1
2 is decoupling if and only if i, j are both in U or both in V or

i+ 3 = j.
Case 3:: Three-input system.

1. Three Translational Inputs: I−1
3 = {I

−1
1 , I−1

2 , I−1
3 }. For a kinetically

unique system, a vector field V ∈ SpanI−1
3 is decoupling if and only if

V has all but one of its components equal to zero. In particular, it has the
form V = hi I

−1
i for i ∈ U ; these are the pure translational vector fields.

Assuming exactly two of the mi’s are equal, we get the axial vector fields
as additional decoupling vector fields: V = hi I

−1
i +hj I

−1
j , where mi = mj

and mi 6= mk. If mi = mj = mk, then every vector field V ∈ SpanI−1
3 is

decoupling since in this case ∇V V ∈ SpanI−1
3 .

2. Three Rotational Inputs: I−1
3 = {I

−1
4 , I−1

5 , I−1
6 }. In this situation ∇V V ∈

SpanI−1
3 for all V ∈ SpanI−1

3 , thus each vector field V ∈ SpanI−1
3 is

decoupling.
3. Mixed Translational and Rotational Inputs. Suppose we have a kinetically

unique three input system such that the inputs are not all translational
or all rotational but represents motions along three distinct axis. In the
case that two inputs are translational, every vector field V ∈ SpanI−1

3

is decoupling. In the case that two inputs are rotational, the decoupling
vector fields are the pure vector fields V ∈ SpanI−1

3 . Suppose we have
a kinetically unique three input system such that the inputs are not all
translational or all rotational but represents motions along only two dis-
tinct axis: I−1

3 = {Ii, Ii+3, Ij}, i ∈ U , j 6= i, i+ 1. The decoupling vector

fields are the axial vector fields, V = hi I
−1
i + hi+3 I

−1
i+3 for i ∈ U , and the
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pure vector fields, V = hj I
−1
j . The remarks about the symmetries in the

case of three translational input are valid in this case also.
Case 4:: Four input system.

1. Three Translation, One Rotation: I−1
4 = {I

−1
1 , I−1

2 , I−1
3 , I−1

k } where k ∈
V. For a kinetically unique system the decoupling vector fields are the
axial vector fields V = hk−3 I

−1
k−3 + hk I

−1
k or the coordinate vector fields

V = hi I
−1
i + hj I

−1
j + hk I

−1
k with i, j ∈ U , i, j 6= k − 3. If mk−3 = mi

for i ∈ U and i 6= k − 3, then V = hi I
−1
i + hk−3 I

−1
k−3 + hk I

−1
k is also a

decoupling vector field. If m1 = m2 = m3, then every vector field V ∈ I−1

is a decoupling vector field.
2. Three Rotations, One Translation: I−1

4 = {I
−1
i , I−1

4 , I−1
5 , I−1

6 } where i ∈
U . Then the decoupling vector fields are the axial vector fields V = hi I

−1
i +

hi+3 I
−1
i+3 or the coordinate vector fields V = h4 I

−1
4 + h5 I

−1
5 + h6 I

−1
6 .

3. Two Translations, Two Rotations. For a kinetically unique system, if two
principle axes are repeated: I−1

4 = {I
−1
i , I−1

j , I−1
i+3, I

−1
j+3} where i, j ∈ U ,

then the decoupling vector fields are either the pure vector fields V =
ha I−1

a for a ∈ {i, j, i + 3, j + 3} or the axial vector fields V = ha I−1
a +

ha+3 I
−1
a+3 where a = 1 or a = j. If mi = mj, then additional de-

coupling vector fields for the system are V = hi I
−1
i + hj I

−1
j + hk I

−1
k

where k = i + 3 or k = j + 3. And, if ji = jj, then additional de-

coupling vector fields for the system are of the form V = hi+3 I
−1
i+3 +

hj+3 I
−1
j+3. For a kinetically unique system, if one principle axis is re-

peated: I−1
4 = {I

−1
i , I−1

j , I−1
i+3, I

−1
k+3} where i, j, k ∈ U , then the decou-

pling vector fields are the axial vector fields V = hi I
−1
i + hi+3 I

−1
i+3 or

the coordinate vector fields V = hi I
−1
i + hj I

−1
j + hk+3 I

−1
k+3. If ji = jk

then hj or hi+3 must be zero, and additional decoupling vector fields are

V = hi I
−1
i + hi+3 I

−1
i+3 + hk+3 I

−1
k+3.

