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Abstract. We construct topologically distinct global, non-embedding
solutions to the Euler-Lagrange equation for a natural energy functional
on the space of maps f : R→ E.

1. Introduction

In [5], Michor and Ratiu defined a natural energy functional (2.3) on the
set of curves in the space of embeddings f : R → E. The Euler-Lagrange
equation (2.4) may be regarded as the geodesic equation for this functional,
and so solutions of (2.4) may be thought of as geodesics in the space of maps
f : R → E. Michor and Ratiu constructed global, C∞ solutions to (2.4);
these solutions all have the property that for each t ≥ 0, the function f(−, t)
is an orientation-preserving embedding (i.e., fx > 0) of R into E.

The main goal of this paper is the explicit construction of topologically
distinct, piecewise C∞, non-embedding solutions to (2.4). The homotopy
classes of these solutions are distinguished by two topological invariants:
the Gauss index (5.2) and the Maslov index (5.3) [3]. Our main result (cf.
Theorem 7.3) indicates that there exist solutions with arbitrarily prescribed
values for these indices.

We will construct these solutions as follows: first, we observe that (2.4)
has a large collection of intermediate differential equations, as described in
[1]. In fact, for any C∞ function r(x), the first-order PDE

f2
xft = r(x)

(cf. (4.1)) is an intermediate equation for (2.4). In §6, we will show how
appropriate choices of r(x) and initial data f(x, 0) lead to the construction
of local, single-valued solutions for t ≥ 0. (Compare with [4].) In §7, we will
show how these local models may be patched together to construct global
solutions of arbitrary topological type.
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2. The energy functional and its Euler-Lagrange equation

This section consists mostly of background material from [5]. Let E denote
the Euclidean line. There is a natural inner product on the space of square-
integrable vector fields on E: given

V (z) = v(z)
d

dz
, W (z) = w(z)

d

dz
,

we define

(2.1) 〈V,W 〉 =
∫

E
v(z)w(z) dz.

Now let f : R → E be a map given by z = f(x) and let V (x),W (x) be
vector fields along the map given by

V (x) = v(x)
d

dz

∣∣∣∣
z=f(x)

, W (x) = w(x)
d

dz

∣∣∣∣
z=f(x)

.

Define a symmetric, bilinear pairing 〈V,W 〉 by pulling back the natural inner
product (2.1):

(2.2) 〈V,W 〉 =
∫

R
v(x)w(x)f ′(x) dx.

Note that this pairing is not positive-definite unless f ′(x) > 0 for all x ∈ R.
Now consider functions f : R× [0, T ] → E, thought of as curves γf in the

infinite-dimensional space C∞(R, E) via

γf (t) =
(
x → f(x, t)

)
∈ C∞(R, E).

The “tangent vector” to γf at t is the vector field

V (x, t) = ft(x, t)
d

dz

∣∣∣∣
z=f(x,t)

along the map γf (t). It is therefore natural to define the energy functional

(2.3) E(γf ) =
∫ T

0

1
2〈V, V 〉 dt = 1

2

∫ T

0

∫
R

f2
t fx dx dt.

This energy functional was considered in [5] in the context of Riemannian
metrics on the space of embeddings f : R → E; we wish to generalize to the
case of maps f : R → E which are not necessarily embeddings.

We note that this functional is not necessarily finite, so we will consider
it as a motivational object. We view it as analogous to the area functional
in minimal surface theory: solutions of the Euler-Lagrange equation are
interesting, including those for which the original functional fails to be finite.

Suppose that a curve γf : [0, T ] → C∞(R, E) is stationary for E . Consider
a 1-parameter fixed-endpoint variation Γ : [0, T ]× (−ε, ε) → C∞(R, E) with
Γ(t, 0) = γf (t), Γ(0, s) = γf (0), Γ(T, s) = γf (T ). Write

Γ(t, s)(x) = F (x, t, s),
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with F (x, t, 0) = f(x, t), and let Γs(t) denote Γ(t, s). We have

E(Γs) = 1
2

∫ T

0

∫
R

F 2
t Fx dx dt.

Since γf is stationary, we have (integrating by parts as usual):

0 =
d

ds

∣∣∣∣
s=0

E(Γs)

= 1
2

∫ T

0

∫
R

(
2FtsFtFx + F 2

t Fxs

) ∣∣∣
s=0

dx dt

= −1
2

∫ T

0

∫
R

Fs

(
2(FtFx)t + (F 2

t )x

)∣∣∣
s=0

dx dt

= −
∫ T

0

∫
R

Fs

∣∣∣
s=0

(
2ftfxt + fxftt

)
dx dt.

Therefore the natural Euler-Lagrange equation for the energy functional
(2.3) is

(2.4) 2ftfxt + fxftt = 0.

We will consider equation (2.4) to be the geodesic equation for the energy
functional on the space of curves f : R → E. Michor-Ratiu [5] constructed
global, non-singular solutions for (2.4) in the case where f(−, 0) : R → E
is an orientation-preserving embedding; we wish to investigate the global
existence of solutions for the larger class of initial conditions where f(−, 0) :
R → E is an arbitrary C∞-map.

