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Abstract

The equivalence problem for control systems under non-linear feedback is recast
as a problem involving the determination of the invariants of submanifolds in the
tangent bundle of state space under fiber preserving transformations. This leads
to a fiber geometry described by the invariants of submanifolds under the general
linear group, which is the classical subject of centro-affine geometry.

Similarly the equivalence problem for Finsler structures is shown to lead to a
fiber geometry over the base inducing a centro-affine geometry. The appearance of
a centro-affine fiber geometry in both control systems and Finsler structures will be
explained after establishing a canonical pseudo-group isomorphism between arbi-
trary control systems and certain generalized Finsler geometries, that is variational
problems with non-holonomic constraints. The generalized Finsler structure turns
out to be the geometry of the constrained variational problem arising from the
variational problem of time optimal control along control trajectories.

Further analysis will show that a classical Finsler structure will correspond to
regular control systems with m-states and (m − 1)-controls. The term regular will
be made precise in section 3, but some centro-affine geometry is needed for the
definition.

The original solution of the feedback equivalence problem for the regular system
in m-states and (m − 1)-controls, due to Robert Bryant and the first author, was
sufficiently complicated that a complete proof was never published, although an
outline exists in [Ga89]. This approach had the disadvantage that the meanings of
even the simplest invariants were not visible.
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Adapting moving frames to both the centro-affine fiber geometry and the geome-
try induced by a regular system in m-states and (m−1)-controls or a corresponding
Finsler structure leads to a unique extension of the fiber structure equations across
the base space and produces a surprisingly simple solution of both equivalence prob-
lems. An outline of the strategy in the control setting appeared in [GaWi93].

In the above setting the fiber geometries are that of centro-affine hypersurfaces,
and since there is currently no description of these geometries using forms and
moving frames, we include a section outlining those results.

1. Introduction

A control system is an underdetermined system of ordinary differential equations

dx

dt
= f(x, u) with x ∈ Rm and u ∈ Rn

where the x variables are called states and the u variables are called controls.1 Such
a system is equivalent to its associated Pfaffian system

K = {dx− fdt}.

We will study the problem of the determination of a complete set of invariants of
such a system under feedback equivalences, which are the diffeomorphisms of the
form

Φ(t, x, u) = (t, ϕ(x), ψ(x, u)),

preserving integral curves of the associated Pfaffian system.

A Finsler structure on an m-manifold M is a map

F : T (M) −→ [0,∞)

from the tangent bundle T (M) to the closed half line, differentiable off the zero
section and satisfying

F (tv) = |t|F (v) for t ∈ R, v ∈ T (M).

That is F is homogeneous of degree one in the fibers. In addition, the matrix of
second derivatives (

∂2

∂ui∂uj
[F 2(x, u)]

)
1We represent x, u, and f(x, u) as row vectors, so matrices and column vectors will multiply to

the right.



A PSEUDO-GROUP ISOMORPHISM 3

is positive definite, where the pair (x, u) represents the tangent vector vx =
∑
ui∂/∂xi.

Two Finsler structures F on a manifold M and F̃ on a manifold M̃ are simply
equivalent if there exists a bundle diffeomorphism Φ between their tangent bundles
such that F̃ ◦ Φ = F . In other words if the diagram

T (M) Φ−−−−→ T (M̃)

Id

y F̃

y
T (M) F−−−−→ [0,∞)

commutes and Φ covers a diffeomorphism ϕ : M → M̃ .
We will also study the problem of the determination of a complete set of invariants

of Finsler structures under simple equivalence.
We will see that both problems have a natural centro-affine geometry in the fibers,

a property that will be heavily utilized in our analysis.

2. The Centro-affine Geometry of the Fibers

A study via forms and moving frames of centro-affine hypersurface theory which
is essentially needed in the rest of the paper has not yet appeared, hence we include
an outline for the convenience of the reader, see [GaWi] for full details and references
to other approaches.

Thus we consider the centro-affine geometry of a hypersurface

Y : Mm−1 −→ Rm.

