FINSLER GEOMETRY IN LOW DIMENSIONAL CONTROL
THEORY

GEORGE R. WILKENS

ABSTRACT. Following an introduction to control theory, we show how
Finsler geometries occur in certain classes of control systems.

1. INTRODUCTION

In this paper we will study the problem of feedback equivalence of control
systems. We will identify the major geometric structures and we will see in
two examples that the local properties of the control systems are identical to
those of a Finsler metric. We will exhibit a simple geometric condition for
checking when a control problem does in fact come from a Finsler metric.
In that case, we will see that the natural time optimal control problem has
solutions with closed loop controls, and that these solutions are exactly the
geodesics of the Finsler metric. We also mention briefly the role of centro-
affine geometry in feedback control and how it relates to the fact that the
vanishing of the torsion of a Finsler metric implies that it is Riemannian. A
detailed discussion of the centro-affine geometry of hypersurfaces is given in
[4], and an application of it to control theory can be found in [5].

2. CONTROL THEORY

2.1. Control systems. Consider the example of the kinematic car moving
on the zy-plane, shown in figure 1. We specify the position, or state, of the
car with the four variables (x,y, 8, ). The pair (z,y) gives the coordinates
of the center of the rear axle on the zy-plane. The variable 6 is the angle
the car makes relative to the horizontal, and the variable ¢ is the angle the
front wheels make relative to the car.

We will assume that the wheels do not slip as the car moves on the plane.
We model these conditions by requiring for each axle that the sideways
velocity of its midpoint be zero. These conditions are thus

(da:, dy) . (— sin 6, cos 9) =0
(d(z + Lcos®),d(y + Lsin®)) - (—sin(f + ¢),cos(0 + ¢)) =0
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FI1GURE 1. Kinematic Car

which simplify to
—sinfdx + cosfdy =0
Lcospdf — singp[cos@dﬂ: + sin@dy] =0.

These equations show that the velocity vector for the car can be written in
the following form

T cos 6 0
vyl _ .1 sin 510
(2.1) 6| =" | Lt tang T
o 0 1

We see that u' represents the speed of the point (z,y) and u? represents the
speed at which the front wheels turn.

The variables u! and u? play a special role in equation (2.1). If we substi-
tute for each u’ a smooth function u* = u*(t), then equation (2.1) becomes a
determined system of ordinary differential equations. This system will have
a unique integral curve for each initial condition. We see that the functions
(u'(t),u?(t)) determine state space trajectories for the car. As such, we view
the variables (u!,u?) as controls for the motion of the kinematic car. This
example motivates the following local definition of a control system.

Definition 2.1. Let X be an open subset of R™ and let U be an open subset
of R™, m < n. A control system on X x U is an underdetermined system
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of ordinary differential equations,

d
(2.2) d—f:f(:n,u), reX,uel,

where f: X x U — R" is a smooth function. X is called the state space of
the control system and U is called the control space. The variables z!, ..., z"
are called the states and the variables u!, ..., u™ are called the controls.

Notice that substituting a smooth U-valued function u = wu(t,z) into
equation (2.2) makes it a determined system. Specifying an initial state xg
for an initial time tg will then determine a unique state space trajectory
for the control system. Usually one only considers control functions of two
types. They are the open loop controls, u = u(t), and the closed loop controls,
u = u(z). In practice, an open loop system usually indicates the presence of
a human operator, while a closed loop system indicates an automatic process
where the particular control function is predetermined off-line. Observe that
with closed loop controls equation (2.2) will be autonomous.

Definition 2.1 gives a local presentation of a control system defined on a
manifold. Although we will not be using the global definition of a control
system, the interested reader will find one given in [2], as well as a theo-
rem showing that control systems are realized as the pullback of a certain
universal system.

We will be interested in two important questions from control theory. One
is the question of optimal control of a system, the other is the question of
feedback equivalence of a control system.