In fact, we will construct global solutions for the slightly larger class of
maps in which the derivative f ′ of each map f(−, t0) is allowed to have
isolated singularities – specifically, zeros and poles of fractional order. We
will denote this class of maps by Ĉ∞(R, E). (A more precise definition will
be given in §3.) Our solutions will have the additional property that the
partial derivative ft – which defines the tangent vector field to the curve
γf – remains C∞ except for isolated simple poles, although more general
solutions are possible without this restriction. In order to accommodate
poles in f ′, we introduce the notion of the completed cotangent bundle in the
next section.

3. The completed cotangent bundle

Let T ∗R denote the cotangent bundle of R, with canonical projection
π : T ∗R → R. In order to systematically deal with points where f(x) is
continuous but the derivative f ′(x) is unbounded, we need to “complete”
T ∗R by inserting a point at infinity in each π-fiber. We can do this rigorously
as follows. Consider a canonical coordinate system (x, p) for T ∗R. We take
another copy of T ∗R (which we will denote T ∗R), with canonical coordinates
(x, p̄), and define

T̂ ∗R = T ∗R ∪∼ T ∗R,
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where (x, p) ∼ (x, 1/p̄) for p, p̄ 6= 0.
We will let π : T̂ ∗R → R denote the obvious extension of the canonical

projection π : T ∗R → R to T̂ ∗R, and let π+ : T̂ ∗R × E+ → R × E+ denote
the natural extension of π to T̂ ∗R× E+; i.e., π+(x, t, p) = (x, t).

We now define two important subsets of T̂ ∗R.

Definition 3.1. The zero section of T̂ ∗R is the set

Z0 = {(x, p) | p = 0} ⊂ T̂ ∗R.

The infinite section of T̂ ∗R is the set

Z∞ = {(x, p̄) | p̄ = 0} ⊂ T̂ ∗R.

We also set

Z0
+ = Z0 × E+ ⊂ T̂ ∗R× E+

Z∞
+ = Z∞ × E+ ⊂ T̂ ∗R× E+.

We will consider the following class of maps f : R → E:

Definition 3.2. A C0 function f : R → E is called Ĉ∞ if:

• The derivative f ′ : R → T̂ ∗R is continuous.
• f is C∞ outside of a discrete set X ⊂ R consisting of all finite (but

possibly fractional) order zeros and poles of f ′.
We will write X = X0 ∪ X∞, where

X0 = {x ∈ R | f ′(x) = 0}, X∞ = {x ∈ R | 1
f ′(x)

= 0}.

We also set

X+ = X× E+ ⊂ R× E+

X0
+ = X0 × E+ ⊂ R× E+

X∞+ = X∞ × E+ ⊂ R× E+.

4. Constructing solutions via intermediate equations

Observe that equation (2.4) admits first-order intermediate differential
equations (IDEs) of the form

(4.1) f2
xft = r(x)

for any smooth function r(x). Our solutions will have the property that
r(x) = 0 precisely at the zeros of fx; therefore we will use the same notation
X0 to denote the zero set of r(x). Any solution to (4.1) is automatically
a solution to (2.4) as well; thus our approach to constructing solutions to
(2.4) will be to construct solutions to (4.1), with r(x) chosen in such a way
as to obtain various types of singularities in the solution.
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We begin by rewriting equation (4.1) as a first-order PDE for the function
p(x, t) = fx(x, t): dividing both sides by f2

x and differentiating with respect
to x yields:

fxt =
[
r(x)
f2

x

]
x

.

We write this as the reduced differential equation (RDE) for p(x, t):

(4.2) pt =
[
r(x)
p2

]
x

.

This is an equation of Burgers type. (See [6].) The corresponding equation
for p̄(x, t) is

(4.3) p̄t = −p̄2[r(x)p̄2]x.

Any solution p(x, t) to (4.2) can be integrated to produce a solution f(x, t)
to (4.1) (unique up to an additive constant), which is in turn a solution to
(2.4).

We will approach the problem of constructing these solutions via the
method of characteristics. At points of the singular set X, the usual ini-
tial value problem will be ill-posed, so careful geometric arguments will be
required to construct solutions near singular points.

5. Diff∞(R)-invariance and topological invariants of solutions

Observe that the energy functional (2.3), its Euler-Lagrange equation
(2.4), and all the constructions of §3 are invariant under the action of
Diff∞(R), i.e., under a smooth change of coordinate x → χ(x). This fol-
lows from the observation that the induced mapping on T̂ ∗R,

(x, p) → (χ(x), p/χ′(x))

(x, p̄) → (χ(x), χ′(x)p̄),
(5.1)

is a diffeomorphism of T̂ ∗R which preserves the subsets Z0, Z∞ and the
fibers of the map π : T̂ ∗R → R. Hence there is no preferred Euclidean
structure on R, and a solution f(x, t) to (2.4) should be identified with its
orbit

{f(χ(x), t) | χ(x) ∈ Diff∞(R)}.
The IDE (4.1), however, is not invariant under Diff∞(R); it is straightfor-
ward to check that under the change of coordinate x → χ(x), the function
r(x) is transformed to r(x)

(χ′(x))2
.

