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Abstract. Feedback equivalence of n state, n− 1 control systems divides such systems into two invariant
classes. We show that class 1 corresponds, via a geometric isomorphism, to classical Lagrangian varia-
tional problems. We prove the existence of time critical closed loop controls for systems which satisfy the
non-degeneracy condition that the analogue of the Hessian for the Lagrangian problem have full rank.
We show that the vanishing of this Hessian characterizes the affine linear systems in class 1 and identify

the rank condition for local controllabilty for such systems as the non-vanishing of a differential invariant.
The affine linear systems in class 2 are also characterized by the vanishing of an invariant and the rank
condition is identified.
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1. Introduction

In this paper we consider the problem of feedback equivalence of control systems, with n states
and n − 1 controls, as the equivalence problem for systems

(1.1)
dx

dt
= F (x, u) x ∈ Rn, u ∈ Rn−1,

under diffeomorphisms of the form

(1.2) Φ(t, x, u) = (t, φ(x), ψ(x, u)).

By making use of Cartan’s method of equivalence [3], [5], [6] we obtain an invariant splitting of
such systems into two classes. The first of these, on which we focus our attention, is identified via
a geometric isomorphism, with classical single integral variational problems. The existence of this
isomorphism means that all of the rich geometry of classical Lagrangian mechanics is encoded in the
control system (1.1) and may be applied to its study. The most basic elements of the Lagrangian
problem are the notions of regularity and of the Euler-Lagrange equations for critical curves. We
show that, as one would hope, these concepts translate into basic features of the control problem.
The vanishing of the Hessian for the associated Lagrangian is necessary and sufficient for the control
system to be equivalent to one in affine-linear form

(1.3)
dx

dt
= f(x) +

∑
gi(x)ui.

At the other extreme, when the Hessian has full rank, we show that the Euler-Lagrange equations
may be solved to provide closed loop controls. As the Lagrangian functional, applied to solution
curves of (1.1), measures the time from initial to final endpoints, these controls are time critical.
Moreover, for a certain subclass of control systems, they are the geodesics of a pseudo-Riemannian
metric intrinsic to the system as Wilkens found in the case n = 3. [13].
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The second class of systems corresponds to a non-classical variational problem of the sort studied
by Griffiths [8]. We will pursue the study of this aspect of the problem elsewhere. We show that
every system in this class can be put in the form

dxi

dt
= ui 1 ≤ i ≤ n − 1

dxn

dt
= g(x, u)

where g is homogeneous of degree 1 in the controls. We give necessary and sufficient conditions for
the system to be affine linear, in which case g(x, u) =

∑
gi(x)ui. For such systems the controllability

condition [1], [11] is that an invariant should not vanish. As there is no drift term, the condition will
fail for any linearizable system in this class, however there is an invariant skew symmetric matrix A
which determines at least rank A equivalence classes of controllable affine linear systems.

Finally we note that while the restriction to consideration of systems with n states and n − 1
controls is essential to the identification of a classical first order variational problem, the same
techniques apply to the case of n states and p controls. This case requires the analysis of more
general variational problems and is currently being studied.

2. The Equivalence Problem

Given the system (1.1) on U0 ⊂ R2n with coordinates t, x1, . . . , xn, u1, . . . , un−1 and a second
system

dx̄

dt̄
= f̄(x̄, ū)

on Ū0 ⊂ R2n, the problem of local equivalence under feedback is the equivalence problem for maps

Φ: U0 → Ū0

of the form

(2.1)
t̄ ◦ Φ = t

x̄ ◦ Φ = φ(x)
ū ◦ Φ = ψ(x, u)

which satisfy

(2.2) Φ∗(dx̄ − f̄ dt̄) = A(dx − f dt)

for some A ∈ GL(n,R). This is an overdetermined equivalence problem and leads, as discussed in
[7], to the following problem in standard form.

Let U and Ū be open sets on which f and f̄ are non-zero and let A0 and Ā0 be maps from U and
Ū to GL(n,R) such that

A0f = Ā0f̄ = t(1, 0, . . . , 0).

