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Summary. In this paper we analyze the equations of motion of a submerged rigid
body. Our motivation is based on recent developments done in trajectory design
for this problem. Our goal is to relate some properties of singular extremals to the
existence of decoupling vector fields. The ideas displayed in this paper can be viewed
as a starting point to a geometric formulation of the trajectory design problem for
mechanical systems with potential and external forces.
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1 Introduction

A very important class of control systems, even though they are non-generic, is
the class of controlled mechanical systems. Examples of these systems include
the planar rigid body with a single variable direction thruster, the snake-
board, and underwater vehicles; see for instance [2, 9, 11]. We are interested
in trajectory design problems for such systems.

All the computations in this paper are carried out on the following sys-
tem: a controlled submerged rigid body. This application is particularly well
adapted to our analysis for several reasons. First, there is a clear practical
motivation coming from the recent trend to build autonomous underwater
vehicles. The authors are currently working on implementing their techniques
on a real vehicle, see [8]. The other reasons are more mathematically oriented.
An underwater vehicle can be modeled as a simple mechanical control system,
i.e. coming from a Lagrangian of the form kinetic minus potential energy, with
dissipative forces. The uncontrolled dissipative forces reflect the damping of
the system, and the restoring forces are represented in the potential forces.
The corresponding system, when neglecting the external forces, has been ex-
tensively studied and thus serves as a good starting point for our analysis,
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see [3] and references therein. Clearly, the external forces introduce additional
challenges for the trajectory design problem.

In [6, 7], we develop a numerical algorithm to compute time efficient tra-
jectories for a controlled submerged rigid body that can be implemented on
a real vehicle. The motivation and discussion of this algorithm are appli-
cation oriented. We call our algorithm the Switching Time Parametrization
Algorithm (STPA). These papers are application oriented. In [8] we describe
experiments on a real vehicle based on this algorithm. The experiments are
performed at the University of Hawaii in collaboration with the Autonomous
System Laboratory from the College of Engineering. A major goal is to es-
tablish a mathematical formulation of the STPA based on the differential
geometric properties of the system; such as the notion of decoupling vector
fields. This paper initiates a discussion in that direction.

The key notions involved in the discussions of this paper are the ones
of decoupling vector fields for invariant systems on a Lie group, namely the
configuration space of a rigid body SE(3), and the notion of singular extremals
coming from optimal control. Our analysis is based on [1, 3, 4] for the notion
of decoupling vector fields and on [5, 9] for the properties of singular extremals
in our application.

The outline of this paper is as follows. In Section 2 we introduce the equa-
tions of motion for a controlled submerged rigid body. Section 3 introduces the
definition of decoupling vector fields for an invariant system on a Lie group,
and we recall the results for a controlled rigid body when neglecting the ex-
ternal forces. Section 4 is concerned with the application of the maximum
principle to our situation and the properties of singular extremals. Our main
contribution is in Section 5 where we relate the two notions introduced before.

2 Equations of motion for underwater vehicles

Due to subtle differences in notation and reference frames, we include a short
derivation of the equations of motion for a controlled rigid body immersed in
a real fluid. By real fluid we mean an ideal fluid which is not inviscid. Notice
that a real fluid is assumed to be irrotational but that from a practical point
of view a viscous fluid is rotational: the definition of a real fluid used in this
paper is introduced for theoretical reasons. This concise derivation is based
on the equations found in [10].

We will identify the position and orientation of the rigid body, with respect
to the inertial frame, with an element (b, R) of the Special Euclidean group
of order 3; (b, R) € SE(3). We take b = (,y, 2)! € R3 to denote the position
vector for the origin of the body frame, and R € SO(3) as the rotation matrix
describing the orientation of the body. The translational and angular velocities
in the body-fixed frame are denoted by v = (u,v,w)’ and 2 = (p,q,r)
respectively. It follows that the kinematic equations for a rigid body are given
by
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b=Rvand R=RQ, (1)

where the operator ™: R — s0(3) is defined by § 2 = y x 2; 50(3) being the
space of 3 x 3 skew-symmetric matrices. By letting p be the total translational
momentum, and 7 the total angular momentum in the inertial frame, and P, IT
be the respective quantities in the body-fixed frame, we get that p = RP and
7= RII+b p. Differentiating the later two expressions, we express the dynamic
equations of motion with the following:

P=PO+F (2)
k
I=10+Pv+Y (R —b) x R'fi +7 3)
i=1

where F' = Rt(Zf:1 fi), 7= Rt(Zézl 7;) represent the external forces and
torques in the body-fixed frame, and x; is the vector from the origin of the
inertial frame to the line of action of the force f;. Next, we compute the total
kinetic energy of the system in order to express equations (2) and (3) in terms
of linear and angular velocities. To this end, we note that the kinetic energy
of the body, Tyoqy, is given by

1w Y omis —mTcyg v
Tbody* 5 <Q) <meG Jp (0} (4)

where m is the mass of the rigid body, I3 is the 3 x 3-identity matrix and
rce is a vector that denotes the location of the body’s center of gravity with
respect to the origin of the body-fixed frame. The matrix J, represents the
body moments of inertia. Based on Kirchhoff’s equations we have that the
kinetic energy of the fluid, T'¢;y.q, is given by:

et (DG

where My, Jy and Cy are respectively referred to as the added mass coefli-
cients, the added moments of inertia coefficients and the added cross-terms.
These coefficients depend on the fluid’s density and on the vehicle’s shape.
By adding the above relations as shown, the total kinetic energy is given by:

1/v) v
Tbody+Tflu1d_T_2(Q> H<Q)a (6)

mI3 + Mf —mfcc + C?
1= (™ | (7)
mic, + Cs Jp+ Jy

where [ = (%%1 ]]?2 ) Which we can simplify into:
12 #22
T

1
= §(VtH11V+2Qt]I§2U+Qt]IQQ Q) (8)
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Here we add the assumption that b, the origin of the body-fixed frame, is
located at Cg; equivalently, 7., = 0. We assume the body has three planes
of symmetry. Hence choosing the body axes to coincide with the principal
axes of inertia implies that Jy, My and J; are diagonal, while C} is zero.
This leads to P = (mls + My)v = Mv and II = (Jy, + J§)2 = J. It
follows from equations (2) and (3) that My = Mv x 2 + F and J2 =
J2x Q+MVXV+Zf:1(Rt(xi—b)) x R f;+7, where the terms Mv x 2, J2x 2
and Mv x v account for the Coriolis and centripetal effects. The Coriolis and
centripetal effects seen in the above equations can also be expressed in terms
of V; the Levi-Civita affine-connection for the Riemannian metric induced by
the kinetic energy T'. Explicitly, if v(¢) = (b(¢), R(t)) is a curve in SE(3), and
~'(t) = (v(¢), £2(¢)) is its pseudo-velocity (1), then

Voo — 1'/+M*1(Q><MV) 9
7'7_(Q+J1(Q><Jrz+z/><Mu)>‘ ©)

Let us now discuss the external forces acting on a submerged rigid body.
We assume that the vehicle is neutrally buoyant, which means that the buoy-
ancy force and the gravitational force cancel each other. Since the origin of the
body-fixed frame is C¢, the only restoring force acting on the vehicle is the
torque from the buoyancy force induced upon listing, 7¢, x R pgVk. Here r¢,
is the vector from Cg to Cg, where p is the fluid density, g the acceleration
of gravity, V the volume of fluid displaced by the rigid body and % the unit
vector pointing in the direction of gravity. Additional hydrodynamic forces ex-
perienced by the rigid body are due to drag effects. We make the assumption
that we have a drag force D,(v) and a drag momentum D, (f2) quadratic
in the velocities and we neglect the off-diagonal terms. We summarize our
computations in the following definition.