2.2. Optimal control. Let xzg,z; € X. We will say that x1 is reachable
from xg if there is a control u(t), tg < t < t1, and a curve x(t) defined on
to <t <ty satisfying equation (2.2) and the boundary conditions z(tg) = xo,
x(t1) = x1. The control u(t) is said to join z to x1. Suppose we are given
a cost functional defined on solutions curves to (2.2) by

(2.3) Flw,u) = /t "R, u(t)) dt.

0

An example of a cost functional for the kinematic car is

1% 1\2 22
Flx,u) = —/ (u")” + (u?)" dt.
2 /i
We will be concerned with the example where F(x,u) = 1, which means
that F(z,u) gives the time required to traverse the curve.

If z1 is reachable from x(, then we may try to solve the following prob-
lem. Among all controls joining xy to z1, find those that optimize the cost
functional (2.3). This is the optimal control problem. There is a clear sim-
ilarity between this problem and the classical calculus of variations with
constraints. It is fairly easy to show that every calculus of variations prob-
lem can be cast as an optimal control problem [8, page 225].
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2.3. Feedback equivalence. There are several notions of equivalence for
control systems. We will be working with what is currently call static state
feedback. In earlier years this was called “state feedback” or simply “feed-
back”. In recent years the term “feedback” sometimes refers to the more
general notion of “dynamic feedback”. We will use “feedback” to mean
“static state feedback” rather than “dynamic feedback”.

Definition 2.2. A feedback transformation is a locally defined diffeomor-
phism (z,a) = ®(z,u) such that

z = ¢(x)
U= T;Z)(fpvu)’

where ¢(x) is a state space diffeomorphism.

(2.4)

We note that a feedback transformation is simply a diffeomorphism of
X x U that preserves the fibering of X x U — X. The set of feedback
transformations forms a pseudo-group, and we use this pseudo-group to
define feedback equivalence of control systems.

Definition 2.3. Let
dz -
(2:5) == f@u)
be a control system on X x U. The system (2.2) is feedba_ck equivalent to
(2.5) if there is a feedback transformation ® : X x U — X x U such that

every integral curve (z(t),u(t)) of (2.2) maps to an integral curve of (2.5).

Feedback equivalence can also be characterized in terms of Pfaffian sys-
tems. To get to these systems, we will introduce some more structures.
Consider the following pull-back bundle:

PTX —2 . TX

(2.6) ﬁl lﬂ

XxU 22— X
where p : X x U — X is projection onto X. Definition 2.1 of a control

system adds two important maps to this commutative diagram. The first is
themap V: X xU —-TX

- 0
_ k
and the second map is a section of 7
(2.8) eo(z,u) = ka(a:,u)ak.
k=1
In equation (2.8) we use the notation 0y, ...,J, to denote the unique local

framing of p*T"X that maps to the coordinate frame a/0xt,...,0/0z", i.e.
p(0;) = 0/0x". As a consequence we see that V = poeg.
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One thing to notice is that for each z, V(x, ) maps U — T,X. We
will always assume that this map has maximal rank m for each z. This
is equivalent to the condition that the rank of the n x m matrix 0f/0u
equals m, and implies that the image of V(x,-) is a regular m-dimensional
submanifold of T, X. In terms of control theory, this condition simply means
that all of the control are essential.

From the control system we can define the following Pfaffian system on
X x U. For each (x,u), let

(2.9) Hguy =p{n € T;X | f(z,u)]n = 0}.
Whenever f(z,u) # 0, the dimension of ], ,y equals n — 1. To guarantee

constant rank, we will henceforth assume that for all (x,u), f(z,u) # 0. We
can also define an affine translate of I,

(2.10) (@) =P H{e € X | fz,u)]p =1}
The importance of the affine system comes from the following proposition.

Proposition 2.4. Let v(t) = (z(t),u(t)) be a smooth curve in X xU. Then
v(t) is an integral curve of the control system (2.2) if and only if for every
¢ € Jlyw) we have y(t)]o = 1.