The hypersurface is called generic if it does not pass through the origin and Y is
normal at every point.

Now given an affine frame (e0, . . . , em−1) at the origin, we have the structure
equations

dei =
m−1∑
j=0

ωj
i ej and dωj

i =
m−1∑
k=0

ωk
i ∧ ω

j
k (0 ≤ i, j ≤ m− 1).

If we now adapt the family of frames so that e0 = Y and (e1, . . . , em−1) are tangent,
then it follows immediately that ω0

0 = 0 and differentiation of this normalization and
Cartan’s lemma guarantee the existence of a symmetric matrix of functions (hαβ)
satisfying

ω0
α =

m−1∑
β=1

hαβω
β
0 , (1 ≤ α ≤ m− 1).
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If we package this information in the symmetric quadratic differential form

IICA =
m−1∑

α,β=1

hαβω
α
0 � ωβ

0 ,

then we have the analog of the Blaschke metric in affine geometry.
The hypersurface is non-degenerate if (hαβ) is non-degenerate, and strongly con-

vex relative to the origin if and only if (hαβ) is negative definite. A hypersurface is
regular if it is strongly convex and generic.

We assume from now on that the hypersurface is regular. The admissible action
on this symmetric tensor (hαβ) includes conjugation and hence may be normalized
in the usual ways. Let us restrict to the negative definite case, since this involves
the simplest notation. Under this hypothesis we may normalize

hαβ = −δαβ .

Integrability conditions then imply that

∆β
α =

1
2
(ωα

β + ωβ
α)

=
m−1∑
γ=1

Cβ
αγω

γ
0 , (1 ≤ α, β ≤ m− 1)

where the symbol (Cβ
αγ) is symmetric in all three indices. The resulting cubic form

PCA =
m−1∑

α,β,γ=1

Cα
βγω

β
0 � ωα

0 � ωγ
0

is the analog of the Pick cubic form in affine geometry.
Now let us introduce a matrix notation to compactify the information in the

normalized structure equations. Thus we define

Ω = (ωα
β ), Φ =

1
2
(Ω− tΩ), ∆ =

1
2
(Ω + tΩ),

ω = (ωα
0 ), e = t(e1, . . . , em−1),

so that

d

(
e0
e

)
=

(
0 ω
−tω Φ + ∆

) (
e0
e

)
.
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Differentiation of this last set of equations gives

d

(
0 ω
−tω Φ + ∆

)
=

(
0 ω
−tω Φ + ∆

)
∧

(
0 ω
−tω Φ + ∆

)
,

and hence

dω = ω ∧ Φ + ω ∧∆ with tΦ = −Φ and ∆ is totally symmetric as defined above.

Now this last set of equations determines Φ uniquely. This is seen by using an
algebraic theorem similar to that used to prove the characterization of the Levi-
Civita connection in Riemannian geometry.

3. Differential Forms Characterizing
Control Systems and Feedback

We can view a control system as the submanifold of the tangent space of the state
space T (Rm) defined by

V : Rm ×Rn −→ T (Rm),

where

V (x, u) =
m∑

i=1

f i(x, u)
∂

∂xi
.

Now, if we fix a fiber over x ∈ Rm and restrict the mapping V to define

Vx : Rn → Tx(Rm) ' Rm,

where Vx(u) = f(x, u), then a feedback equivalence x̃ = ϕ(x) satisfies

dx̃

dt
=
dx

dt

∂x̃

∂x
= f

∂x̃

∂x
.

This means that the action induced on the fiber is ∂x̃/∂x, which is an arbitrary
member of the general linear group since ϕ was an arbitrary diffeomorphism. Thus
the fiber geometry is the study of invariants of submanifolds under the general linear
group, that is centro-affine geometry. We assume that the image of Vx omits the
exceptional orbit given by the origin. This means f 6= 0, and hence there are no
rest points. Another general centro-affine property is the condition that the position
vector V is normal to the image of V . In the control linear systems theory this is
equivalent to non-zero drift.
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We now describe 1-forms which determine both the control system and its feed-
back equivalences. The idea is to focus on the basic properties preserved by feedback,
which are time, state space, and integral curves of the control system.