A diffeomorphism Φ from U to Ū satisfies (2.1) and (2.2) if and only if

t̄ ◦ Φ = t

and

(2.3) Φ∗
(

Ā0dx̄
dū

)
=


 1 A 0

0 B 0
C D E




(
A0dx
du

)
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with B, E ∈ GL(n− 1,R). This now has the form considered in [5], [6] where G is the subgroup of
GL(2n − 1,R) of matrices of the form

(2.3′)


 1 A 0

0 B 0
C D E




with B and E in GL(n − 1,R). Thus we construct the vector of 1-forms t(η1, . . . , ηn, µ1, . . . , µn−1)
on U × G given by

(2.4)
(

η
µ

)
=


 1 A 0

0 B 0
C D E


(

ηU

µU

)

where (
ηU

µU

)
=

(
A0dx
du

)
.

We now turn to the equivalence of classical first order Lagrangian problems and show that it leads
to the same structure. Here we consider functionals

L(c) =
∫

c

L(τ, q, q̇) dτ

over curves c in R2p+1 which satisfy

q̇i ◦ c =
d

dτ
(qi ◦ c) 1 ≤ i ≤ p.

These curves are integrals of the contact system

θi := dqi − q̇i dτ, 1 ≤ i ≤ p

with independence condition dτ �= 0. Given a second functional L̄, we will say that L and L̄ are
equivalent if there is a contact transformation Φ such that

(2.5) Φ∗L̄ dτ̄ ≡ L dτ (mod θi).

This is clearly an equivalence relation and preserves the value of the functionals on integrals of the
contact system.

If we complete {L dτ, θ} and {L̄ dτ̄ , θ̄} to coframes by adding 1-forms ζ and ζ̄ and use the fact
that Φ must preserve the contact system {θi}, we may summarize the conditions on the Jacobian of
an equivalence Φ by

(2.6) Φ∗


 L̄ dτ̄

θ̄
ζ̄


 =


 1 A 0

0 B 0
C D E





 L dτ

θ
ζ


 .

Thus, if p = n− 1, (2.6) and (2.4) suggest the identification on η1
U with L dτ and {η2

U , . . . , ηn
U} with

the contact system. It is easy to verify that if c is a solution of (1.1) we have

c∗A0dx = t(dt, 0, . . . , 0)

so c∗η1 = dt, c∗ηi = 0, 2 ≤ i ≤ n and ∫
c

η1 =
∫ t1

t0

dt.
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Thus the variational problem which we have identified is the time optimization problem for solutions
of (1.1).

There is an integrability condition which obstructs the identification of {η2, . . . , ηn} with a contact
system: the derived structure of η2, . . . , ηn must coincide with that of θ1, . . . , θn−1. We now show
how this invariant arises by pursuing the equivalence problem calculation.

For the system (2.4) with η̄ = t(η2, . . . , ηn), the structure equations take the form

(2.7)

dη1 = tα ∧ η̄ + η1tm ∧ µ

dη̄ = β ∧ η̄ + η1M ∧ µ

dµ = γ ∧ η1 + δ ∧ η̄ + ε ∧ µ

after all torsion has been absorbed.

The matrix M :=
(

tm
M

)
is, up to left and right multiplication, just

A0

(
∂f

∂u

)

and hence the full rank case is the only one in which all n − 1 controls are actually present. From
the infinitesimal action on tm and M ,

(2.8)
dtm − tαM + tmε ≡ 0

dM − βM + Mε ≡ 0,
(mod η1, η̄, µ)

we see that the rank of M is also an invariant and thus there are two cases to consider: rank
M = n − 2, and rank M = n − 1. In either case, as we may assume that rank M = n − 1, we may
put the original control system in a form similar to the ones observed by Hermann [9]

(2.9)

dxi

dt
= ui 1 ≤ i ≤ n − 1

dxn

dt
= g(x, u),

and we may choose A0 to be given by

(2.10) A0 =




1/u1 0 0 . . . 0
−u2 u1 0 . . . 0

...
. . .