Definition 1. Under our assumptions, the equations of motion, in the body-
fized frame, for a rigid body submerged in a real fluid are given by:

Mvyv=Mvx2+D,(v)v+F
JQ=J02x 2+ Mvxv (10)
+Do(2)2 —rc, x RipgVk +1

where M accounts for the mass of the rigid body and the added mass coeffi-
cients, J accounts for the body moments of inertia and the added moments
of inertia coefficients. The matrices D, (v), Do (2) represent respectively the
drag force and momentum, while the restoring force acting on the body is due
to the torque induced by the buoyancy force. Finally, F = (f1, f2, f3)! and
T = (71,72, 73)" account for the control.

Section 3 of this paper deals with the geometric properties of the system. In
that section the domain of control is assumed to be unbounded, thus allowing
us to identify some important geometric structures. Once these structures
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are identified, we will discard the unbounded assumption since the controls
represent forces with limited power, such as thrusters. Subsequent sections
will, for simplicity, assume the domain of control to be F = {f € R? | -1 <
fizs <1} T ={r € R®| -1 < 1123 < 1}. An admissible control is a
measurable bounded function ¢ : [0,7] - U =F x 7.

A final remark concerns the equations of motion of a rigid body moving
in the air. In this case, the dissipation term due to the drag and the restoring
forces are negligible. Moreover, since the density of air is much smaller than
that of water we can neglect the terms due to the added mass tensor. We are
then left with the well known equations of motion of a rigid body moving in
the air. These equations can serve as a first approximation when considering
a real fluid.

3 Affine-Connection control systems and decoupling
vector fields

Together, equations (1) and (10) form a first-order affine control system on
the tangent bundle T'SE(3) that represents the second-order forced affine-
connection control system on SE(3)
M~Y(D,(v)v + F)
r v
Vo= <J1 (Da(2)2 = ey x RipgVk + 1) (1)

In the absence of a restoring force ro,, x R pgVk, a drag momentum D, (£2)42,
and a drag force D, (v)v the equations of motion (11) represent a left-invariant
affine-connection control system on the Lie group SE(3),

M~'F
V,Y/’}/ = < J_l’r ) .

Definition 2. An affine-connection control system on a manifold @ is deter-
mined by an affine-connection, V, and a constant-rank distributiony C TQ. A
trajectory for the system is a curve vy : [0,T] — Q such that~' : [0,T] — TQ is
absolutely continuous, 7'(0) = 0 € Ty 0)Q, and V()7 (t) € Yy for almost
allt €10,T7.

(12)

A common presentation for such a system is V., ;7' (t) = 25:1 u®(t) Yo (v(1)),

where u!(t), ..., u"(t) are measurable controls and Y1, ..., Y} are independent
vector-fields on @) that span Y.

Just as equation (11) on SE(3) is equivalent to equations (1) and (10) on
T SE(3), an affine-connection control system on @ is equivalent to an affine
control system on T'Q). The equivalence is realized via the geodesic spray of
an affine-connection and the wvertical lift of tangent vectors to Q.
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Definition 3. Let v € T,Q C TQ, then the vertical lift at v is a map
vift, : T,Q — T,TQ. For w € T,Q, we define vlft,(w) = %(v + tw)|i=o-

In components, vift,(w) = (3)) e T, TQ.

Definition 4. The geodesic spray of V is the vector field S, on TQ, that
generates geodesic flow. Specifically, for v € T,Q, S(v) = %’y{)(t)hzo where
Vv is the unique V-geodesic such that ,(0) = g and 7, (0) = v.

In the special case of our Levi-Civita connection (9),

v
04
—M_l(Q X MV)
—J_l(Q x JO2 + v x Mu)

S(b’ R7 1/7 'Q) =

For this presentation of S(b, R, v, §2), the components are expressed relative
to the standard left-invariant basis of vector fields on T'SE(3) rather than
coordinate vector fields. Equation (1) can be used to recover expressions for
b and R.

Given an affine-connection control system V.~ = 25:1 u*(t)Y,(y(t)) on
Q, we associate to it the following affine control system: 17 (¢) = S(Y(t)) +
25:1 u®(t) vift(Y,) on T'Q. In [3, p224] the authors show that trajectories for
the affine-connection control system on () map bijectively to trajectories for
the affine control system on T'Q) whose initial points lie on the zero-section.
The bijection maps the trajectory v : [0,7] — @ to the trajectory 7" = v :
[0,T] — TQ.