Proof. Since f(vy(t)) # 0, we can choose a basis {¢,n!,...,n" '} of T;(t)X
such that v = f(+(t)) is the unique solution to the linear nonhomogeneous
equations

vjp =1
vt =0, 1<i<n-—1.

By construction, the affine space J|, ;) consists of all 1-forms of the form
©=p'otarp'n'+---+a,_1p*n" L. Therefore 4(t)|p =1 forall ¢ € Iy
if and only if

Y(O)]p*d =py(t) ¢ =i(t) ] =1
() p* ' = pAt) 0’ = @(t)|n' =0, 1<i<n-—1,

and these equations hold if and only if z(t) = f(y(¢)) O

Corollary 2.5. The integral curves of (2.2) are also integral curves of I.
Moreover, every integral curve of I which does not annihilate J can be re-
parametrized to be an integral curve of (2.2).

Proof. The first part is clear. Let ¢ be any section of J, and observe that
J =@+ 1. If y(t) is an integral curve of I that does not annihilate .J, then
we may reparametrize v so that 4|¢ = 1. Then 4|¢ =1 for all ¢ € J, and
the proposition applies. O

This corollary shows that the integral curves of the control system are
completely determined by its corresponding affine system, J. This is part
of what we need to prove the following corollary.
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Corollary 2.6. Let J be the affine system on X x U corresponding to the
control system (2.2) and let J be the affine system on X x U corresponding
to the control system (2.5). Then a diffeomorphism ® : X x U — X x U is
a feedback equivalence if and only if ®*J = J.

Proof. From the above remark we see that pulling J back to .J is equivalent
to mapping integral curves of (2.2) to integral curves of (2.5). The only
thing left to show is that £ = ¢(x,u) is independent of u. This follows
immediately by observing that the span of .J is p*(T*X) and the span of .J
is p*(T* X). O

This corollary shows how to express feedback equivalence as a G-struc-
ture equivalence. Let ¢ be any section of J and let {n!,....,n" !} ben —1
independent sections of I. Using similar bared forms for sections of J and
1, we see that a diffeomorphism ® is a feedback equivalence if and only if

n—1

*¢=p+an' +-+an_1n

(211) * =0 o, 1 o n—1
¢ 7 = bin +---+b;,_n""", o=1,...,n—1

It is also worth noting that relative to a set of J-adapted 1-forms

{o,nt, ...t}

there is a dual frame field {eq, €1, ..., e,—1} consisting of sections of p*T'X —
X x U. This frame field satisfies the equation

(2.12) dp=poegp+poein +---+poe,_1n""

and eq is the canonical section in equation (2.8).

We can now show that to every control system we can associate a nat-
ural optimal control problem. The optimal control problem is the kind
of variational problem studied in Griffiths’s book [7]. Moreover, feedback
equivalence of the control system is identical to the simple equivalence of
the variational problem (as defined in [1]).

In Griffiths’s book, a variational problem is determined by a Pfaffian
system I and a 1-form ¢ mod I. The problem is then to find the extremals
of the functional [ ¢, where the integral is taken over integral curves of I.
One of the fundamental structures in this problem is the affine space ¢ + I.

In the control setting, the affine space J can always be written as ¢ + I,
where ¢ is well defined mod I. The integral curves of I correspond to the
integral curves of the control system (2.2). So if we consider the problem of
finding the extremals of the functional [ ¢ over integral curves of the control
system, this optimal control problem has the exact form of the variational
problems studied by Griffiths.

This optimal control problem is quite natural. By proposition 2.4, if ()
is an integral curve then v*¢p = dt, so the integral

t1
/(,D:/ dt:tl—to
Y to
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simply gives the total time taken to traverse the trajectory. Thus this is the
time optimal control problem mentioned in section 2.2.