Case 5:: Five input system.
1. Three Translations, Two Rotations: I−1

5 = {I
−1
1 , I−1

2 , I−1
3 , I−1

i , I−1
j } where

i, j ∈ V, and let k ∈ V such that k 6= i or j. For a kinetically unique
system the decoupling vector fields are V = ha I−1

a +ha+3 I
−1
a+3 +hk−3 I

−1
k−3

where a ∈ U−(k−3) and the coordinate vector fields V = ha I−1
a +hb I

−1
b +

hk−3 I
−1
k−3 where a, b ∈ U−(k−3).Assuming that mi−3 = mj−3, additional

decoupling vector fields are given by V = ha I−1
a +hk I

−1
k +hi I

−1
i +hj I

−1
j

where a = i − 3 or a = j − 3 and k ∈ U − {i − 3, j − 3}. Assuming
that ji−3 = jj−3, additional decoupling vector fields are given by V =

h1 I
−1
1 + h2 I

−1
2 + h3 I

−1
3 + ha I−1

a where a = i or a = j.
2. Two Translations, Three Rotations: I−1

5 = {I
−1
i , I−1

j , I−1
4 , I−1

5 , I−1
6 } where

i, j ∈ U , and let k ∈ U such that k 6= i or j. For a kinetically unique
system the decoupling vector fields are V = ha I−1

a +ha+3 I
−1
a+3 +hk+3 I

−1
k+3

where a ∈ V − (k + 3), the coordinate vector fields V = ha I
−1
a + hb I

−1
b +

hk+3 I
−1
k+3 where a, b ∈ V − (k + 3) and the coordinate vector fields V =

hiI
−1
i + hjI

−1
j + haI−1

a where a ∈ V −{i+ 3, j+ 3}. Loosening the kinetic
uniqueness assumption does not provide any additional decoupling vector
fields in this case.

Case 6:: Six input system. Every vector field is decoupling.
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The major application of computing decoupling vector fields is the design of
trajectories for our system. This is addressed in the following section.

4.2. Motion planning. In this section, we present an approach to design trajec-
tories for our mechanical system based on the theory developed in the previous
sections. A similar technique applied to two specific systems can be found in [3].
Based on Theorem 4.7, we give partial answers to the motion planning problem
for the under-actuated scenarios considered in Section 4.1. By using kinematic
motions to design trajectories, we reduce the order of the dynamic system under
consideration.

Another method for constructing kinematic controls for under-actuated mechan-
ical systems defined using a geometric architecture can be found in [13, 15, 16]
and the references contained therein. The cited authors propose small-amplitude,
low-frequency, periodic time-varying controls with which to maneuver the chosen
mechanical system. This approach differs from the technique described here in two
main ways. First, the sinusoidal controls solve the motion planning problem for the
kinematic system, but may not necessarily be solutions to the considered dynamic
system. Computing the controls from the concatenations of integral curves of decou-
pling vector fields via inverse kinematics guarantees that these controls are in fact
solutions to the dynamic system. The other difference comes in the implementabil-
ity of the computed controls onto a test-bed AUV. Although implementable (see
[14]), the small-amplitude, low-frequency, periodic time-varying controls are only
applicable to vehicles operating at low Reynolds number (< 103). Also, in an effort
to reduce errors created by non-linearities inherent to the physical thrusters, it is
useful to reduce the number of switching times for these actuators; this directly
opposes the implementation of periodic (about zero) controls. These main differ-
ences motivate the development of kinematic controls which are also solutions to
the dynamic system and can be implemented over larger operational velocities.

The motion planning problem for the submerged rigid body is the following.
Given an initial configuration q0 ∈ Q and a final configuration q1 ∈ Q both being
at rest (i.e. qo, q1 have zero velocity), produce a trajectory that steers the system
from q0 to q1. For simplicity we assume in the sequel that the initial configuration
is always the origin.