Definition 5. A decoupling vector field for an affine-connection control sys-
tem is a vector field V. on @Q having the property that every reparametrized
integral curve for V is a trajectory for the affine-connection control system.
More precisely, let v : [0,S] — Q be a solution for v'(s) = V(y(s)) and let
s : [0,T] — [0,85] satisfy s(0) = s'(0) = §'(T) =0, s(T) =S, s(t) >0
for t € (0,7), and (yos) : [0,T] — TQ is absolutely continuous. Then
vos:[0,T] — Q is a trajectory for the affine-connection control system.

A necessary and sufficient condition for V' to be a decoupling vector field is
that both V and VvV are sections of Y [3, p. 426]. Notice that if Y = TQ
then every vector field is a decoupling vector field, and if Y = Span{Y'} then
V' is a decoupling vector field if and only if both V' and Vy V' are multiples of
Y.

Decoupling vector fields for an under-actuated system (12) are analyzed in
[4]. In the under-actuated setting, decoupling vector fields are found by solv-
ing a system of homogeneous quadratic polynomials in several variables. For
our model, the control forces F' = (f1, fo, f3)* and 7 = (71, 72, 73)" are uncon-
strained; the model is a fully-actuated affine-connection control system. In this
case there are no quadratic polynomials to solve and every left-invariant vector
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field is a decoupling vector field. Something interesting can occur, however,
when we seek single-input subsystems that admit a decoupling vector field.
Let us start with a single-input affine-connection control system, where the
input vector field is Y = (F,7)!. As mentioned above, to be decoupling for
Y = Span{Y'} a vector field V, as well as V'V, must be a multiple of Y.

Proposition 1. Let V be the affine connection (9) and consider the single in-
put affine-connection control system V. = u(t)Y (y(t)), where Y = (F,7)".
Then V = (F,7)" is a decoupling vector field for Y if and only if V is a mul-
tiple of (e;, e;)t, where ey, e, e3 is the standard basis for R®, or all but one of

1ts components are zero.

Proof. The conditions for V' to be decoupling eventually reduce to finding an
eigenvector belonging to a real eigenvalue for the following matrix:

-7 0 MO\ (F MO\ (F

GHENO)GH0) w
It is equivalent to —7MF = AMF and —FMF — #J7 = AJ7. Since ) is real
and 7 is skew-symmetric, A = 0. If F' is zero, we have that 7J7 =7 x J7 = 0.
We see that V' = (0,7)" will be a decoupling vector field for Y = (0,7)*
provided 7 is an eigenvector for J. Similarly, when 7 = 0, then we must have
A=0and FMF = Fx MF = 0. We see that V = (F,0)" will be a decoupling
vector field for Y = (F,0) provided F is an eigenvector for M. Since M and
J are diagonal matrices, the eigenvectors are precisely those for which all
but one of {fi, fa, f5, 71, 72,73} are zero. Assume now F # 0. It follows that
MF = put where p is some constant and —FMF —#Jr = 0. This last equality
is equivalent to 7 x (J7 — pF') = 0 or in other words J7 — uF = a7 where «
is a constant. By using the two previous relations between F' and 7, we have
that (J — p?M~1)7 = ar. Since J — p? M ~! is diagonal, 7 is an eigenvector if
all but one of its component are zero. The same is deduced them for F'.

We note that if we consider the case when all but one of the { f1, f2, f3,71, T2, T3}
are zero, these decoupling vector fields are exactly the pure motions for a rigid
body moving in air, and were investigated in [7].

4 Singular extremals

Our goal is to establish a relation between singular extremals arising in op-
timal control and the conditions for a vector field to be decoupling. To this
end, we first recall the notion of singular extremals.