Finally, as discussed in [1], the simple equivalence problem for a vari-
ational problem consists of looking for diffeomorphisms that preserve the
Pfaffian system I and preserve the 1-form ¢ mod I. This is clearly equiva-
lent to preserving the affine system ¢ + I. Applying this condition to the
time optimal variational problem, we see that the simple equivalence of the
variational problem is identical to the feedback equivalence of the control
system.

3. EXAMPLES

3.1. Two states and one control. We will consider the lowest dimen-
sional example, where X C R? and U C R. A detailed study of the feedback
equivalence of this system using Cartan’s method of equivalence can be found
in [6]. Studying this example gave us the first indication that a certain class
of control systems has a feedback invariant Finsler metric associated to it in
a natural way.

We will not go through the detailed calculations of the feedback equiv-
alence problem for this system, but we will outline the broad steps (see
[6] for full details). An adapted coframe for the control system consists of
three independent 1-forms, {¢q, 79, to }, such that the span of {¢g, 70} equals
the span of {dz',dz?}, f(z,u)|po =1 and f(z,u)]ny = 0. From equations
(2.11) we see that the group of the G-structure is the set of all 3 x 3 matrices
of the form

1 a 0
0 b 0 b'Cg 750
C1 C2 C3

and the canonical form on the G-structure of adapted coframes is

© 1 a 0 ©o
(3.1) n]=(0 b 0 Mo
2 1 C2 C3 Ho

As we proceed with the calculation, we will give the meaning of invariants
in terms of the submanifold of T'X determined by the image of the function
V(z,u) defined in equation (2.7). Note in particular that if we fix 2 and
let u vary, then the image of V is a curve in the two dimensional vector
space T, X which is parametrized by f(x,u). The invariants we compute
will describe properties of this family of curves.

From equation (3.1) we see that the exterior equations

dp=ApAp modn
dn=BypAp modn
hold. The invariant B will vanish exactly when f(x,u) A 0f/Ou(z,u) = 0,

which means that the position vector f(x,u) is tangent to the curve. If B
vanishes identically, then a short calculation shows that we can transform
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f(x,u) to u(é) by a feedback transformation. This case does not lead to a
Finsler metric.

Assuming that B # 0, a calculation shows that we may restrict to the
B =1 submanifold. Since d(gp — An) =0 mod n we see that we may also
restrict to the A = 0 submanifold. These restrictions lead to the equation

dp=CpAn+DpuAnn.

The invariant D vanishes exactly when 0f/0uAd?f /Ou? = 0, in other words
at inflection points of the curve. If D vanishes identically, then the image of
f(x,u) is an affine line in each tangent space, and a short calculation shows
that we can transform it to ((1]) + ((1))u We do not get a Finsler metric in
this case, either.

Assuming that D # 0, a calculation shows that it is acted on by a square,
so we may restrict to D = e = £1. The sign of D is an invariant indicating
the convexity of the curve relative to the origin. The curve is convex for
e = 1 and concave for e = —1. Seeing that we can write dp = e(u+eCp)An
shows that we can restrict to C = 0. This simplifies the equation for dy to
dp=cuAn.

After the restrictions A = 0, B = 1 the equation for dn has the form

dn=—-puNp+HoAn+InAp.

Seeing that we can write dn = —(u+ Hn) A ¢ + I A n shows that we may
restrict to H = 0. The five normalizations — A=0,B=1,C=0,D =¢
and H = 0 — determine the five parameters of the structure group and thus
pick a unique feedback invariant coframe of X x U. The structure equations
for this coframe are

dp=cpuhn
(3.2) dn=—pANe+Inip
du=—-KopAn+JnAp,

where the form of the equation for du comes from d?p = 0. A consequence
of d?n = 0 is that the invariant .J is the derivative of I in the ¢ direction.

It was these structure equations that first alerted us to the possibility that
there may be an intrinsic Finsler metric associated to the control system. We
observed that these equations were identical, up to a plus or minus sign on
the invariants, to structure equations (I) Cartan obtained in his generalized
metric spaces paper [3, page 120]. The questions we needed to answer were
where is the metric and when is it actually Finsler.