It is natural to distinguish solutions with the following (symplectic) topo-
logical invariants, which are invariant under Diff∞(R):

Definition 5.1. Given a Ĉ∞ function f : R → E, we define the Gauss index
[g] and the Maslov index [g′] of f over a (possibly infinite) interval [a, b] to
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be

[g]f =
1
π

∫ b

a

f ′′

1 + (f ′)2
dx = arctan(f ′)

∣∣
b
− arctan(f ′)

∣∣
a
,(5.2)

[g′]f =
1
π

∫ b

a

f ′′′

1 + (f ′′)2
dx = arctan (f ′′)

∣∣
b
− arctan (f ′′)

∣∣
a
,(5.3)

respectively. If f(x, t) is a Ĉ∞ solution to (2.4), then for any fixed t ∈ E+,
we define [gt]f and [g′t]f to be the [g]-index and [g′]-index, respectively, of
the function x → f(x, t).

These quantities count twice the number of counterclockwise rotations in
the tangent lines to the images of the graphs

{(x, f(x))} ⊂ R× E, {(x, f ′(x))} ⊂ R× T̂ ∗R

of f and f ′, respectively. If f is continuous with simple behavior at singular
points, then both (5.2) and (5.3) will be well defined. (Note that f ′′ or f ′′′

may be discontinuous at singular points or at endpoints of the interval, and
the arctan function must then be evaluated via one sided limits.) Thus these
indices are determined by the singularities and the asymptotic behavior of
f . We will construct solutions for which [gt]f and [g′t]f are integer-valued
and constant in t; note that neither of these conditions necessarily holds in
general.

Example 5.2. Consider the function

(5.4) f(x) =
∫ x

0
(sinu)

n
n+1 du + cx

where n ∈ Z+ is even, x ∈ R, and c ∈ R is chosen so that f(x) is π-periodic.
The function

p(x) = f ′(x) = (sin x)
n

n+1 + c

is C∞ except at multiples of π. Moreover,(
n + 1

n

)
f ′′(x) =

cos x

(sinx)
1

n+1

is unbounded at multiples of π, where the image of f ′ has downward-pointing
cusps. (See Figures 1 and 2 for graphs when n = 2.) It follows that on the
interval [0, π], we have [g]f = 0 and [g′]f = −1. By starting with f(x) or
−f(x) on [0,mπ] and smoothly modifying f so that f ′(x) is constant on the
complement of a slightly larger interval, one can construct Ĉ∞ functions
f(x) with [g]f = 0 and [g′]f an arbitrary integer m. (Non-integer values
can be realized by smoothly attaching polynomial or rational functions on
the complement.)

Example 5.3. Consider the function

(5.5) f(x) = (sin x)
n

n+1 ,
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Figure 1. Example 5.2: f(x) =
∫ x
0 (sinu)2/3 du + cx

Figure 2. Example 5.2: p(x) = (sin x)2/3 + c

where n ∈ Z+ is even. Here p(x) = f ′(x) is unbounded at multiples of π,
and it is straightforward to show that on [0, π], [g]f = −1 and [g′]f = 0.
(See Figures 3 and 4 for graphs when n = 2.)

By smoothly attaching combinations of Examples 5.2 and 5.3, one can
construct Ĉ∞ functions f(x) with arbitrary Gauss and Maslov indices.

One might attempt to construct solutions of (2.4) of a given topological
type simply by taking any RDE (4.2), starting with initial data of the ap-
propriate type constructed from Examples 5.2 and 5.3, and allowing it to
evolve. Unfortunately, this initial data may well evolve into discontinuous
or multi-valued solutions. In §6, we show how to construct local singular so-
lutions that remain continuous and single-valued for all t ≥ 0. In §7, we will
show how to concatenate these local solutions in order to construct global
solutions of arbitrary topological type.
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Figure 3. Example 5.3: f(x) = (sin x)2/3

Figure 4. Example 5.3: p(x) = 2
3(sinx)−1/3 cos x

6. Explicit constructions of local solutions

In this section, we will construct explicit local solutions for (4.2) in a
neighborhood of x = 0 when r(x) = ±xk, k ∈ {0, 1, 2, 3}. These solutions
can then be composed with transformations of the form (5.1) to produce
solutions with r(x) = xkg(x) for any C∞, nonvanishing function g(x). We
will use these local solutions in §7 to construct global solutions from initial
data with arbitrary Gauss and Maslov indices.

We begin by examining the Cauchy characteristics for (4.2). The charac-
teristic line field for (4.2) is spanned by the vector field

(6.1) Γr = 2r(x)
∂

∂x
+ p3 ∂

∂t
+ pr′(x)

∂

∂p

on T ∗R×E+. Observe that on the set Z0
+, this line field is spanned by r(x) ∂

∂x

(except at points of π−1
+ (X0) ∩ Z0

+, where Γr = 0). Since the characteristic
vector field contains no ∂

∂t component on Z0
+, initial data passing through
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Z0
+ − π−1

+ (X0) is ill-posed. Because of this, we will not consider solutions
which intersect Z0

+ − π−1
+ (X0). We will, however, construct solutions which

intersect Z0
+ on the zero curves X0

+ = X0 × E+, where the characteristic
vector field vanishes entirely. In other words, r(x) must have a zero at any
point x0 for which p(x0, t) = 0 for any value of t. (In fact, we will see that
if p(x0, t) = 0 for some value of t, then p(x0, t) = 0 for all t ≥ 0.)