A first obvious remark is that if we have control on all six DOF (i.e. we are
fully actuated), we can reach any configuration from our initial configuration by a
concatenation of pure motions. At the other extreme, with only one input vector
field the rigid body is restricted to movement in only one degree of freedom. An
interesting question is the minimal number of inputs which we need in order to
reach any configuration from the origin using exclusively kinematic motions. But
before we address that question, let us introduce some terminology.

Definition 4.8. A submerged rigid body in an ideal fluid is said to be kinematically
controllable if every point in the configuration space SE(3) is reachable from the
origin via a sequence of kinematic motions.

Notice that we can reparametrize each kinematic motion to satisfy boundary
constraints on the controls, and to begin and end at rest. Hence, in what follows,
we assume that each kinematic motion starts and ends at rest. The main objective of
this section is to determine how many input vector fields, each controlling one degree
of freedom, are needed to provide enough decoupling vector fields for kinematic
controllability. We begin with the following obvious lemma.
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Lemma 4.9. If a rigid body submerged in an ideal fluid is kinematically controllable,
it cannot be controlled by only translational motions or only rotational motions.

Corollary 1. A submerged rigid body in an ideal fluid is not kinematically con-
trollable if there is only a single input control vector field: I

−1
1 . The same is true

if there are only two input control vector fields I−1
2 = {I

−1
i , I−1

j } with i, j ∈ U or

i, j ∈ V, or three input vector fields I−1
3 = {Ii, Ij , Ik} with i, j, k all in U or all in

V.

Proof. If all inputs are translational, then ηf = (0, 0, 0, φ0, θ0, ψ0) is unreachable
since we cannot control rotation. Similarly if all inputs are rotational, the vehicle
cannot reach ηf = (a, b, c, 0, 0, 0) since we do not control translation.

To check the other cases, we will use the following result.

Theorem 4.10. Consider an underactuated rigid body submerged in an ideal fluid:

∇γ ′(t)γ
′(t) =

k∑

i=1

σi(t)̃I
−1
i (γ(t)), (75)

with k < 6, {Ĩ
−1
1 , . . . , Ĩ−1

k } an independent subset of I−1, and denote by X a set of
decoupling vector fields. Suppose that the involutive closure of X , denoted by LieX ,
span the tangent space T SE(3). Then, the system is kinematically controllable.

Proof. Following our construction, we have reduced the motion planning for the
underactuated system to computing integral curves of single-input driftless systems
defined on the configuration manifold SE(3). The theorem is then a consequence
of a well-known generalization of Chow’s theorem. This generalization ensures
the controllability of a driftless system using only the integral curves of the input
vector fields. See [2, Thm. 13.2] for instance. Global controllability follows from
the connectedness of SE(3).

In order to determine whether our system is kinematically controllable we will
need to determine the involutive closure of the set of decoupling vector fields. The
following shows the procedure used for computing Lie brackets to find the involutive
closure. Since we have Q = SE(3), the linear space of body-fixed velocities is the
Lie algebra se(3):

se(3) = {
[
0 0

ν Ω̂

]
|ν ∈ R

3, Ω ∈ R
3}. (76)

If ζ = (ν,Ω)t represents the body-fixed velocity, we let [ζ, η] denote the Lie bracket
operation on se(3). Given ζ ∈ se(3), we define the adjoint operator adζ : se(3) →
se(3) as adζ η = [ζ, η]. Because

[[
0 0

ν1 Ω̂1

]
,

[
0 0

ν2 Ω̂2

]]
=

[
0 0

Ω̂1ν2 − Ω̂2ν1 Ω̂1Ω̂2 − Ω̂2Ω̂1

]
, (77)

and since (ν,Ω) ∈ R3 × R3 ∼= se(3) we can write

[(ν1,Ω1), (ν2,Ω2)] = (Ω1 × ν2 − Ω2 × ν1,Ω1 × Ω2). (78)

Thus, we can define the adjoint operator ad(ν,Ω) : se(3) → se(3) as ad(ν1,Ω1)(ν2,Ω2) =
[(ν1,Ω1), (ν2,Ω2)] and as a linear transformation is represented by the matrix

ad(ν,Ω) =

[
Ω̂ ν̂

0 Ω̂

]
. (79)
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Thus, over this matrix Lie group, the operation of Lie bracket is the same as the ma-
trix commutator. This formulation allows the computation of Lie brackets without
differentiation.