Consider the minimum time problem for a controlled submerged rigid
body. We assume the domain of control to be as stated in Section 2. Since
the necessary conditions of the maximum principle are local, we assume the
equations of motion expressed in local coordinates found in [7].
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We introduce 1), a triple of Euler angles for R € SO(3); n = (b, %), local
coordinates for (b, R) € SE(3); x = (n,v,2), local coordinates for T'SE(3);
and let xo = x(0) and xr = x(T') be the initial and final states for our
submerged rigid body. We let © be the 3 x 3 matrix for which ¢ = O and,
as always, b = Rv. Note first, that the equations of motion derived in the
previous section can be written as an affine control system:

6

X(8) = Yo(x(t) + Y_ Yi(t)pi(t) (14)

i=1

where ¢ = (F,7)* is the control and the drift Y; is given by
Rv
en

M= [Mv x 2+ D, (v)v]
J’1a41

Yy = (15)

with agy = J2 X 2 + Mv x v+ Dg(2)2 — rc, x Ripg. Notice that when
neglecting the external forces, the drift is the geodesic spray. The input vector
fields are given by:

Y, =vIft(I[; ) = | 0 (16)
It

(2

-1
with I, being the i** column of the matrix 17! = <MO J(zl )

Assume that there exists an admissible time-optimal control ¢ : [0,7] —
U, such that the corresponding trajectory x = (n,v, 2) is a solution of the
equations of motion, in Section 2, and steers the body from y( to x7. The
Maximum Principle, see [12], implies that there exists an absolutely contin-
uous vector A = (A, A\p, Ag) 1 [0, 7] — R, \(¢) # 0 for all ¢, such that the
following conditions hold almost everywhere:

. o0H . oH . oH

TNt TN T oag (17)
. O0H . O0H . oH
A e WA T/} (18)

where the Hamiltonian function H is given by

H(x, A\ ) = AL (Rv,002)" + A\,M ' [Mv x 2+ D, (v)v + F|
+ALT IR x 2+ My x v+ Dgo(2)2 —ro, x RipgVk + 7).

Additionally, the maximum condition

H(x(t),A(t), (1) = max H(x(t), A(t),7)
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holds for almost every t. The maximum of the Hamiltonian is constant along
the solutions of (17), (18) and must satisfy H(x(t), A(t), ¢(t)) = Ao, Ao > 0.
A triple (x, A, ¢) that satisfies the Maximum Principle is called an extremal,
and the vector function A is called the adjoint vector.

The component ¢;, i = 1,...,6, of the vectors ALM~! and A, J~! are
called the switching functions. The maximum condition, along with the con-
trol domain U and the form of the equations of motion, is equivalent almost
everywhere to ¢;(t) = —1 if ¢;(t) < 0 and ¢;(t) = +1 if ¢;(t) > 0 for
i = 1,...,6. Notice that from our assumptions on the fluid and the body,
the matrices M and J are diagonal. It follows that the switching functions
are, modulo a constant, the last six components of the adjoint vector, and are
absolutely continuous. Clearly, the zeros of the switching functions determine
the structure of the extremals. We are interested in the case when a switching
function is identically zero on a non trivial interval [t1,t2]. We say that the
extremal is singular in the corresponding control on this interval. To compute
a singular control ¢; we must differentiate the switching function ¢;.

We finish the section with these computations. By construction, we have
that ¢;(t) = A'(t)Y;. It is then a standard fact that the derivative ¢; along an
extremal is given by:

6
$i(t) = A (O)[Yo, Vi (x(1) + D A (DY, Yil()e; (1) (19)
j=1
where [, | denotes the Lie bracket of vector fields. Since the vector fields Y;

are constants, their Lie brackets are zero and the switching functions have
absolutely continuous derivatives: ¢(t) = A(t)[Yy, Yi](x(t)). Differentiating
once more, we obtain

6
$i(t) = N (1) ady, Yi(x(8) + Y A5, [Yo, Vil (x (1)), (¢)
j=1

Proposition 2. For a rigid body moving in the air, the following holds:
[Yi, [¥o,Yi]l(x) =0, i=1,...,6. (20)
In a real fluid, the previous Lie bracket is not zero but satisfies:
Y3, [Yo, Yi]l(x) € Span{Yi}, i=1,...,6. (21)