Now consider the characteristic vector field near Z∞
+ . Under the change

of coordinates p → p̄−1, the characteristic vector field Γr becomes

Γr = 2r(x)
∂

∂x
+

1
p̄3

∂

∂t
− p̄r′(x)

∂

∂p̄

=
1
p̄3

(
2p̄3r(x)

∂

∂x
+

∂

∂t
− p̄4r′(x)

∂

∂p̄

)
.

It follows that the characteristic line field has a C∞ extension to T̂ ∗R×E+−
Z0

+, and near Z∞
+ this extension is spanned by multiples of the vector field

(6.2) Γ̄r = 2p̄3r(x)
∂

∂x
+

∂

∂t
− p̄4r′(x)

∂

∂p̄
.

Note that on Z∞
+ , the characteristic line field is spanned by ∂

∂t ; thus, any
characteristic curve which passes through Z∞

+ at t = 0 remains there for all
t ≥ 0. It follows that initial data p̄(x) = 1

fx
(x, 0) which intersects Z∞ at a

point x0 will evolve so as to intersect Z∞
+ on the causal half ray {x0} ×E+.

In order to characterize initial data which evolves into a single-valued
Ĉ∞-solution, we must understand:

• when the π+-projections of distinct characteristic curves through an
initial arc intersect at a point (x, t) with t ≥ 0 (thereby creating
multivalues in p), and

• how the characteristic curves behave over the singular points π−1
+ (X).

Regarding the former issue, we will find a simple criterion on the derivative
of initial data which ensures that all such intersections occur at points with
t < 0 (Proposition 6.3). The latter issue, along with the question of how
smoothly these evolving arcs extend across X× E+, will be addressed on a
case-by-case basis.

6.1. Case 1. Let r(x) = ±1. In this case, (4.2) becomes

(6.3) pt =
[
±1
p2

]
x

.

Since r(x) is nonvanishing, p(x, t) must be nonvanishing as well; thus we
will work entirely in (x, t, p̄) coordinates. To this end, we will rewrite (6.3)
in the form (4.3); i.e.,

(6.4) p̄t = ∓1
2 [p̄4]x.
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The characteristic line field is spanned by

Γr = ±2p̄3 ∂

∂x
+

∂

∂t
,

where the sign corresponds to the sign of r(x) = ±1. The characteristic
curve passing through the point (x0, 0, p̄0) is parametrized by

(x(v), t(v), p̄(v)) = (x0 ± 2p̄3
0v, v, p̄0).

Note that these curves are straight lines, and that p̄ is constant on each
characteristic curve. Given (possibly singular) initial data p̄0(x), the corre-
sponding solution surface s : R× R+ → T̂ ∗R× E+ is parametrized by

x(u, v) = u± 2vp̄0(u)3

t(u, v) = v(6.5)

p̄(u, v) = p̄0(u).

Now consider the problem of when the π+-projections of distinct charac-
teristic curves through an initial arc intersect at a point (x, t) with t ≥ 0.
We wish to avoid this situation in order to ensure a single-valued solution
for all t ≥ 0; for this it suffices that the Jacobian determinant ∂(x,t)

∂(u,v) be
nonvanishing for t ≥ 0 [2]. A straightforward computation shows that

∂(x, t)
∂(u, v)

= 1± 6vp̄0(u)2p̄′0(u).

Therefore, it suffices to choose initial data p̄0(x) such that:
• if r(x) = 1, p̄′0(x) ≥ 0 whenever p̄′0(x) is finite;
• if r(x) = −1, p̄′0(x) ≤ 0 whenever p̄′0(x) is finite.

(See Figures 5 and 6 for illustrations of “good” and “bad” behavior of char-
acteristics in the (x, t) plane.)

Figure 5. “Good” characteristic behavior

We state this as:
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Figure 6. “Bad” characteristic behavior

Proposition 6.1. Given (possibly singular) initial data p̄0(x) for equation
(6.4), the associated solution s : R×R+ → T̂ ∗R×E+ given by (6.5) remains
single-valued for all t ≥ 0 if for all x ∈ R,

dp̄0

dx
≥ 0 (or equivalently,

dp0

dx
≤ 0) when r = 1,(6.6)

dp̄0

dx
≤ 0 (or equivalently,

dp0

dx
≥ 0) when r = −1.(6.7)

Note that as a consequence of this proposition, p̄0(x) can have at most
one zero; moreover, this zero must be of fractional order less than one in
order for f0(x) to remain finite. If p̄0(x0) = 0, then the characteristic curve
passing through (x0, 0, p̄0(x0)) = (x0, 0, 0) is parametrized by

(x(v), t(v), p̄(v)) = (x0, v, 0),

so the zero in p̄ persists at the same x-value for all t ≥ 0. This corresponds
to a cusp in the graph of f , which makes a nontrivial contribution to the
Gauss index [g]f .

Example 6.2. The initial data p̄0(x) = |x|3/2

x , or equivalently,

p0(x) =
x

|x|3/2
=

{
1√
x

x ≥ 0

− 1√
−x

x < 0
,

satisfies condition (6.6) with r = 1, and so it will yield a global, single-valued
solution p̄(x, t) to the RDE

p̄t = −1
2 [p̄4]x.

