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Abstract. This paper presents a partial classification for C∞ type-
changing symplectic Monge-Ampère partial differential equations (PDEs)
that possess an infinite set of first-order intermediate PDEs. The nor-
mal forms will be quasi-linear evolution equations whose types change
from hyperbolic to either parabolic or to zero. The zero points can be
viewed as analogous to singular points in ordinary differential equations.
In some cases, intermediate PDEs can be used to establish existence of
solutions for ill-posed initial value problems.

1. Introduction

A first-order intermediate partial differential equation (PDE) for a second-
order Monge-Ampère PDE (2.3) is defined by the property that every solu-
tion of the former is also a solution of the latter. The objective of this paper
is to use the set of intermediate PDEs, viewed as an invariant, in the lo-
cal classification of C∞-symplectic Monge-Ampère PDEs with type-changing
singularities. This classification will be up to symplectomorphism (i.e., C∞-
symplectic changes of coordinates on the underlying cotangent space), and
the PDEs considered will have infinite sets of intermediate equations.

The main results consist of a collection of invariants and local normal
forms for involutive type-changing symplectic Monge-Ampère PDEs with
specific sets of intermediate PDEs. The normal forms will be quasi-linear
evolution PDEs which change type from hyperbolic to parabolic, or to zero,
where the PDE completely degenerates (cf. §7). At the zero points, standard
existence techniques cannot be applied to the natural initial value problem.
However, in some cases an intermediate PDE can be used to “repair” such
an ill-posed second-order problem by replacing it with a well-posed first-
order problem. Thus, the main motivation for this paper is to provide a
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local C∞-existence theory for type-changing Monge-Ampère PDE that are
symplectomorphic to the normal forms (cf. §8).

Moreover, invariant structural details can be inferred from the normal
forms. For example: symmetries of a C∞ type-changing symplectic Monge-
Ampère equation need not extend smoothly to the zero locus; additionally,
there exist distinguished solution foliations intersecting the zero locus.

Theorem 7.7 indicates that one of our classes of PDEs with type-changing
singularities consists of equations that are symplectomorphic to Euler-La-
grange PDEs for indefinite Lagrangians of the form fxL(ft) (cf. §8.1). As an
example, Michor and Ratiu introduced the Lagrangian 1

2fxf
2
t as an energy

functional on the path space of the Euclidean line (i.e., a natural Riemann-
ian metric on the space of C2-mappings of R into E [Mar70] [MR98]). In
[CKW] we will use intermediate PDEs and “repaired” initial data to con-
struct topologically distinct global solutions for this Euler-Lagrange PDE.
Global topology will compel the initial data to interact with the zero locus
of the PDE.

Historically, intermediate PDEs arose as a 19th-century method for con-
structing “general solutions” for nonlinear PDEs. Lie and Darboux first
used the set of intermediate PDEs as an invariant to characterize the wave
equation up to local symplectomorphism (Theorem 6.6). We will refine this
method (cf. §4, §5, §6). The main results appear in §7, with consequences
discussed in §8.

A more subtle classification scheme for more general hyperbolic or para-
bolic PDEs, which uses the collection of higher order conservation laws, can
be found in [BG95a], [BG95b], [Cle97a], [Cle97b]. Darboux integrals rep-
resent another generalization of intermediate PDEs [Jur96], [JA97]. Con-
tact singularities in intermediate PDEs for hyperbolic PDEs were studied in
[Cle00]. The normal forms of Theorems 6.4 and 7.14 are related to the nor-
mal forms of [BG95b] and [Mar70], respectively. We note in passing that our
definition of an involutive zero locus is a refinement of Cartan’s definition
of “singular solution” for an exterior differential system [Car45].

2. Symplectic Monge-Ampère PDEs

The material in this section is well-known; it originated with Lepage
[Lep50] and was developed in detail in [Lyc79] and [LRC93].

Let (M,ω) be a symplectic 4-manifold M with symplectic form ω. In local
symplectic coordinates (x, y, p, q) on M , we have ω = dp ∧ dx+ dq ∧ dy. M
is locally equivalent to the cotangent bundle T ∗R2, and as such, M carries
a locally defined 1-form θ = p dx+ q dy with the property that dθ = ω.

Definition 2.1. A symplectic Monge-Ampère PDE is given by a symplectic
4-manifold (M,ω) and another 2-form Ω on M . A (generalized) solution for
the PDE is given by a 2-dimensional submanifold s : D ⊂ R2 → M such
that

s∗ω = s∗Ω = 0.
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By adding a suitable multiple of ω to Ω, we may assume that Ω ∧ ω = 0,
and we will do so henceforth. A 2-form Ω with this property is called
effective.

