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Abstract. In the simplified model of geodesy where the earth is conceived as a rotational
ellipsoid, if the eccentricity of the ellipsoid is to be determined from gravity measure-
ments, an equation of the form y = x — zh(x) is to be solved for x, where y and z are
small parameters whose values can be measured and / is a known function. We obtain the
expansion of x in powers of y and z by means of the general Lagrange-Burmann
formula.

1. The problem. Using the standard notations of physical geodesy,
a = major axis of the earth ellipsoid,
GM = product of the earth’s mass and the gravitational constant,
J, = a constant in the expansion of the normal gravity
field in spherical harmonics, and

w = angular velocity of the earth,

the equation satisfied by the eccentricity e of the ellipsoid may be stated as follows [1, 4]:
(1
Here 24, is a known function of e,

2q, = (l + 3/9'2)arctane' — 3/¢,

where

e’ =e/V1 — e?
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is the “second eccentricity.” The constants a, GM, J,, « are either known or can be
obtained accurately from gravity measurements. Equation (1) thus serves to obtain
accurate values of e from gravity measurements. Our concern is with solving the equation
and with exhibiting the dependence of the solution on the parameters.

The equation has the form

y =x — zh(x), (4)
where
w2513
y = 3.]2, z = G—M,
are known and x = e’ is to be determined. The function
4 X7
h(x) =z — = (5)
15 240(‘/;)

is known. In the physical problem on hand, the numerical values of y and z are both of
the order of 3 x 1077,

2. Numerical solution of the equation. This is discussed very thoroughly in [1], and
values of e are obtained that are more accurate than those given in the literature. It
follows from Eq. (4) of [1] that

1 3 3 7
h_(x_)——F(E’f’f’x)’ (6)
where F is the hypergeometric function. Thus 4 is analytic not only for 0 < x <1 but
also at x = 0. Moreover, since all coefficients in the series (6) are positive, as x increases
from 0 to 1, h(x) decreases from #(0) =1 to h(1) = 4/157. By writing (4) as a fixed
point equation,
x=y+ zh(x), (7)
we see that for positive y and z such that y + z <1 the equation has precisely one
solution, which, if z satisfies the additional condition
|zh'(y + 2)| <1,
can be found as the limit of the iteration sequence defined by x, = 0,
X, =y +zh(x,), n=20,1,2,....
The only numerical problem that arises is a considerable loss of accuracy, due to
subtracting large numbers that are nearly equal, if /4 is evaluated by means of the defining

relations (5) and (2). It is much preferable to compute 4 from the series expansion (6),
which converges rapidly if x is small.

3. Analytical solution. Iteration does furnish a numerical solution of (4) for given y and
z, but it does not show how this solution depends on the parameters. We therefore
endeavor to find a series solution for (4). Our tool is the multidimensional Lagrange-Bir-
mann formula as discussed in [3]. We summarize these results briefly for convenience.
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LetP = (P}, P,,..., P,) be an admissible system of n power series in » indeterminates
X = (X, X,5,...,x,). [“Admissible” means that P, = ¢;x, + higher-order terms, where
¢; # 0.] Let Q denote the inverse system of P. [“Inverse” means that Q substituted into P

yields x.] Let R be an arbitrary (single) Laurent series in x. Then the series obtained by
substituting Q into R is given by

RoQ =} Res(RP % ¢p’)xk (8)
k
where the summation is with respect to all index vectors k = (k,, k,, ..., k,), and where
xk === xlklxé‘:z PPN x:n’
e=(1,1,...,1),

P’ is the Jacobian determinant of the system P, and Res denotes the residue, that is, the

coefficient of x™¢, in a Laurent series. The result (8) holds formally, that is, regardless of
whether or not the series involved are convergent.

We require an application of (8), also given in [3]. Here we consider two systems of
complex variables,
X = (x,....x,), y=(y1,...,yq),
and a system of p functions

1(x,y), i=1,2...,p,

analytic near (0,0). We write f = (fis---s /»), and we denote by f’ the Jacobian determi-
nant of this system with respect to the x., regarding the y; as parameters. Assuming

£(0,0) = 0, £7(0,0) = 0,
the system of equations

f(x,y) =0 (9)
for sufficiently small | Y1 has precisely one solution x(y) which is analytic in y and which
satisfies x(0) = 0. We wish to find the coefficients of the power series x(y) or, more
generally, of 7(x(y),y), where r is a given analytic function.

For a solution by means of the Lagrange-Bitrmann formula we assume, without loss of
generality, that the matrix

a, S
53-67(0’0) , l,]——l,...,p,

is the identity. (This can be achieved by forming suitable linear combinations of the
functions f; and of the variables x ) In the power series expansion of f(x,y), let By denote
the terms that are linear in the Y that is,

f(x,y) = x + By + terms of degree > 2.

(B is a matrix with p rows and ¢ columns; we think of y as a column vector.) Consider the
map of a ( p + g)-dimensional neighborhood of (0,0) defined by

(4)= () ) (0
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The system of p + g power series representing this map near (0, 0) is admissible; in fact,
its Jacobian matrix at (0,0) is the identity. Hence the inverse system

") = x(“’v)) (11)
(y ( y(u,v)
exists and can be represented by the Lagrange—Biirmann series. Letting

P = f(x,y) — By,

and noting that the Jacobian determinant of the whole system (10) is just P’, the Jacobian
with respect to X, one obtains in view of y = v for an arbitrary function r

r(x(u,v),v) = Y Res{r(x,y)P 5 ey ™ P'(x,y) jukv™ (12)
kez’
me Z7
Now evidently f(x,y) = 0 if and only if u = -Bv. Since v =y, the solution of (8) thus 1s
x(y) = x(~By,y),

and from (12) we find the explicit series expansion

r(x(y),y) = ¥ Res{---}(-By)'y™, (13)

ke Z?
me Z9

where the residues are the same as in (12).