In particular the Pfaffian system I given by the set of 1-forms on Rm×Rn which
are linear combinations of the dx and vanish on the integral curves of the control
system is one such geometric object. This system has a simple direct description

I = {dxG | G : Rm ×Rn −→ Rm and f G = 0}.

This is visible since the condition f G = 0 is precisely the condition needed in order
that dxG = (dx− fdt)G. Since we assume there are no rest points, that is f 6= 0,
this description also makes it clear that the system I has rank (m− 1).

A second such geometric object is the affine Pfaffian system of 1-forms which are
linear combinations of the dx having the property that they restrict to dt along any
integral curve of the control system. Since the difference of two elements of this
affine system vanishes along any integral curve of the control system, that difference
lies in I and we see that the affine system is modeled on I and hence can be written
in the form φ+ I.

An explicit representative for φ is given by

φ =
f · dx
f · f

where · is the usual Euclidean dot product. This structure can also be thought of
as a non-zero section of the quotient bundle T ∗(Rm)/I.

These two structures are enough to characterize when a diffeomorphism is a
feedback equivalence as is made precise in the following theorem contained in the
work of Gardner and Shadwick [3]. The theorem was initially proved by utilizing
the method of equivalence as described in [1], and this was lengthy. Utilizing the
above constructions the proof is now very short.

Theorem 1. A diffeomorphism Φ : R × Rm × Rn −→ R × Rm × Rn leaving t
invariant is a feedback equivalence of the control system I if and only if

(1) Φ∗I = I and (2) Φ∗φ ∈ φ+ I.

Proof. In particular the Pfaffian system J defined by augmenting I by φ is an m-
dimensional system made up of linear combinations of dx and hence equals the space
of state variables. We note since J = {dx}, it is completely integrable.

Similarly the Pfaffian system K = {dx− fdt}, satisfies

K = {φ− dt, I},
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since both systems involve only the differentials in time and state space variables
and have the same integral curves, and hence the same annihilators.

The two conditions in the theorem along with the characterization of {dx} and
{dx−fdt} just given, are equivalent to Φ preserving states and integral curves, and
this is equivalent to Φ being a feedback equivalence. �

4. Differential Forms Characterizing
Finsler Structures and Simple Equivalence

The indicatrix at x ∈M of a Finsler structure F on M is the locus

Sx = {vx ∈ Tx(M)|F (vx) = 1}.

Note that the indicatrix is strongly convex and centrally symmetric. The unit sphere
bundle, S(M), is the union over x ∈M of Sx. If Φ is a simple equivalence then

Φ : (Sx) −→ Sϕ(x)

is a diffeomorphism.
For each vx ∈ S(M), the natural projection from S(M) to M allows us to view

T ∗
x (M) as a natural m-dimensional subspace of T ∗

vx
(S(M)). Given a Finsler struc-

ture F we define an affine Pfaffian system φ+ I on S(M) by the properties that at
each vx ∈ Sx ⊂ Tx(M),

φ+ I = {ζ ∈ T ∗
x (M) |< vx, ζ >= 1},

and thus

I = {ω ∈ T ∗
x (M) |< vx, ω >= 0}.

The key property of this affine system is that it characterizes unit speed curves.
The proof of this property, which is formally stated in the following proposition, is
a straightforward application of the definitions.

Proposition. A curve σ̃(t) in S(M) projects to a regular curve σ(t) in M satisfying
σ̃(t) = σ′(t) if and only if

σ̃∗I = 0 and σ̃∗φ = dt.

The position vector of the indicatrices can be written in the form

m∑
k=1

ui

F
∂/∂xi,
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and hence a representative for φ is given by φ =
∑m

k=1 Fuidxi, since by Euler’s
theorem

<

m∑
k=1

ui

F
∂/∂xi, φ >=

1
F

m∑
k=1

uiFui = 1.