In terms of the local symplectic coordinates defined above, we can then
write

(2.1) Ω = E dp ∧ dq +Adp ∧ dy
+B (dq ∧ dy − dp ∧ dx) + C dx ∧ dq +Ddx ∧ dy,

where A,B,C,D,E are functions of (x, y, p, q). Ω represents the PDE

(2.2) E (fxx fyy − f2
xy) +Afxx + 2B fxy + C fyy +D = 0,

where the coefficients are functions of the four variables (x, y, fx, fy). Two
symplectic Monge-Ampère PDEs (M1, ω1,Ω1), (M2, ω2,Ω2) are locally sym-
plectically equivalent at e1 ∈ M1, e2 ∈ M2 if there exists a locally defined
C∞-symplectomorphism Ψ : M1 →M2 such that Ψ(e1) = e2 and

Ψ∗ Ω2 ≡ mΩ1 mod ω1

for some locally defined, nonvanishing function m : M1 → R.
Contrast this setup with that for a general Monge-Ampère PDE: in the

general case, let (M̃, θ̃) be a contact 5-manifold with contact form θ̃. In
local contact coordinates (x, y, z, p, q) on M̃ , we have θ̃ = dz − p dx − q dy,
and M̃ is locally equivalent to J1(R2,R).

Definition 2.2. A Monge-Ampère PDE is given by a contact 5-manifold
(M̃, θ̃) and an effective 2-form Ω̃ on M̃ . A (generalized) solution for the
PDE is given by a 2-dimensional submanifold s̃ : D ⊂ R2 → M̃ such that

s̃∗θ̃ = s̃∗dθ̃ = s̃∗Ω̃ = 0.

As in the previous case, Ω̃ represents the PDE

(2.3) E (fxx fyy − f2
xy) +Afxx + 2B fxy + C fyy +D = 0,

where now the coefficients are now functions of the five variables (x, y, z, p, q) =
(x, y, f, fx, fy). Two Monge-Ampère PDEs (M̃1, θ̃1, Ω̃1, ), (M̃2, θ̃2, Ω̃2) are lo-
cally contact equivalent at ẽ1 ∈ M̃1, ẽ2 ∈ M̃2 if there exists a locally defined
C∞-contact transformation Ψ̃ : M̃1 → M̃2 such that Ψ̃(ẽ1) = ẽ2 and

Ψ̃∗ Ω̃2 ≡ m̃ Ω̃1 mod θ̃1, dθ̃1

for some locally defined, nonvanishing function m̃ : M̃ → R.
Note that a symplectic Monge-Ampère PDE may be “partially prolonged”

to a general Monge-Ampère PDE in a straightforward way via a projection
ρ : M̃ → M satisfying the condition that dθ̃ = −ρ∗(ω). (In this case,
(M,ω,Ω) is called a symplectic reduction of (M̃, θ̃, Ω̃).) In local coordinates,
ρ is given by ρ(x, y, z, p, q) = (x, y, p, q); thus, we see that a symplectic
Monge-Ampère PDE is simply a Monge-Ampère PDE whose coefficients are
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independent of z. We also note that it is possible for two symplectic Monge-
Ampère PDEs to be contact equivalent but not symplectically equivalent,
since the group of contact transformations is larger than the group of sym-
plectomorphisms.

While second-order PDEs are represented by effective 2-forms on M (or
M̃), first-order PDEs are represented by functions. Specifically, a nondegen-
erate function H : M̃ → R determines a 1-parameter family of first-order
PDEs of the form

H(x, y, f, fx, fy) = c,

one for each constant c ∈ R. Similarly, a nondegenerate function h : M → R
determines a 1-parameter family of first-order PDEs of the form

h(x, y, fx, fy) = c.

Note that for any partial prolongation ρ : M̃ →M , the function H = ρ∗(h)
determines a 1-parameter family of first-order PDEs on (M̃, θ̃) in an obvious
way.

3. Intermediate differential equations

We can associate to any Monge-Ampère PDE (M̃, θ̃, Ω̃) a collection of
first-order PDEs known as intermediate differential equations, defined as
follows.

Definition 3.1. An intermediate differential equation (IDE) for a Monge-
Ampère PDE (M̃, θ̃, Ω̃) is a nondegenerate function H : M̃ → R such that
solutions for the family of first-order PDEs determined by H are also so-
lutions for (M̃, θ̃, Ω̃). In terms of differential ideals, this condition may be
expressed as

(3.1) (θ̃, dθ̃, Ω̃) ⊂ (θ̃, dθ̃, dH).

IDEs are more commonly called intermediate integrals. This notion is
originally due to Goursat [Gou96] and has been widely studied; see, e.g.,
[Cle00], [LR90], [LRC93], [Zil99].

Classically, an IDE for a symplectic Monge-Ampère PDE (M,ω,Ω) is
defined to be an IDE for any partial prolongation. But because the partial
prolongation construction is non-canonical, it would be preferable to define
IDEs for symplectic Monge-Ampère PDEs as objects on M , independent
of any particular partial prolongation. In the remainder of this section, we
will show how this may be accomplished. After that, we proceed with our
main objective: to show that the set of IDEs can be used to classify certain
symplectic Monge-Ampère PDEs up to symplectic equivalence.