It turns out that the metric is located on p*T'X defined in equation (2.6).
Let {eg, €1} be the sections of p*T'X dual to {y,n}. For each (z,u) € X x U,
these vectors form an orthonormal basis for the (possibly pseudo-) metric
(0)%2 + e(n)? on T,X. From this construction we see that p o eg(z,u) =
V(x,u), which simply traces out the curve f(x,u) in each tangent space
T,X, describes a U-parametrized family of unit vectors in each tangent
space (see figure 2).
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-~

e:)(x,u) = f(x,u)

e,(X,u)

FIGURE 2. Orthonormal Frame

From the geometry of figure 2 we see that the curve traced out by f(x,u)
would have to be the indicatrix of the Finsler metric. This tells us how to
determine when the metric is Finsler. For each x € X, the curve traced
by f(z,u) in T, X must be a strongly convex simple close curve which is
centrally symmetric about the origin. In other words, f(z,u) must be a
parametrization of the indicatrix in 71, X.

Returning to the structure equations, we see that they define two connec-
tions; the metric compatible connection with torsion

6 o) =G ) () ()

and the torsion free connection

w0 )

As usual, the vanishing of the torsion I in equation (3.3) shows that the
metric (p)2 + €(n)? drops to a (possibly pseudo-) Riemannian metric on
X. An interesting way to get this result comes from considering connection
(3.4) and the dual equations
(3.5) deg el p
deg = —eegpu+er I

The interesting feature of equations (3.5) is that they are also the centro-
affine Frenet equations for a curve in R2. Centro-affine geometry is the
study of the GL(n,R) invariants of submanifolds of R”. When studying
the GL(2,R) invariants of curves in R?, we derive Frenet equations that
look exactly like equations (3.5). In the Frenet equations e is the position
vector of the curve and e; is tangent. The form p gives a GL(2,R) invariant
arclength, ds, on the curve. The value of € determines the convexity of the
curve relative to the origin and the invariant I is called the centro-affine
curvature of the curve. The vanishing of the centro-affine curvature exactly
characterizes the nondegenerate quadrics centered at the origin. Since a
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Finsler metric is Riemannian exactly when its indicatrix is a nondegenerate
quadric centered at the origin, it is clear why the vanishing of I characterizes
Riemannian metrics. A more detailed discussion of centro-affine curves in
R? and its application to the feedback equivalence problem can be found in
[9].

Return now to the time optimal control problem, [ ¢. As we saw earlier,
feedback equivalence of the control system is identical to simple equivalence
of the variational problem. Thus, the invariant 1-form ¢ must be the Cartan
form for this problem. We may therefore replace the constrained variational
problem with the free variational problem. The equation for dp (3.2) gives
the Euler-Lagrange system for the variational problem

(3.6) {n, n}.
We can use this system to get a result in control theory.

Theorem 3.1. Given a control system (2.2) with structure equations (3.2)
then for any initial point xy and any initial direction f(xo,ug) there exists
a closed loop control uw = u(x), with u(xg) = wg, whose integral curve is an
extremal for the time optimal variational problem.

Proof. Since the Euler-Lagrange system (3.6) is completely integrable, we
know there are functions T'(z,u) # 0, g(z,u) such that p = T dg mod 7.
Recalling that {¢,n} = {dz!, dz?}, we see that 0 # uApAn =T dg/0udu/
© A p which implies that dg/0u # 0. Therefore we can solve the equation
g(z,u) = g(zo,up) for u = u(z), u(xg) = ug. Substituting u(z) into the
control system (2.2) gives an equation with a unique integral curve (t) =
(z(t),u(xz(t))) satisfying 2(0) = zo. Since 7 is an integral curve v*n = 0. We
also have that v*dg = 0 since g(z,u(z)) is constant, which implies v*p = 0.
Hence ~ is an integral curve of the Euler-Lagrange system and is therefore
an extremal. (]

Corollary 3.2. If the control system (2.2) represents a Finsler metric, then
the time optimal extremals of theorem 3.1 are geodesics of the Finsler metric.