Note that the indicatrices and φ+ I determine each other and that φ+ I is semi-
basic, meaning that only the differentials in the base variables occur in any set of
generators. In addition by dimension the Pfaffian system

{I, φ} = {dx}

just as in the control geometry.

Theorem 2. A simple equivalence of the Finsler structure Φ : T (Rm) −→ T (Rm)
restricts to a diffeomorphism Φ : S(Rm) −→ S(Rm) satisfying

(1) Φ∗IΦ(v) = Iv and (2) Φ∗φΦ(v) ∈ φv + Iv for all v ∈ S(M).

Moreover, a diffeomorphism Φ : S(Rm) −→ S(Rm) satisfying (1) and (2) naturally
extends to a simple equivalence of the Finsler structure.

Proof. Given a simple equivalence Φ, it clearly restricts to a diffeomorphism of
corresponding sphere bundles. The above definitions imply

Φ∗IΦ(v) = Iv and Φ∗φΦ(v) ∈ φv + Iv for all v ∈ S(M).

Conversely given a diffeomorphism Φ of the sphere bundles satisfying (1) and
(2), we have that Φ must preserve the Pfaffian system {I, φ} = {dx}. Therefore Φ
covers a diffeomorphism ϕ : Rm → Rm. Using the proposition, a short calculation
shows that for every vx ∈ Sx ⊂ Tx(Rm),

Φ(vx) = ϕ∗(vx).

Thus Φ is simply the restriction of ϕ∗ to S(Rm). Since ϕ∗ preserves the unit spheres
of the Finsler structure, it is clearly a simple equivalence extending Φ. �

This theorem shows that a simple equivalence must be the derivative of a diffeo-
morphism on the base, verifying that the action is a centro-affine action. In this case
the fiber geometry is the centro-affine geometry of the indicatrix, which is always a
strongly convex hypersurface.
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5. The Pseudo-group Isomorphism

Theorem 3. There is a canonical pseudogroup isomorphism between arbitrary con-
trol systems and certain generalized Finsler structures which takes feedback equiva-
lences into simple equivalence.

Proof. By section 3 an arbitrary control system and its feedback equivalences are
determined by an affine system of 1-forms φ+ I. The mapping

Υ : Control Systems −→ Generalized Finsler structures

defined by

Υ(φ+ I) = δ

∫
I

φ

is well defined since the notation means that the variation is over integral curves of
I and by Theorem 1 and Theorem 2 carries feedback diffeomorphisms into simple
equivalences. �

The natural question of which generalized Finsler structures are in the image has
been determined [GaShWi89]. Given

δ

∫
I

φ,

then the key necessary condition is that the Pfaffian system J = {φ, I} be com-
pletely integrable. In order to recover the state space some topological conditions
are necessary. The precise statement is as follows.

Theorem 4. An affine Pfaffian system {φ + I} on a (m+n)- manifold M where
the Pfaffian system I is of rank m− 1 and φ is non-zero such that

(1) J = {φ, I} is completely integrable,
(2) The leaf space of J on M is a manifold and the natural projection of M on

the leaf space X is a submersion.
Then locally there is a control system with affine system the given φ+ I and with

X the state space.

Proof. See [BrGa]. �

Thus the generalized Finsler structures δ
∫

I
φ which have an associated affine

system satisfying this last theorem make precise the meaning of certain in Theorem
3.

A natural question is to characterize those control systems which correspond
to a Finsler structure. Since the fiber geometries must correspond and the fiber
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geometry of a Finsler geometry on an m-manifold is the hypersurface geometry of
the indicatrix, the fiber geometry of a corresponding control system must also give
a hypersurface geometry. This means that such a control system has m-states and
(m− 1)-controls.

We will say that a Finsler structure or a control system with m-states and
(m− 1)-controls is regular if the fiber geometry over each point is a regular hyper-
surface.

We assume from now on that our Finsler structures or control systems with m-
states and (m− 1)-controls are regular.