...
−un−1 0 . . . u1 0
−g 0 . . . 0 u1


 .

A short calculation now shows that rank M = n − 2 if and only if ĝ := g − ∑
ui∂g/∂ui = 0, i.e. if

and only if g is homogeneous of degree 1, which is clearly a non-generic condition.

Case 1) Rank M = n − 1.
We have ĝ := g −∑

ui∂g/∂ui �= 0 and from (2.8) we may normalize M to the identity and tm to
0 to obtain new congruences

(2.8′)
tᾱ ≡ 0
β ≡ ε

(mod η1, η̄, µ).

In this case, the identification suggested above is actually an isomorphism, as the structure equations
are now identical with those of the classical Lagrangian problem [6], and we have the following
theorem.
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Theorem 2.1. If rank M = n − 1 the system is isomorphic to the classical first order Lagrangian
system in n − 1 dependent variables.

The remainder of the equivalence problem is now precisely the calculations for the Lagrangian
case carried out by Bryant and Gardner [6] and the parametric form of the invariants has recently
been investigated by Sutton [12]. For our purposes, it suffices to consider the invariants which are
introduced by the congruences (2.8′).

After absorption of torsion terms the structure equations become

(2.12)

dη1 = tµH ∧ η̄ + tη̄S ∧ η̄ + η1tv̄ ∧ η̄

dη̄ = β ∧ η̄ + η1 ∧ µ

dµ = γ ∧ η1 + δ ∧ η̄ + β ∧ µ.

The integrability condition d2 = 0 shows that H is a symmetric matrix, and in the Lagrangian
variables, H is, up to conjugation, just the Hessian matrix ∂2L/∂q̇i∂q̇j .

Theorem 2.2. If ĝ �= 0, H vanishes if and only if the system (1.1) is equivalent to

dxi

dt
= ui 1 ≤ i ≤ n − 1

dxn

dt
= f(x) +

∑
gi(x)ui.

If H = 0 the rank condition for local controllability is satisfied if and only if dη1 �= 0. The condition
dη1 = 0 gives a conservation law generalizing Hermes [10].

Proof: To establish this result we look at the explicit parametric calculation for the normalization
of tm to 0. If we adopt the parametrization given by (2.9) and (2.10) then

η1 =
dx1

u1
+ A1(u1dx2 − u2dx1) + · · · + An−2(u1dxn−2 − un−2dx1) + An−1(u1dxn − g dx1).

It is easy to check that dη1 ≡ 0 (mod η̄) requires

(2.13)

A1 = −An−1
∂g

∂u2

A2 = −An−1
∂g

∂u3

...

An−2 = −An−1
∂g

∂un−1

and 1/u1 = An−1ĝ. As ĝ �= 0, we may solve for An−1 to obtain

(2.14) η1 =
1
ĝ

(
dxn − ∂g

∂u1
dx1 − ∂g

∂u2
dx2 − · · · − ∂g

∂un−1
dxn−1

)
.

Now H = 0 means

(2.15) dη1 ∧ η1 = tη̄S ∧ η̄ ∧ η1

which has no component in µ and hence no component in du. But

dη1 ∧ η1 = − 1
ĝ2

{
d

(
∂g

∂u1

)
∧ dx1 + · · · + d

(
∂g

∂un−1

)
∧ dxn−1

}
∧

{
dxn − ∂g

∂u1
dx1 − ∂g

∂u2
dx2 − · · · − ∂g

∂un−1
dxn−1

}
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and the vanishing of the terms in dui∧dun required by (2.15) forces ∂2g/∂ui∂uj = 0, 1 ≤ i, j ≤ n−1,
so g = f(x) +

∑
gi(x)ui, where f �= 0. It is clear that this condition is also sufficient for H = 0.

When H = 0 if follows from (2.14) that

(2.14′) η1 =
1

f(x)
(dxn − g1(x)dx1 − · · · − gn−1(x)dxn−1).