Proof. Since n = 0 and p = 0 the curve is a geodesic for the metric connec-
tion (3.3). O

3.2. Three states and two controls. The example of three states and two
controls is similar to that of two states and one control (see [10] for detailed
calculations). We have X C R? and U C R% The geometric condition
identifying which control systems come from Finsler metrics is that for each
x the surface traced out by f(x,) : U — T, X be strongly convex and
centrally symmetric. An J-adapted coframe consists of five independent
1-forms, {wo,ng,n8, ug, n3}, satisfying the conditions that {¢g,nd,n3} span
{dzt,dz? dz®}, fleo =1, f]nt = 0 and f]n¢ = 0. The canonical form on
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the G-structure of J-adapted coframes is

¥ I ai a2 0 O ©0
77; 0 bi bé 0 0 ”é
Sl I S R N
" S T S S B
H €2 V1 Uy Wy Wy Ho
or in a more abbreviated form
¥ I a 0 ©o
(3.7) n]l=10 B 0 Mo
M c V. W/ \po

From this equation we can see that
dpo=@Ampu modn
dn=pANMp modn

where m is a vector and M is a 2 x 2 matrix of functions. The matrix M
is nonsingular exactly when the position vector f(z,u) is transverse to its
tangent plane in 7, X. We will assume this is the case. Then we can set M
equal to the 2 x 2 identity matrix. Having done this we see that d(p—m-n) =
0 mod 7, which means we can set m = 0. In terms of the dual frames
{eo, €1, €2}, these normalizations mean that deg = ey p! +e3 p? mod 1, which
means that e, ey are tangent to the surface.
The equation for dy is now

(3.8) dp=~"uNHn+pANkn+nAKn,

where H = (hqp) is a symmetric matrix, k is a row vector and K is a
skew-symmetric matrix. The symmetric form

2
Z ha,@ Naﬂﬁ
a,f=1
is an invariant form corresponding to the centro-affine second fundamental
form. It is called a second fundamental form because

2
deq = e Z hap i’ mod e1, ez, 0,7.
p=1

H will be negative definite when the surface in 7, X is convex about the
origin. Since this is required in order to be a Finsler metric, we will now
assume that H is negative definite. We may diagonalize the form by choosing
e1, eo orthonormal. This gives H = —I. An easy calculation shows we can
set k=0 and K = 0, leaving dp = —'u A n.

We can write the equation dn as

dn=pApu+PAn+AAD,

where ® is a skew-symmetric matrix of 1-forms and A is a symmetric matrix
of 1-forms. With a careful choice of y and ® we will have that Ag =
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23:1 5y 17, where Pg. is symmetric in all three indices. Giving A this
form determines the coframe. The symmetric 3-form ) Py, pu B is called
the centro-affine Pick form. The vanishing of this form exactly characterizes
the nondegenerate quadric surfaces.

As in the earlier case we now have the metric compatible connection with

-

Also as before, the vanishing of the Pick form identifies the Riemannian
metrics.

The theorems for three states and two controls corresponding to 3.1 and
3.2 hold and the proofs are essentially the same. In fact, these examples
generalize to the general case of n states and n — 1 controls.

3.3. An open problem. This section discusses a problem relating to ap-
plying Cartan’s method of equivalence to a problem in geometric control
theory. We remarked earlier that the connection (3.4) exactly gives the
centro-affine Frenet equations (3.5) to the invariant moving frame ep,e;.
We view the control system f(z,u) as determining a u-parametrized curve
in each two dimensional tangent plane T,.. The restriction of the 1-form u to
a curve gives a centro-affine invariant arc-length. Relative to this invariant
parameter, the frame eg, e; represents the position vector and the velocity
vector of the curve.