6. Evolution of the Fiber Geometry across the State
Space and the Solution of the Equivalence Problems

We assume that we have either a regular Finsler structure on Rm or a regular
control systems with m-states and (m− 1)-controls, and begin by choosing a frame
(e0, e1, . . . , em−1) on Rm defined for each point (x, u) in the fiber of T (Rm) over x.
This determines a dual coframe (ω0, ω1, . . . , ωm−1) on Rm for each point (x, u) by

dx = ω0e0 +
m−1∑
α=1

ωαeα.

As the reader will see shortly, the first leg will have special meaning, which
motivates the curious range of indices.

Now given an integral curve for a regular control system γ : R −→ Rm ×Rm−1

then

fdt = γ∗dx = γ∗ω0e0 +
m−1∑
i=0

γ∗ωαeα,

hence choosing e0 = f results in the conditions

γ∗ω0 = dt, γ∗ω1 = 0, . . . , γ∗ωm−1 = 0.

Next given a lifted curve σ(t) = (x(t), u(t)) with u(t) = x′(t) which lies in the
indicatrix in each fiber, then

x′(t)dt = σ∗dx = σ∗ω0e0 +
m−1∑
i=1

σ∗ωiei,

hence choosing e0 = x′(t), which is the unit vector in the direction of the position
vector of the indicatrices, results in the conditions

σ∗ω0 = dt, σ∗ω1 = 0, . . . , σ∗ωm−1 = 0.
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Thus given vx ∈ S(M), it will have the form vx = σ∗
∂
∂t , and hence

< σ∗
∂

∂t
, ω0 >=<

∂

∂t
, σ∗ω0 >=<

∂

∂t
, dt >= 1.

In both cases e0 has been chosen to be the position vector of the hypersurfaces in
each fiber. Next let us change notation to reflect this choice by introducing 1-forms
φ and η1, . . . , ηm−1 defined by the equation

dx = φe0 +
m−1∑
α=1

ηαeα.

Then setting I = {η1, . . . , ηm−1} we see that φ+ I gives the affine system char-
acterizing either of the two geometries, hence any family of coframings so defined
simultaneously encodes centro-affine geometry and either the control or the Finsler
geometry.

Next we extend the choice of m-frames to the principal SO(m − 1,R) bundle
over the image of V in T (Rm) where the group SO(m − 1,R) is the stabilizer of
the Blaschke metric normalized as in section 2. Thus we have frames

(e0(x, u), e1(x, u, S), . . . , em−1(x, u, S))

with x ∈ Rm, u ∈ Rm−1, S ∈ SO(m− 1,R). As above these have dual 1-forms

(φ(x, u), η1(x, u, S), . . . , ηm−1(x, u, S))

defined by dx = φe0 +
∑
ηαeα.

Utilizing the results of section 2, we now further adapt the framing and coframing
so that on each fiber we have complementary forms (µ1, . . . , µm−1) satisfying

dfiber

(
e0
e

)
=

(
0 µ
−tµ Φ + ∆

) (
e0
e

)
,

and such that the exterior derivatives restricted to the fibers satisfy

dfiber(φ, η) = (φ, η) ∧
(

0 µ
−tµ Φ + ∆

)
.

Since only the fiber geometry is specified the matrix(
0 µ
−tµ Φ + ∆

)
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is only determined mod base, and as a consequence the full exterior derivative has
the form

d(φ, η) = (φ, η) ∧
(

0 µ
−tµ Φ + ∆

)
+ terms quadratic in the base.

We note that the terms quadratic in the base are precisely the terms quadratic
in φ, η. Analytically this means that every extension has the form

dφ = −η ∧ tµ+ φ ∧ ηa+ η ∧Atη

where a is a vector and A is a matrix. If however, we change such an extended
coframe by letting

tµ̄ = tµ+ aφ−Atη,

then we have
dφ = −η ∧ tµ̄.

This equation does not define µ̄ uniquely, since by Cartan’s lemma there is an
arbitrariness of the form

tµ̃ = tµ̄+ Ctη where tC = C.