Now we are ready to display the results.

Lemma 4.11. Given any two translational control vector fields {I
−1
i , I−1

j }, i, j ∈ U ,

their Lie bracket vanishes: [I−1
i , I−1

j ] = 0. Given two distinct rotational control

vector fields {I
−1
i , I−1

j }, i, j ∈ V, their Lie bracket produces the third rotational

control vector field I
−1
k , k ∈ V , k 6= i, j.

Proof. Computational.

Theorem 4.12. If the set of decoupling vector fields contain only one translational
control vector field and one rotational control vector field, the kinematic motions
of the rigid body are restricted to a plane in R3. Thus, a submerged rigid body
in an ideal fluid with only two control vector fields {I

−1
i , I−1

j } is not kinematically
controllable.

Proof. If i, j ∈ U or i, j ∈ V then we are done by Corollary 1. Thus, suppose the
two inputs are I

−1
i and I

−1
j where i ∈ U and j ∈ V . Now consider L = [I−1

i , I−1
j ].

For j = i + 3, L = 0 since both inputs act on the same axis. If j 6= i + 3, then
L = I

−1
k where k ∈ U and i 6= k 6= (j − 3). Thus, the movement for a two input

system is restricted to kinematic motion associated to Span{I
−1
i , I−1

j , I−1
k } where

i, k ∈ U , j ∈ V and i 6= k 6= (j − 3). This defines a plane in R3.

Theorem 4.13. Assume the set of decoupling vector fields is the span of three
translational control vector field and one rotational control vector field. Then, it is
not kinematically controllable.

Proof. Assume that the vector fields {I
−1
1 , I−1

2 , I−1
3 , I−1

k }, where k ∈ V form a set
of generators for the set of decoupling vector fields. From the computations in the
proof of Theorem 4.12 we know that for i ∈ U and j ∈ V

[I−1
i , I−1

j ] =

{
0 j = i+ 3

I
−1
l l ∈ U and i 6= l 6= j

. (80)

Hence, if we denote by W the involutive closure of the set of control vector fields
we have that W is a strict subset of the tangent space. Since in the analytic space
Chow’s condition is sufficient and necessary, see [1] for instance, we can conclude
that the system is not controllable and hence not kinematically controllable.

Remark 7. In the situation of Theorem 4.13, the vehicle is able to reach any desired
position in R3, but is unable to reach any orientation in SE(3). In particular, the
vehicle is unable to realize ηf = (0, 0, 0, φ0, θ0, ψ0) from the origin if φ0 or θ0 are
non-zero.

Corollary 2. A three-input rigid body submerged in an ideal fluid with two transla-
tional and one rotational input is not kinematically controllable. A four input rigid
body submerged in an ideal fluid with only one rotational input vector field is not
kinematically controllable.

Proof. This is a consequence of Theorem 4.13.
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Theorem 4.14. If the set of decoupling vector fields contains at least one transla-
tional control vector field and two distinct rotational control vector fields, then the
submerged rigid body in an ideal fluid is kinematically controllable.

Proof. Assume that the decoupling vector fields for our system contain the vector
fields I

−1
i , I−1

j , I−1
k where i ∈ U , j, k ∈ V and i < j < k. An easy computation

shows that {I
−1
i , I−1

j , I−1
k , [I−1

i , I−1
k ], [I−1

j , I−1
k ], [[I−1

i , I−1
k ], [I−1

j , I−1
k ]]} are six linearly

independent vectors which span R6. Thus, there exists a path between any two zero
velocity configurations through the concatenation of integral curves of decoupling
vector fields for which each segment is reparametrized to start and end at zero
velocity.

Corollary 3. If the set of decoupling vector fields contains a coordinate vector field
V = hiI

−1
i + hjI

−1
j + hkI

−1
k , where i ∈ U and j, k ∈ V, then the submerged rigid

body in an ideal fluid is kinematically controllable.