While it is interesting to note that this fiber geometry appears after we
solve the feedback equivalence problem for scalar control systems in the
plane, it is even more interesting to see how we can reverse the process
and use the centro-affine Frenet equations to solve the feedback equivalence
problem. The companion paper to this one, also in this volume and by
Gardner and Wilkens, shows how to reverse the process for the general case
of n-states and (n — 1)-controls. The procedure allows one to very quickly
solve the feedback equivalence problem for these control systems using the
easily derived structure equations of centro-affine hypersurfaces. We are
thus able to bypass the usual equivalence calculation, and we have geometric
interpretations of the invariants in terms of centro-affine geometry.

With the successful application of centro-affine hypersurface theory to
control theory, we sought a similar application of centro-affine curve theory.
The general centro-affine Frenet equations for a curve in R” were worked out
in [4]. For example, a curve in R® will have a Frenet frame eq, e1, €2, €3, 4
with structure equations

deg = e
de; = e1K1 b+ ea
(3.9) deg = €1 ko b+ €22k L+ es p
deg = e1 K3+ ea3Ko 4 e3 3Kk b+ eq it

d64:60,&4‘61/44,&4‘624/{3,&+€36/€2/L+644/{1,u,
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where 1 = ds is the centro-affine arc-length, eq is the position vector, and
K1, Ko, K3, k4 are the centro-affine curvatures of the curve.

Suppose now that we have a control system (2.2) with n =5 and m = 1.
Then we may view f(x,u) as defining a curve in each five dimensional tan-
gent space T,,. We proceed exactly as we did in the case of hypersurfaces,
and adapt a centro-affine Frenet frame to each of these curves. This gives a
feedback invariant set of frames eg(z,u), ..., eq(x,u) with eg(x,u) = f(x,u).
This frame will satisfy equations (3.9) except that the equalities will be re-
placed by congruences modulo the dz’s. The equations only define x4 mod-
ulo the dz'’s as well. Dual to the frame is the set of 1-forms ¢, n', n%,n3,n*
defined by the equation

(3.10) dr =eyp+eint +ean® +esn® +eqn’.

This equation shows that the integral curves of the control system are exactly
the curves y(t) = (z(t),u(t)) for which v*n* = 0, for 1 < i < 4, and y*¢ = dt.
Therefore, up to parametrization, the integral curves of the control system
are the integral curves of the Pfaffian system I = {n!,...,n*}.

Continuing our attempt to mimic the case of hypersurfaces, we examine
the structure equations for the dual 1-forms. Equations (3.9) imply the
following partial equations

dp = 7]4/\u
dp' = Apt+rin' Ap+ ke Ap+ ksnP Ap+ kst Ap
(3.11) dn? = A+ 26107 A+ 3R P A+ drgnt A p
dn® = WA+ 36103 A+ 6kt A p
dn* = A p+ 4kt A p.

The congruences in equation (3.11) are taken modulo quadratic terms in
e,ntn? Pt

Since the Pfaffian system [ is a feedback invariant of the control system,
the derived flag of I will also be an invariant. Equations (3.11) immediately
show that the first derived system is 1) = {n?, n3,n*}. Our equations show
that n? can not be in the second derived system, but they do not show
enough information about the derivatives of 1? and n*. All we can say for
sure is that the derivatives have the form

dn* = ApAn'  (mod 7% 0, n?)
dnft=BeAn'  (mod n® 0’ nt).

Here is the odd situation. If the function B does not equal 0, then n* can
not be in 1@, This means that our special invariant coframe is not adapted
to the derived flag. Unfortunately, there are examples of control systems
with B # 0, so this can happen. Moreover, if we apply Cartan’s equivalence
method the problem, we end up with a coframe adapted to the derived
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flag. The unfortunate conclusion is that what worked so well for the case of
hypersurfaces fails in the case of curves.

Here at last is the question. Why are these two cases so different? For
hypersurfaces we have two approaches to solving the equivalence problem
and they give the same result. For curves, the two approaches give different
results. Why did this happen and is there a good way to reconcile the two
approaches?
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