The corresponding solution p(x, t) to the RDE

pt =
[

1
p2

]
x
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has a pole of order 1
2 at x = 0 for all t ≥ 0. (See Figures 7 and 8 for graphs

of p0(x) = x
|x|3/2 and f0(x) = 2

√
|x|−3.) Figure 9 shows the π+-projections

Figure 7. Example 6.2: p0(x) = x
|x|3/2

Figure 8. Example 6.2: f0(x) = 2
√
|x| − 3

of the characteristic curves in the (x, t)-plane; these curves do not cross for
any t ≥ 0, and this initial data yields a Ĉ∞, single-valued solution p(x, t) to
the RDE

pt =
[

1
p2

]
x

.

6.2. Focusing and defocusing of characteristics at singularities. Note
that in Figure 9, there is a single, vertical characteristic curve at the singular
point x = 0, and that nearby characteristic curves diverge from the vertical
curve as t increases. For this reason, we call this a defocusing singularity.
All the remaining examples in this section will have a significantly different
characteristic profile at the singular point x = 0; see, e.g., Figure 12. These
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Figure 9. Characteristic curves in (x, t)-plane for Example 6.2

will be referred to as focusing singularities, and they will be constructed so
that p0(0) = 0 (and hence r(0) = 0 as well). When we construct global
solutions in §7, we will employ initial data with alternating focusing and
defocusing singularities.

In order to construct single-valued solutions with this type of singularity,
the following conditions must be satisfied:

(1) The function r(x)
p0(x)2

must remain finite and C∞ as x → 0 so that the
vector field ft defined by (4.1) will be C∞ at x = 0.

(2) As noted previously, the characteristic vector field will vanish when-
ever x = 0. But in order for the characteristic curves for x > 0 and
x < 0 to patch smoothly along the t-axis as in Figure 12, the char-
acteristic vector field should approach zero horizontally as x → 0.
Therefore, we must have lim

x→0

(
p0(x)3

r(x)

)
= 0.

(3) In addition to patching smoothly in the (x, t)-plane, the characteris-
tic curves must patch smoothly in the p-coordinate along the t-axis
as well. This will require a symmetry condition in the initial data.

Furthermore, we must ensure that the π+-projections of distinct char-
acteristic curves never intersect at a point (x, t) with t > 0. Fortunately,
Proposition 6.1 is much broader than it appears: applying a transformation
of the form (5.1) (with χ′(x) ≥ 0 in order to preserve orientation) transforms
r(x) from ±1 to ±(χ′(x))2 and transforms p(x) to p(x)

χ′(x) . Thus we have the
following more general statement:

Proposition 6.3. Given (possibly singular) initial data p0(x) for equation
(4.2), the associated solution remains single-valued for all t ≥ 0 if for all
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x ∈ R,

d

dx

(
p0(x)√
|r(x)|

)
≤ 0 when r(x) ≥ 0,(6.8)

d

dx

(
p0(x)√
|r(x)|

)
≥ 0 when r(x) ≤ 0.(6.9)

This condition, together with conditions (1) and (2) above, will force
r(x)

p0(x)2
to be a C∞, nonvanishing function near x = 0. We will use all these

conditions on our initial data to ensure that solutions remain single-valued
for all t > 0.

Note that the characteristic vector field (6.1) has the property that

Γr

(
r(x)
p2

)
= 0;

therefore the quantity r(x)
p2 is constant on each characteristic curve. This

fact will allow us to integrate the characteristic vector field and to obtain
an explicit expression for the characteristic curves in each of our examples
below.

6.3. Case 2. Let r(x) = x. (The case r(x) = −x is similar.) We will
construct solutions that intersect the zero locus Z0

+ at x = 0; to this end,
we will work in (x, t, p) coordinates.

In this case, (4.2) becomes

(6.10) pt =
[

x

p2

]
x

.

The characteristic line field is spanned by

Γr = 2x
∂

∂x
+ p3 ∂

∂t
+ p

∂

∂p
.

Consider the characteristic curve passing through a point (x0, 0, p0) with
x0, p0 6= 0. Near such a point, we can write

Γr ∼
∂

∂x
+

p3

2x

∂

∂t
+

p

2x

∂

∂p
.

This vector field can be integrated directly, and the characteristic curve is
parametrized by

(6.11) (x, t(x), p(x)) = (x, 1
3a3

0(|x|3/2 − |x0|3/2), a0|x|1/2),

where a0 = p0

|x0|1/2 . The π+-projection of this curve is the cubic curve

(6.12)
(
3t + p3

0

)2 = a3
0|x|3.

If a0 < 0 – which corresponds to a choice of sign in the initial data p0(x) –
then this curve will intersect the t-axis at some point t > 0, thereby creating
a focusing singularity. Since x

p2 = ±1
a2
0

is constant on this curve, we must
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have p(0, t) = 0 for all t > 0. So in order to construct the desired solutions,
we need to ensure that:

• The derivative condition of Proposition 6.3 is satisfied. This can be
achieved by choosing p0(x) = |x|1/2P (x), where P is a nonvanishing
function which is decreasing when x ≥ 0 and increasing when x ≤ 0.
Moreover, since we want p

|x|1/2 < 0, we should choose P to be a
negative-valued function.