Corollary 4. A three input rigid body submerged in an ideal fluid with one trans-
lational and two rotational input is kinematically controllable. A four input rigid
body submerged in an ideal fluid with at least two rotational inputs vector fields is
kinematically controllable. A m input rigid body submerged in an ideal fluid with
m ∈ {5, 6} is kinematically controllable.

Proof. This is a consequence of Theorem 4.7 and Theorem 4.13.

We now wish to apply the results of this section to the motion planning of real
AUVs. The majority of AUVs are controlled using external thrusters, which do not
act directly at CG, and possibly movable wings, foils or rudders. Since actuation of
movable wings, foils and rudders implies an applied force or torque to the vehicle,
without loss of generality, we can assume that the vehicle is controlled strictly via
external thruster actuation. This assumption will also make the following examples
easier to visualize. We shall call a thruster oriented such that the output force
is parallel to the (body-frame) z-axis a vertical thruster, and a thruster oriented
such that the output force is perpendicular to the (body-frame) z-axis a horizontal
thruster. Clearly, a vertical thruster contributes to heave, roll and pitch controls,
while a horizontal thruster contributes to surge, sway and yaw controls.

Suppose we begin with a fully-actuated submersible which controls heave, roll
and pitch with one set thrusters we will call V. While surge, sway, and yaw are
controlled with another set of thrusters called H. In order to utilize the notion of
decoupling vector fields in the under-actuated situation, suppose we lose the ability
to control either H or V. From Theorem 4.13, losing V would limit the motion of the
vehicle to a plane. However, losing H would not affect the kinematic controllability
of the vehicle by the result of Theorem 4.16. Thus, in the design process of the
vehicle, we could save money by requiring that robustness or redundancy need only
be implemented onto a portion of the system; the V thrusters. Also, for energy
conservation, it may be better to use only one set of thrusters to save battery life.
This knowledge and ability to pre-plan can save time and money for the AUV
designer and end-user alike.

Now, we demonstrate two practical applications to summarize the results of this
section. Suppose that we want to start at the origin (η0 = (0, 0, 0, 0, 0, 0)) and end
at ηf = (4, 3, 2, 0, 0,−90◦). Positive b3 values are in the direction of gravity. In the
first scenario, suppose we have a vehicle designed as above. Also suppose that we
are only able to control the V thrusters. In particular, we are only able to directly
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control heave, roll and pitch, and the input vector fields are I−1
3 = {I

−1
3 , I−1

5 , I−1
6 }.

By Theorem 4.16, the vehicle is kinematically controllable, and by Theorem 4.7 we
know that the decoupling vector fields for this system are the pure vector fields,
V = hiI

−1
i for i ∈ {3, 5, 6}. This means that the trajectory can be fully decoupled

into a concatenation of pure motions. The basic idea to realize this displacement is
use the pitch and roll controls to point the bottom of the vehicle in the direction
of ηf and then use pure heave for the translational displacement. Upon reaching
(4, 3, 2, φ, θ, ψ) we can do pitch and roll movements to realize ηf . For this example,
the vehicle needs to apply a pure pitch to reach tan−1(3

2 )◦ = 56.3◦, pure roll to

reach − tan−1(2)◦ = −63.4◦, then translate
√

22 +
√

42 + 32 = 3 units using pure
heave. Now, the vehicle has position η = (4, 3, 2,−63.4◦, 56.3◦, 0). To reach ηf

we have two choices. First we could apply the opposite roll and pitch controls as
above to set roll and pitch angles to zero, then apply a 90◦ pure pitch followed
by a −90◦ pure roll followed by a −90◦ pure pitch. This concatenation results in
a −90◦ yaw, and the motion is realized. Or, we could simply apply a pure pitch
to reach (4, 3, 2,−63.4◦, 90◦, 0), then apply a pure roll to reach (4, 3, 2,−90◦, 90◦, 0)
and finally a −90◦ pure pitch to realize ηf . Since we have direct control on pitch and
roll for this example, it should be clear that any other rotational configuration is
also possible. The thrust control strategy for this motion is shown in Figure 2. Note

Figure 2. Decoupling vector field thrust strategy using Roll, Pitch
and Heave ending at ηf = (4, 3, 2, 0, 0,−90◦).

that here we do not compute the exact duration of the thrust since this will depend
on specific dynamics and power of the vehicle and the chosen reparametrization of
the motion. We remark that the assumptions of instantaneous actuator switching
and equal acceleration and deceleration phases for each motion are not practically
applicable to a test bed AUV. Work is ongoing to implement these strategies formed
from decoupling vector fields.