Next we rewrite the analogous equation for dη, but replacing µ by µ̄ to get

dη = φ ∧ µ̄+ η ∧ (Φ + ∆) + φ ∧ ηB + η ∧ T tη,

where B is a matrix and T is a 3-tensor. We note that the last two terms include
the correction for replacing µ by µ̄ not only in the first term , but also in ∆ which
was linear in the µ.

The standard algebraic lemma used in the fundamental theorem of Riemannian
geometry shows that we can write the η ∧ T tη term as η ∧ τ , where τ is a skew-
symmetric matrix of 1-forms in the η’s. Finally we split the matrix B into its
symmetric and skew-symmetric parts

B = B1︸︷︷︸
skew

+ B2︸︷︷︸
symmetric

With this preparation we can now modify µ̄ and Φ by

µ̃ = µ̄+ η B2 and Φ̃ = Φ−B1φ+ τ

to get
dη = φ ∧ µ̃+ η ∧ (Φ̃ + ∆).
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Theorem 5:. The structure equations

dφ = −η ∧ tµ̃

dη = φ ∧ µ̃+ η ∧ (Φ̃ + ∆)
tΦ̃ = −Φ̃, t∆ = ∆

uniquely determine all the forms µ̃, ∆ and Φ̃.

Proof. The arbitrariness in µ̃ was used up in the last normalization, thus making it
unique. ∆ is a cubic form which is unique once the µ̃ are unique. Φ̃ is then unique
by the same argument that proves the uniqueness of the Levi-Civita connection in
Riemannian geometry. �

These 1-forms φ, η and µ̃ now define an e-structure and hence a solution of the
equivalence problem see [Ga89]. If we differentiate these structure equations and
drop all the tildes we obtain the full set of structure equations

dφ = −η ∧ tµ

dη = φ ∧ µ+ η ∧ (Φ + ∆)

dµ = −Φ ∧ tµ+ ηP tµ+ φQtη + ηRtη,

where P is a tensor, Q is a matrix and R is a tensor, Φ is skew-symmetric and ∆
is a cubic form. Differentiating once more gives the Bianchi identities which show
that P,Q,R have the symmetries of the Finsler geometry associated to the general
variational problem

δ

∫
φ = 0.

There are no constraints since the equivalence calculation makes φ into the Cartan
or Hilbert form and by a Hamilton’s principle see [Ga89] and [GaShWi89], the
constrained problem

δ

∫
η=0

φ = 0,

is equivalent to the unconstrained problem

δ

∫
φ = 0.

Theorem 5 gives a solution to the equivalence problem for Finsler structures.
From the structure equations, we clearly see two important connections for the
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structure. One is the torsion free connection2 from Chern’s 1948 paper [Ch48](
0 µ
−tµ Φ + ∆

)
and the other is Cartan’s metric compatible connection [Ca33, Ca34](

0 µ
−tµ Φ

)
with torsion

(
0
∆

)
.

Of course if the Blaschke metric is not negative definite, but still non-degenerate,
the analysis is similar with the usual pluses and minuses taken into account.

7. An open question

In section two we developed the centro-affine geometry of hypersurfaces and found
two tensors that characterize surfaces up to a centro-affine motion: the centro-affine
metric IICA and the centro-affine Pick form PCA. In section four we showed that
the natural notion of equivalence of Finsler structures induces a centro-affine action
on the fibers of the sphere bundle. To make sense of this we view each indicatrix
as a convex hypersurface of a tangent space. We continue by adapting centro-affine
coframes to each indicatrix and show that there is a unique choice of coframes that
extends the centro-affine structure equations in each fiber to hold over the entire
manifold. In this way we construct Chern’s connection for Finsler structures. Under
this correspondence, the Minkowski potential Habc found in Chern’s connection
exactly corresponds to the centro-affine Pick form PCA, which we denoted by Cα

βγ .
The above correspondence shows that the Minkowski potential is really an in-

variant of the centro-affine structure of the indicatrix. This brings up a rather open
ended question. What centro-affine properties of the indicatrix can we determine
from the Pick form and what do these properties mean for the Finsler structure?
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