• The characteristic curves patch together continuously when x = 0.
This can be arranged by choosing P (x) so that P (−x) = P (x), for
then p0(−x0) = p0(x0), and the characteristic curves through the
points (x0, 0, p0) and (−x0, 0, p0) are two branches of the same cubic
curve (6.12). The resulting Ĉ∞ solution p(x, t) has a cusp singularity
along the t-axis, which makes a nontrivial contribution to the Maslov
index [g′]f .

Example 6.4. Take as initial data p0(x) = −|x|1/2(1 + 1
100x2). This cor-

responds to f0(x) = − sgn(x)
1050 |x|

3/2(3x2 + 700) + c. (See Figures 10 and 11
for graphs of p0(x) and f0(x).) Figure 12 shows the π+-projections of the

Figure 10. Example 6.4: p0(x) = −|x|1/2(1 + 1
100x2)

characteristic curves in the (x, t)-plane; these curves do not cross for any
t ≥ 0 (except where they meet along the t-axis), and this initial data yields
a global, single-valued solution p(x, t) to the RDE

pt =
[

x

p2

]
x

.

The corresponding solution f(x, t) has Gauss and Maslov indices [g0]f = 0
and [g′0]f = 1, respectively, over the entire real line at t = 0.

6.4. Case 3. Let r(x) = x2. (The case r(x) = −x2 is similar.) We will
construct solutions that intersect the zero locus Z0

+ at x = 0; to this end,
we will work in (x, t, p) coordinates.
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Figure 11. Example 6.4: f0(x) = − sgn(x)
1050 |x|

3/2(3x2 + 700)

Figure 12. Characteristic curves for Example 6.4

In this case, (4.2) becomes

(6.13) pt =
[
x2

p2

]
x

.

The characteristic line field is spanned by

Γr = 2x2 ∂

∂x
+ p3 ∂

∂t
+ 2xp

∂

∂p
.

Consider the characteristic curve passing through a point (x0, 0, p0) with
x0, p0 6= 0. Near such a point, we can write

Γr ∼
∂

∂x
+

p3

2x2

∂

∂t
+

p

x

∂

∂p
.

This vector field can be integrated directly, and the characteristic curve is
parametrized by

(6.14) (x, t(x), p(x)) = (x, 1
4a3

0(x
2 − x2

0), a0x),
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where a0 = p0

x0
. The π+-projection of this curve is the parabola

(6.15) t = 1
4a3

0(x
2 − x2

0).

If a0 < 0 – which corresponds to a choice of sign in the initial data p0(x)
– then this parabola will intersect the t-axis at some point t > 0, thereby
creating a focusing singularity. Since x2

p2 = 1
a2
0

is constant on this curve, we
must have p(0, t) = 0 for all t > 0. So in order to construct the desired
solutions, we need to ensure that:

• The derivative condition of Proposition 6.3 is satisfied. This can be
achieved by choosing p0(x) = xP (x), , where P is a nonvanishing
function which is decreasing when x ≥ 0 and increasing when x ≤ 0.
Moreover, since we want p

x < 0, we should choose P to be a negative-
valued function.

• The characteristic curves patch together smoothly when x = 0. This
can be arranged by choosing P (x) so that P (−x) = P (x), for then
p0(−x0) = −p0(x0), and the characteristic curves through the points
(x0, 0, p0) and (−x0, 0,−p0) are the two branches of the same para-
bolic curve (6.15). The resulting Ĉ∞ solution p(x, t) is in fact C∞

along the t-axis.

Example 6.5. Take as initial data p0(x) = −x(1+ 1
100x2). This corresponds

to f0(x) = −(1
2x2+ 1

400x4)+c. (See Figures 13 and 14 for graphs of p0(x) and
f0(x).) Figure 15 shows the π+-projections of the characteristic curves in

Figure 13. Example 6.5: p0(x) = −x(1 + 1
100x2)

the (x, t)-plane; these curves do not cross for any t ≥ 0 (except where they
meet along the t-axis), and this initial data yields a global, single-valued
solution p(x, t) to the RDE

pt =
[
x2

p2

]
x

.

The corresponding solution f(x, t) has Gauss and Maslov indices [g0]f = −1



18 JEANNE N. CLELLAND, MAREK KOSSOWSKI, AND GEORGE R. WILKENS

Figure 14. Example 6.5: f0(x) = −(1
2x2 + 1

400x4) + 3

Figure 15. Characteristic curves for Example 6.5

and [g′0]f = 0, respectively, over the entire real line at t = 0.

6.5. Case 4. Let r(x) = x3. (The case r(x) = −x3 is similar.) We will
construct solutions that intersect the zero locus Z0

+ at x = 0; to this end,
we will work in (x, t, p) coordinates.

In this case, (4.2) becomes

(6.16) pt =
[
x3

p2

]
x

.

The characteristic line field is spanned by

Γr = 2x3 ∂

∂x
+ p3 ∂

∂t
+ 3px2 ∂

∂p
.

Consider the characteristic curve passing through a point (x0, 0, p0) with
x0, p0 6= 0. Near such a point, we can write

Γr ∼
∂

∂x
+

p3

2x3

∂

∂t
+

3p

2x

∂

∂p
.
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This vector field can be integrated directly, and the characteristic curve is
parametrized by

(6.17) (x, t(x), p(x)) = (x, 1
5a3

0(|x|5/2 − |x0|5/2), a0|x|3/2),

where a0 = p0

|x0|3/2 . The π+-projection of this curve is the quintic curve

(6.18)
(

5t +
p3
0

x2
0

)2

= a3
0|x|5.