For the second scenario, suppose that we are only able to control the H thrusters
on the vehicle. Additionally, we assume that the vehicle has a separate system to
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control buoyancy which is still in operation. This assumption is practically valid,
and also creates a non-trivial example. In particular, we are able to directly control
surge, sway, heave, and yaw; the input vector fields are I−1

4 = {I
−1
1 , I−1

2 , I−1
3 , I−1

6 }.
By Theorem 4.14, we know that the vehicle is not kinematically controllable. We are
able to realize any position in R3, but the vehicle is not able to achieve any angular
displacements in roll or pitch. Note, the vehicle could definitely return home in a
distressed situation, but it is not performing any fancy maneuvers. By Theorem 4.7
we know that the decoupling vector fields for this system are the pure vector fields
Vi = hiI

−1
i for i ∈ {1, 2, 3, 6}, the axial vector field, Va = h3I

−1
3 + h6I

−1
6 and the

coordinate vector field Vb = h1I
−1
1 +h2I

−1
2 +h6I

−1
6 . This means that the trajectory

must follow the integral curves of Va, Vb and Vi, i ∈ {1, 2, 3, 6} for motion planning.
The basic idea to realize this motion is to realize the angular displacement while
traveling along the diagonal from (0, 0, 0, 0, 0, 0) to (4, 3, 0, 0, 0, 0), then apply a pure
heave to reach ηf . For this example, the vehicle first needs to follow the integral

curves of Vb = h1I
−1
1 +h2I

−1
2 +h6I

−1
6 where h1 = 4, h2 = 3 and h6 = −π

2 . Then, we
follow the integral curves of h3V3 with h3 = 2 to achieve the desired displacement.
The thrust control strategy for this motion is shown in Figure 3.

Figure 3. Decoupling vector field thrust strategy using Surge,
Sway, Yaw and Heave ending at ηf = (4, 3, 2, 0, 0,−90◦).

5. Time optimality and decoupling vector fields. Proposition 4 on singular
extremals is actually related to the results of Theorem 4.7 on decoupling vector
fields. We can see this based on an identity which relates the Lie Bracket to the
affine-connection associated with the control system. More precisely, let us consider
an affine connection control system defined on a configuration manifold M such as
in (70):

∇γ ′(t)γ
′(t) =

k∑

a=1

ua(t)Za(γ(t)). (81)
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We denote by S the geodesic spray of the connection ∇, and let X be any vector
field defined on TM . It is easy to verify that

[vlft(X), [S, vlft(X)]] = vlft(2∇XX). (82)

Applying (82) to the underactuated equations of motion of a submerged rigid body
in an ideal fluid:

∇γ ′γ ′(t) =

k∑

i=1

σi(t)Ĩi

−1
(γ(t)), (83)

we have that [vlft(I−1
i ), [S, vlft(I−1

i )]] = vlft(2∇
I
−1
i

I
−1
i ) which can be written using

our notations as:

[Yi, [Y0, Yi]] = vlft(2∇
I
−1
i

I
−1
i ). (84)

Clearly, now Proposition 4 simply states that in an ideal fluid vlft(2∇
I
−1
i

I
−1
i ) = 0

which is a sufficient condition for I
−1
i to be decoupling for system (69) as long as

I
−1
i ∈ I−1

k . Summarizing, Proposition 4 implies that in each of the underactuated
scenarios considered in Theorem 4.7, the pure motions resulting from the integral
curves of the input vector fields are decoupling vector fields. It is remarkable that
for a submerged rigid body in an ideal fluid, our knowledge of the structure of
singular extremals provides information on the nature of decoupling vector fields.