4. Application to the geodesic equation. To apply (13) to the solution of (4), we let

p=1g=12
- = [3)-0)
The equation to be solved is f(x,y) = 0, where
f(xy) = x -y = zh(x),
which in order to isolate first-order terms we write in the form
fx,y) =x -y —z-2xg(x),

where

g(x) = 1 (h(x) - 1) = 0(1).
We see that
By = -y — z.

The map (10) in our case is thus

(2)———(5), P = x(1 - zg(x)).

LAGRA
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If r(x,¥) = x, (13) now yields

k- Soomme 1l —n— kK my :
x(y.z)= 2 Res{xP *7lpiy=mriz=n=lh(y 4 )Fyman, (14)
k>0
('m,n)EZ2
and it only remains to evaluate the residues.
Since P does not depend on y, we need m = 0 to obtain a residue in y. Using

P—k~1P/: ( A)

=~ l

we thus get

x(y,z)=-Y *Res {x(P‘k)/z‘"*l}(erz)kz”

k>0
n=0

where the residue now is taken only with respect to the variables x and z. In view of

P=x(1-zg(x)).

we may use the binomial series to obtain
_ & ok
P = xTM(1 = zg(x)

x‘kéio(J)[( _[k)z{g’.

where (7} ) is a binomial coefficient. Now for given k > 0 and »n > 0,

Resx‘:{x(P’k)/z“”‘l} = Res, of coefficient of z" in x(P~*)’

Il

—Res, of coefficient of z" in P~*

If

—coefficient of x*~! in (wl)"( ;?k)g)z
(*1)’1+1( k)glf’ll~

where Res, denotes the residue with respect to the single variable x, and where the
coefficients g{"’ are defined by

il

%
[g(x)]"= X gfmx*.
k=0

We thus finally let

(o= 3 1) ( )gi’i’l(y+2)k2"

k>0
nz0

L (15)

k>0
n>0
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5. Truncation error. In numerical computation, the series (15) will have to be truncated,
for instance, by neglecting the terms where k + n > p for some positive integer p. We

therefore estimate the truncation error

o= L S (a0t

k-+n=p
k>0,n>0

From (6), the coefficients a,, in

Hor = £ e

are easily seen to satisfy |a,| < 1. In view of a, = 1 we therefore have for |x| < p, p < 1,

[h()]z1-p—p" = =(1-2p)/(1~p),
and thus, if 0 < p < &,

[h(x)|= (1= 0)/(1 = 2p).

Using the principle of the maximum, there follows for |x] < p < 3,

1{1-p 1
'g(x)[S p(l_zp—l)—l_zp'
Cauchy’s estimate now yields
1 1 1
() g i 0<p<=.
et ‘”(1—2p)"p" P2

Now let |y + z| < p;, |2] £ p,. In view of

(_—]li<*k) 1(k+n—1)= 1 (k+n)’

k n=_ n

k

there follows

y & (‘k)g(") (y+2)z|st (q)(l = 2p) 07" olp}
k+n=gq k n qk+n=q "
k>0,n>0
-
g\1=2p p
Therefore, if
) P

0’ ==
1-2p p
we find the truncation error estimate

p_of

1,(y.2)| =

pl—oa’

(16)

(17)

LAGRAN
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Choosing, for instance, p = 1, there results the simple formula

(391 + 3P2)p

e e e e )

6. Numerical values. It remains to compute the coefficients g{™. This is a routine
computation which is best performed with a symbolic manipulator. Using the MAPLE
program of the University of Waterloo [2] we computed the g™ as well as the coefficients

n (__1)" - n
a = T( nk)g’g )
of the series (15) in rational arithmetic for 1 < & <10, 1 < n < 10. Complete tables of
these values are available from the authors on request. Here we give only the values that
are required to write the terms of the series for k + n < 5:
9 13 ., 4189 5

4% 7392 T 181104

(x) = S 13 48 .,

8\ =14 7 302% T 181104~
, 81 117

Le()I" = 156 + 773 +

(] = - -

h(x)=1-

This results in

9
x(y,z) = (y+z){1 "1—42 + —1?6'2 —mz

81 , 729 3+_._}

+(y+z)2{—%z+££;l—gzz+ }
+(y + 2)3{—%%2 + }
+ .-
From the values of the parameters given in [1] we have
y = 3.247890 X 1073, z =3.461391 x 10>,
Substituting these into (19) we get

x = 6.694379 x 1073

with a truncation error ¢5( y, z), which by (18) is less than

1 [3x6.709281 x 107*]° 10
5 0.979872 =225 x10°%,

and which thus is less than the error in x due to rounding or measuring errors in y and z.
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RESPONSE BOUNDS F

The behavior of many engine¢
equation

where G(¢) is a specified oscill:
respect to ¢, F(U) is a nonline:
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where f = sup|F(U)|, u = sup||
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