If a0 < 0 – which corresponds to a choice of sign in the initial data p0(x) –
then this curve will intersect the t-axis at some point t > 0, thereby creating
a focusing singularity. Since x3

p2 = ±1
a2
0

is constant on this curve, we must
have p(0, t) = 0 for all t > 0. So in order to construct the desired solutions,
we need to ensure that:

• The derivative condition of Proposition 6.3 is satisfied. This can be
achieved by choosing p0(x) = |x|3/2P (x), where P is a nonvanishing
function which is decreasing when x ≥ 0 and increasing when x ≤ 0.
Moreover, since we want p

|x|3/2 < 0, we should choose P to be a
negative-valued function.

• The characteristic curves patch together continuously when x = 0.
This can be arranged by choosing P (x) so that P (−x) = P (x),
for then p0(−x0) = p0(x0), and the characteristic curves through
the points (x0, 0, p0) and (−x0, 0, p0) are two branches of the same
quintic curve (6.18). The resulting Ĉ∞ solution p(x, t) is C1 along
the t-axis.

Example 6.6. Take as initial data p0(x) = −|x|3/2(1 + 1
100x2). This cor-

responds to f0(x) = − sgn(x)
450 |x|5/2(x2 + 180) + c. (See Figures 16 and 17

for graphs of p0(x) and f0(x).) Figure 18 shows the π+-projections of the

Figure 16. Example 6.6: p0(x) = −|x|3/2(1 + 1
100x2)

characteristic curves in the (x, t)-plane; these curves do not cross for any
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Figure 17. Example 6.6: f0(x) = − sgn(x)
450 |x|5/2(x2 + 180)

t ≥ 0 (except where they meet along the t-axis), and this initial data yields
a global, single-valued solution p(x, t) to the RDE

pt =
[
x3

p2

]
x

.

The corresponding solution f(x, t) has Gauss and Maslov indices [g0]f = 0

Figure 18. Characteristic curves for Example 6.6

and [g′0]f = −1, respectively, over the entire real line at t = 0.

7. Assembling global solutions

We can use the results of §6 to assemble initial data p0(x) which evolves
into a global Ĉ∞ solution p(x, t) to (4.2) with arbitrary [gt], [g′t]-indices. We
do this by first choosing initial data p0(x) (or p̄0(x), as appropriate) with
the desired topological properties. We then choose r(x) with an appropriate
singular set X, with each singularity based on one of the local models of §6.
In order to ensure that the solution to (4.2) exists and remains single-valued
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for all t > 0, we must arrange that the π+-projections of the characteristics
to R × E+ fill out all of R × E+ without crossing. We accomplish this by
placing the singularities of p0(x) so that they alternate between focusing
and defocusing type. (See Figure 21 for an illustration.) As in the local
examples of §6, we must ensure that:

• The derivative condition of Proposition 6.3 is satisfied.
• In the case of a focusing singularity, a symmetry condition holds on

the initial data so that the characteristic curves patch continuously
across the singularity.

Then we must smoothly concatenate this initial data over R − X so that
these conditions are respected.

7.1. Solutions with arbitrary Gauss index. We can combine Cases 1
and 3 of §6 to construct solutions whose Maslov index [g′t] is zero and whose
Gauss index [gt] is an arbitrary negative integer; positive integer values may
be obtained by reversing the signs of r(x) and p0(x).

Example 7.1. Let r0(x) be the continuous, piecewise smooth function de-
fined by

r0(x) =

{
1
2

(
1− cos(π

2 x)
)

|x| ≤ 4
0 |x| > 4

.

(Choosing r0(x) = 0 for |x| ≥ 4 will allow us to construct examples with
nice asymptotic behavior.) The corners of r0(x) can be smoothed out to
obtain a C∞ approximation r(x) of r0(x), as shown in Figure 19. Similarly,

Figure 19. Example 7.1: r(x)

we can smoothly concatenate scaled and translated copies of the initial data
functions from Examples 6.2 and 6.5 in order to create a global initial data
function p0(x) which is C∞ away from its poles, has a zero of order 1 at each
quadratic zero of r(x), and has a pole of order 1

2 between each pair of zeros of
r(x). Since the derivative conditions of Proposition 6.3 are open conditions,
this construction can be performed so as to preserve these conditions. We
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can also impose asymptotic conditions, e.g., that limx→±∞ p0(x) = 0. An
example of such a function p0(x) and the corresponding f0(x) are shown in
Figure 20. This initial data has [g]f0 = −2, [g′]f0 = 0; it should be clear
how to iterate this construction to produce a function r(x) and initial data
p0(x) whose Gauss index is an arbitrary negative integer. Figure 21 shows

Figure 20. Example 7.1: Graphs of p0(x) and f0(x)

the π+-projections of the characteristic curves corresponding to this initial
data in the (x, t)-plane; these curves do not cross for any t > 0 (except
where they meet along the t-axis), and this initial data yields a global, Ĉ∞

solution p(x, t) to the RDE

pt =
[
r(x)
p2

]
x

for |x| < 4. The characteristic vector field vanishes for |x| ≥ 4, but this
solution may be C∞-extended to R×E+ by defining p(x, t) = 0 for |x| ≥ 4.
Figures 22 and 23 illustrate the evolution of this initial data at t = 0, t = 1,