We can exploit nice relations like this for the system submerged in an ideal fluid,
as many authors have done. However, the question arises as to how to extend the
theory to include viscosity and potential forces. Can we find similar relations if we
consider applying the theory to a real testbed underwater vehicle which experiences
drag forces and probably has CG 6= CB? Let us first begin by addressing the
question of the dissipative forces in our model, namely the drag. In other words,
consider a real fluid with CG = CB. First, note that the pure motions are still
produced using a single DOF input. The main impact of the dissipative forces on
the motion of the submerged rigid body is that assuming bounded control inputs,
a maximum velocity in the prescribed direction of motion is attained. For instance,
in the case of a body-pure surge in the positive direction equation (63) is written as
ν̇1 = 1

m1
(Dν(ν1)+ϕν1), and assuming that we start at rest ν1(0) = 0, the solution is

given by ν1(t) =
ϕν1

−Dν(ν1) tanh(t
√

−Dν(ν1)
ϕν1

m). Since tanh(t
√

−Dν(ν1)
ϕν1

m) → 1 when

t → ∞, if we impose 0 ≤ ϕν1 ≤ αmax
ν1

, the vehicle can only realize a maximum

velocity of
αmax

ν1

Dν(ν1)m/s. The backward surge motion is symmetric, and the other

pure translations and rotations in the body fixed-frame are similar. Due to the
form of the system, we can show that the reparametrizations of the integral curves
of γ̇(t) = I

−1
i (t)σi(t) are still solutions to the forced affine-connection control system

∇γ ′γ ′(t) =

(
M−1

(
Dν(ν)ν

)

J−1
(
DΩ(Ω)Ω

)
)

+

k∑

i=1

σ̃i(t)̃I
−1
i (γ(t)) (85)

as long as I
−1
i ∈ I−1

k . This is explained in detail in [8] through the construction

of a new connection ∇̃, and under the assumption that the drag forces are qua-
dratic with respect to the velocity. Notice that with bounded controls, not every
reparametrization is a solution to the forced affine-connection control system. This
follows from the fact that a maximum velocity constraint imposes a lower bound
on the travel time for the rigid body along a given trajectory. However, since the
initial and final states of the trajectory are at rest, we can always reparametrize
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a trajectory to accommodate the bound constraints on the controls. Here we do
make the important assumption that the bounds on the controls are such that the
vehicle can move through the fluid.

Up to this point we have kept the assumption that CG = CB. However, if the
rigid body is an underwater vehicle, this is not a desirable assumption. Having
CB and CG coincident is a neutral equilibrium, and hence very sensitive to any
external forces. Practically, we impose CG 6= CB in order to create a righting arm,
and thus situating the vehicle in a stable equilibrium. In this situation, the vehicle
will restore pitch and roll angles from a listed configuration even if no control force
is applied. Thus, the effect of these restoring moments means that we may not be
able to realize a body-pure motion with a single degree of freedom input control
vector field. As an example, let us consider a body-pure surge while maintaining
a pitch angle of −45◦; a diagonal dive. Assuming CG = CB, we could first set the
orientation, and then use a single control input to realize the motion. However,
once we assume that CG 6= CB, we have to compensate for the induced righting
moment by applying pitch control during the entire surge to maintain the desired
orientation. In general, we need to apply control to the pitch and roll angular veloc-
ities to maintain the desired orientation and compensate for the righting moments
while realizing a body-pure motion. Thus, at least three input control vectors are
now needed for a generic body-pure motion; pitch, roll and the prescribed direction
of motion. In practice, four input control vector fields are usually controlled so
that one could compensate the righting moments and run a feedback control in yaw
to maintain the proper heading angle during the trajectory. However, there is no
restoring moment in yaw and thus theoretically does not need to be directly con-
trolled. If we additionally assume that the vehicle is not neutrally buoyant, we then
also have to apply constant heave control in order to maintain a prescribed depth.
With this additional assumption, we would need at least four input control vectors
to realize a body-pure motion. Notice that when considering bounded controls it
also implies a controllability restriction due to the righting moments acting on the
angular velocities. If the separation between CG and CB is large, the righting mo-
ments will be significant and the vehicle may not be able to realize all orientations
in pitch and roll.