If we define Xn := f(x)∂/∂xn and Xi := ∂/∂xi + gi(x)∂/∂xn the the rank condition [1], [11] is
satisfied unless [Xn, Xi] = [Xi, Xj] = 0 for 1 ≤ i, j ≤ n − 1 and it follows directly from (2.14′) that
this happens if and only if dη1 = 0.

Next we proceed to the case in which H has full rank. The infinitesimal action on H is given by
dH − tβH − Hβ ≡ 0 (mod η1, η̄, µ) which shows that H is being conjugated. On an open set on
which the rank and signature of H are constant, we may normalize H to a constant matrix Q with
the same rank and signature. The remaining torsion terms S and v may both be normalized to 0,
putting dη1 in normal form:

(2.16) dη1 = tµQ ∧ η̄.

As described in [4] and more recently in [5], the Euler-Lagrange equations for the functional
∫

η1

are the exterior equations

(2.17)
µ = 0
η̄ = 0.

Theorem 2.3. If rank M = n − 1 and rank H = n − 1 the system (2.17) yields closed loop time
critical controls for (1.1).

Proof: The system {η2, . . . , ηn, µ1, . . . , µn−1} is completely integrable and hence

µ ≡ T dw (mod η2, . . . , ηn)

for some non-singular matrix T and vector function w(x, u). Because

0 �= µ1 ∧ · · · ∧ µn−1 ∧ η1 ∧ · · · ∧ ηn = detT det
∂w

∂u
du1 ∧ · · · ∧ dun−1 ∧ η1 ∧ · · · ∧ ηn

the system w = z, z constant, can be solved for ui(x) 1 ≤ i ≤ n − 1. But, as we have already
observed, the solutions of dx

dt = f(x, u(x)) solve η̄ = 0 and, by construction, also satisfy µ = 0. Thus
they are solutions of the Euler-Lagrange system (2.17) and as such are time critical.

We also note that the same arguments given by Wilkens [13] show that there is a class of control
systems for which the quadratic form (η1)2 + tη̄Qη̄ defines a pseudo-Riemannian metric on the state
space and the solutions of (2.17) are geodesics of the metric.

Case 2) Rank M = n − 2.
We conclude by considering the second class of problems. After the reduction of M the only

unabsorbable torsion is in dηn and

(2.18) dηn = βn ∧ ηn + tµ̄S ∧ η̄ + (η1, tη̄)T ∧
(

η1

η̄

)

where tS = S and tT = −T .
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Theorem 2.4. If ĝ = 0 then dηn can be put in the form (2.18) and S = 0 if and only if the system
is affine linear. If S = 0 the system satisfies the rank condition for local controllability if and only
if T �= 0.

Proof: We can make the following choices for the 1-forms ηU , µU :

η1
U =

dx1

u1

η̄α
U = dxα − uα dx1

u1
2 ≤ α ≤ n − 1

ηn
U = dxn −

∑ ∂g

∂ui
dxi

µ1
U =

du1

u1

µ̄α
U = duα − uα du1

u1
2 ≤ α ≤ n − 1

and the reduction of M imposes the following relations on the group of matricies defined by equation
(2.3′)

B =
(

B1 B2

0 B3

)
B3 ∈ R

E =
(

1 A
0 B1

)
.

Since
ηn = B3(dxn −

∑ ∂g

∂ui
dxi)

It is clear from (2.18) that S = 0 if and only if

∂2g

∂uα∂uβ
= 0 2 ≤ α, β ≤ n − 1.

This condition together with the fact that

n−1∑
i=1

ui ∂g

∂ui
= g

implies that S = 0 if and only if

∂2g

∂ui∂uj
= 0 1 ≤ i, j ≤ n − 1.

If S = 0 then
ηn = B3(dxn − g1(x)dx1 − · · · − gn−1(x)dxn−1)

and the condition dηn ≡ 0 (mod ηn) is precisely the condition that the vector fields Xi := ∂/∂xi +
gi(x)∂/∂xn all commute.
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