Figure 21. Characteristic curves for Example 7.1

and t = 2. It is clear that this solution has [gt] = −2, [g′t] = 0 for all t ≥ 0.
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Figure 22. Example 7.1: Graphs of x → p(x, t) for t = 0, 1, 2

Figure 23. Example 7.1: Graphs of x → f(x, t) for t = 0, 1, 2

7.2. Solutions with arbitrary Maslov index. We can combine Cases
1, 2, and 4 of §6 to construct solutions whose Gauss index [gt] is zero and
whose Maslov index [g′t] is an arbitrary positive integer; negative integer
values may be obtained by reversing the signs of r(x) and p0(x).

Example 7.2. Let r0(x) be the continuous, piecewise smooth function de-
fined by

r0(x) =


cos(π

2 x) −2 ≤ x ≤ 0 or 2 ≤ x ≤ 4
cos3(π

2 x) −5 ≤ x ≤ −2 or 0 ≤ x ≤ 2 or 4 ≤ x ≤ 5
0 |x| > 5

.

(Choosing r0(x) = 0 for |x| ≥ 5 will allow us to construct examples with
nice asymptotic behavior.) r0(x) can be smoothed out to obtain a C∞

approximation r(x) of r0(x), as shown in Figure 24. This function has zeros
of order 1 at x = −1 and x = 3, and zeros of order 3 at x = −3 and x = 1.
We can smoothly concatenate scaled and translated copies of the initial
data functions from Examples 6.2, 6.4, and 6.6 (with the signs reversed in
Example 6.6) in order to create a global initial data function p0(x) which
is C∞ away from its poles and zeros, has a zero of order 1

2 at each linear
zero of r(x) and a zero of order 3

2 at each cubic zero of r(x), and has a
pole of order 1

2 between each pair of zeros of r(x). Since the derivative
conditions of Proposition 6.3 are open conditions, this construction can be
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Figure 24. Example 7.2: r(x)

performed so as to preserve these conditions. We can also impose asymptotic
conditions, e.g., that limx→±∞ p0(x) = 0. An example of such a function
p0(x) and the corresponding f0(x) are shown in Figure 25. This initial data
has [g]f0 = 0, [g′]f0 = 2; it should be clear how to iterate this construction
to produce a function r(x) and initial data p0(x) whose Maslov index is
an arbitrary positive integer. Figure 26 shows the π+-projections of the

Figure 25. Example 7.2: Graphs of p0(x) and f0(x)

characteristic curves corresponding to this initial data in the (x, t)-plane;
these curves do not cross for any t > 0 (except where they meet along the
t-axis), and this initial data yields a global, Ĉ∞ solution p(x, t) to the RDE

pt =
[
r(x)
p2

]
x

for |x| < 5. The characteristic vector field vanishes for |x| ≥ 5, but this
solution may be C∞-extended to R×E+ by defining p(x, t) = 0 for |x| ≥ 5.
Figures 27 and 28 illustrate the evolution of this initial data at t = 0, t = 1,
and t = 2. It is clear that this solution has [gt] = 0, [g′t] = 2 for all t ≥ 0.
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Figure 26. Characteristic curves for Example 7.2

Figure 27. Example 7.2: Graphs of x → p(x, t) for t = 0, 1, 2

Figure 28. Example 7.2: Graphs of x → f(x, t) for t = 0, 1, 2

Because these solutions are identically zero outside of a compact set, it is
clear that they may be concatenated so as to create solutions with arbitrarily
prescribed values for the Gauss and Maslov indices. Therefore, we have the
following theorem:

Theorem 7.3. Given any two integers m,n, there exists a Ĉ∞ solution
f(x, t), defined for t ≥ 0, of (2.4) with [g]f = m, [g′]f = n.



26 JEANNE N. CLELLAND, MAREK KOSSOWSKI, AND GEORGE R. WILKENS

8. Closing remarks

While Examples 7.1 and 7.2 are fairly specific, it is possible to con-
struct global solutions to (2.4) from a wide range of initial data. Using
our methods, local solutions with focusing singularities may be constructed
with r = xk for any positive integer k, and the Diff∞(R)-invariance of so-
lutions provides a wide array of possible initial conditions p0(x). The only
conditions that must be met are the open conditions described in §6: the
derivative condition of Proposition 6.3, and a symmetry condition to ensure
continuous patching of the characteristic curves across the singularity. It is
also possible to weaken the smoothness assumption on ft, which increases
the possible types of singularities that may occur in p0(x).

Defocusing singularities, on the other hand, appear to be more elusive.
We have been unable to construct any defocusing singularities other than
those based on the local model in Case 1 of §6. The obstruction is that for
any choice of r(x) with a zero – or, for that matter, a pole – at x = 0 and
initial data p0(x) of the appropriate sign to create a defocusing singularity,
the π+-projections of the characteristic curves fail to fill out the entire (x, t)-
plane for t > 0, and therefore solutions fail to exist in any neighborhood of
x = 0 for any t > 0. A typical profile of these characteristics is shown in
Figure 29.

Figure 29. Characteristic curves that fail to fill out the
(x, t)-plane
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