We summarize our remarks in the next proposition. In this proposition, a de-
coupling vector field V is such that every reparametrization of its integral curves is
a solution of the given forced affine-connection control system. Notice that we do
not assume any bounds on the control for this proposition.

Proposition 6. Let ∇ be the affine connection (13) and consider the forced affine
connection control system

∇γ′γ′ =

(
M−1

(
Dν(ν)ν

)

J−1
(
DΩ(Ω)Ω − rB ×RtρgVk

)
)

+ Yiϕνi
+

3∑

j=1

Yj+3τΩj
,

where i ∈ U is fixed, and Yk = vlft(I−1
k ). Then, every multiple of I

−1
i is a decoupling

vector field for this system.
If we consider the forced affine connection control system

∇γ′γ′ =

(
M−1

(
Dν(ν)ν

)

J−1
(
DΩ(Ω)Ω − rB ×RtρgVk

)
)

+
3∑

j=1

Yj+3τΩj
,
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where Yj = vlft(I−1
j ). Then, every multiple of I

−1
j is a decoupling vector field for

this system.

Proof. The result can be seen as a consequence of our first observations on affine
connection control systems. Indeed, even when considering external forces the fol-
lowing relation holds:

[Yi, [Y0, Yi]](χ) = vlft(2∇
I
−1
1

I
−1
i ). (86)

Since the vlft map is injective, we can conclude from Proposition 4 that for a rigid
body moving in a real fluid, ∇

I
−1
1

I
−1
i ∈ {I

−1
i }. Proposition 6 then follows from the

following remark. Along pure motions the only external forces to consider are the
drag opposing the direction of motion, plus the restoring moments. Using feedback
controls, we can compensate the righting moments in pitch and roll. This allows
us to view the system as a single input affine-connection control system, for which
the external forces are included in the input vector field. We conclude the proof of
Proposition 6 using Proposition 4.

Remark 8. The motions corresponding to the vector fields Yi in the first part of
the proposition are pure translations while the ones corresponding to the second
part are the pure rotations.

Remark 9. The previous generalization of decoupling vector fields to a forced
affine-connection control system is straightforward since our system is initially fully
actuated. The idea was simply to extract the minimum number of necessary input
control vector fields to produce any desired motions. At this stage, a proper gener-
alization for decoupling vector fields when the forced system is underactuated is not
clear. It is our hope that the connection between Proposition 4 and the existence
of decoupling vector fields made in this paper will lead the way.
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Figure 4. Pure surge, pure sway then pure heave ending at ηf = (6, 4, 1, 0, 0, 0).

As a final remark, we finish the paper with a short discussion on the optimality
of pure motions. It happens that the pure motions are not time optimal. Indeed,
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using the maximum principle, it has been proven on a 2-dimensional model that even
though pure motions are extremals (with the controls set to zero being singular)
they are not time optimal, see [6]. Moreover, concatenation of pure motions through
configurations at rest eliminates their extremality property. Next, we compare a
pure motion trajectory to the optimal strategy for a submerged rigid body in a
real fluid. We consider the 3D system with external forces. Figure 4 shows a
concatenated pure motion strategy; displaying only graphs of variables which are
not identically zero. The initial and final configurations are taken as in Section 3.5.
Note that this trajectory is formed by a pure surge acceleration for tacc

surge ≈ 38.39

s, a deceleration for tdec
surge ≈ 3.74 s, a pure sway acceleration for tacc

sway ≈ 25.89

s, a deceleration for tdec
sway ≈ 3.74 s, a pure heave acceleration for tacc

heave ≈ 2.92 s

and a deceleration for tdec
heave ≈ 5.24 s. The non-symmetry of the acceleration and

deceleration phases is due to drag forces and physical actuator asymmetries (our
computations are based on a real underwater vehicle). The total transfer time for
this trajectory is tpure ≈ 79.92 s. This duration is more than triple the optimal time,
see Figure 1. This is actually not that surprising since the pure motion trajectory
uses only a fraction of the available thrust at any given time.
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