Proof. A first remark is that only quadratic terms with respect to the veloci-
ties in Yy can produce a non zero component for [Yj, [Yo, Y;]](x(¢)). Hence we
have that [Y}, [Yo, Yi]](x) € Span{Y,...,Ys}. Moreover, it is an easy verifica-
tion that under our assumptions neither Mv x 2, J§2 x £2 nor Mv X v contains
terms of the form u2,v?, w?,p?, ¢%, 72. We can conclude that for a rigid body

moving in air (or more generally when we neglect the external forces) the Lie
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brackets [Y;, [Yo, Yi]](x) are identically zero for ¢ = 1,...,6. In a real fluid,
this deduction is not possible since the drag terms, as assumed in this paper,
will produce a non zero component. However, it can be verified that in a real
fluid the only non zero component of[Y;, [Yp, Y;]](x) is a multiple of Y;. Note
that the restoring forces play no role in the value of this Lie bracket.

Equations (20) and (21) can be interpreted in terms of the order of singular
extremals. Along a ¢;-singular arc, let ¢ be such that ;t—zqngi is the lowest order
derivative in which ¢; appears explicitly with a nonzero coefficient. We define
q as the order of the singular control ;. This definition assumes the well
known result that a singular control ¢; first appears explicitly in an even

order derivative of ¢;, see [13].

Proposition 3. Let x be an extremal that is singular for the component p;
of the control while the other ones are bang. Then, for a submerged rigid body
moving in air or in a real fluid, the singular control is of order at least 2.

Proof. Let us assume Yy is an extremal that is singular for the component ¢; of
the control while the other ones are constant, i.e. the function ¢; is identically
zero along the extremal. We can compute the singular control from equation
(20) as long as the term A![Y;, [Yp, Yi]](x) is non zero. From Proposition 2,
this Lie bracket is zero for a rigid body moving in air and a multiple of Y; for
a real fluid. Since along the extremal ¢; = A'Y; = 0 the result is true in a real
fluid as well. This means that we must compute at least the fourth derivative
of the switching function to obtain the singular control as a feedback.

5 Main observation

The main result consists of an observation that suggests directions for further
study. The observation concerns a possible relationship between singular ex-
tremals of order greater than 1 and decoupling vector fields. As seen above, for
a rigid body moving in the air the order of the singular control ¢; is greater
than 1 since it satisfies the condition [Y;, [Yo, Yi]](x) = 0. Note that this also
implies that Y; is a decoupling vector field for the single-input affine control
system where every control is set to 0 except for ;. This last result was al-
ready proved in Proposition 1 using an ad hoc method without referring to
singular extremals or differential geometric properties of the system. To see
the relation between equation 20 and Proposition 1 we note that Y; is the
vertical lift of the control (F,7) = (0,...,1,...,0), where the 1 is in the ith
position. We also note that for a rigid body moving in the air Yy (14) is the
geodesic spray for the Levi-Civita affine connection (9). The final ingredient
is the easily verifiable equation [vlft(X), [S, vift(X)]] = vift(2Vx X). Hence
(Y, [Y0, Yi]](x) = 0 says that Vy,Y; = 0, where we abuse notation by using
Y; to also denote the vector field whose vertical lift is Y;. So Y; being auto-
parallel implies that it is decoupling and that ¢; has order greater than one.
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This establishes a relationship between the condition that V is a decoupling
vector field if both V and Vy V' are sections of Y and Lie bracket properties
of singular extremals for the time minimal problem.

For a forced affine-connection control system, such as a submerged rigid
body in a real fluid, we should be somewhat cautious since the notion of a
decoupling vector field is not clearly defined. Singular extremals, however,
certainly are and the condition [Y;, [Yo, Yi]](x) € Span{Y;} still holds in our
case. This perhaps suggests a proper generalization and characterization of
the notion of a decoupling vector field for forced affine-connection control
systems.
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