Relative to a partial prolongation ρ : M̃ →M , IDEs can be distinguished
as cylindrical intermediate equations (CIEs) or graph-like intermediate equa-
tions (GIEs), depending upon their relationship with the R-fibers of ρ.
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Provisional Definition 3.2. Given a symplectic Monge-Ampère PDE (M,ω,Ω),
a partial prolongation ρ : M̃ →M , and an IDE H : M̃ → R, we say that H
is

• cylindrical if the level sets H = c are ruled by the R-fibers of ρ (i.e.,
if H = ρ∗(h) for some function h : M → R);

• graph-like if the level sets H = c are transverse to the R-fibers of ρ.

Remark 3.3. The term “graph-like” is motivated by the fact that, by the
implicit function theorem, any first-order PDE H = c in the family deter-
mined by a graph-like IDE H : M̃ → R can locally be written in the form
z = ρ∗(hc) for some function hc : M → R.

Now we will show how IDEs for a symplectic Monge-Ampère PDE (M,ω,Ω)
may be realized as objects on M . This discussion will make use of the ob-
servation that condition (3.1) is equivalent to

(3.2) Ω̃ ∈ (θ̃, dθ̃, dH).

First, consider a CIE H = ρ∗(h), h : M → R. Condition (3.2) may be
written in the form

(3.3) ρ∗(Ω) ∈ (θ̃, ρ∗(ω), ρ∗(dh)).

Since Λ2(M̃) admits the direct-sum decomposition

Λ2(M̃) =
(
(θ̃)⊗ ρ∗(T ∗M)

)
⊕
(
ρ∗(Λ2(T ∗M))

)
,

(3.3) holds if and only if

ρ∗(Ω) ∈
(
ρ∗(ω), ρ∗(dh)

)
,

i.e., if and only if Ω ∈ (ω, dh). In terms of ideals, this condition may be
written as

(3.4) (ω,Ω) ⊂ (ω, dh).

Note that this condition is independent of the choice of partial prolongation
ρ : M̃ →M .

Locally, a symplectic Monge-Ampère PDE and its partial prolongation
have identical coordinate expressions. Moreover, the condition that H :
M̃ → R is a CIE is simply that H is independent of z; i.e., H = h(x, y, p, q).
Conditions (3.1) and (3.4) both have the interpretation that any solution of
a first-order PDE h = c is also a solution of the symplectic Monge-Ampère
PDE (2.2).

Next, consider the GIEs; we begin by proving a useful lemma.

Lemma 3.4. The collection of GIEs for a symplectic Monge-Ampère PDE
is generated by functions of the form H = z − h(x, y, p, q).
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Proof. Let H : M̃ → R be a GIE, and fix an arbitrary constant c0 ∈ R in the
range of H. By the implicit function theorem, the first-order PDE H = c0
can locally be written in the form

(3.5) z = h(x, y, p, q).

(Note that a different choice ĉ0 for the constant will, in general, yield a
different function ĥ that does not necessarily differ from h by an additive
constant.)

Let z = f(x, y) be any solution for (3.5). Since H is an IDE, z = f(x, y)
is also a solution for the symplectic Monge-Ampère PDE (2.3). Now, for
any c ∈ R, the function ẑ = f(x, y) + c is a solution for the first-order PDE

z = h(x, y, p, q) + c;

moreover, because (2.2) is symplectic (i.e., its coefficients are independent
of the variable z), ẑ is also a solution of (2.2). Therefore, all solutions for
the 1-parameter family of first-order PDEs

z − h(x, y, p, q) = c

are also solutions for (2.2), and hence the function

Ĥ = z − h(x, y, p, q)

is an IDE.
In summary, we have shown that any first order PDE H = c0 in the

1-parameter family determined by a GIE H can be rewritten as a first-
order PDE in the 1-parameter family determined by a GIE of the form
Ĥ = z − h(x, y, p, q). The statement of the lemma follows immediately. �

As a consequence of Lemma 3.4, it suffices to consider GIEs of the form
H = z − ρ∗(h), h : M → R. Condition (3.2) may be written in the form

ρ∗(Ω) ∈ (θ̃, ρ∗(ω), dz − ρ∗(dh))

= (θ̃, ρ∗(ω), ρ∗(θ − dh)).
(3.6)

(Recall that, in local symplectic coordinates, θ = p dx+ q dy.) By the same
argument as in the CIE case, (3.6) holds if and only if

ρ∗(Ω) ∈ (ρ∗(ω), ρ∗(θ − dh)),

i.e., if and only if Ω ∈ (ω, θ − dh). In terms of ideals, this condition may be
written as

(3.7) (ω,Ω) ⊂ (ω, θ − dh).

Note that this condition is independent of the choice of partial prolongation
ρ : M̃ →M . We will denote the 1-form θ − dh by θh.

For both CIEs and GIEs, the important object is not the function h, but
rather a 1-form: dh in the case of a CIE or θh in the case of a GIE. These
1-forms may locally be distinguished by the conditions that

• d(dh) = 0 – i.e., dh is exact;
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• d(θh) = ω.
We are now ready to define CIEs and GIEs as objects on M :

Definition 3.5. Let (M,ω,Ω) be a symplectic Monge-Ampère PDE. An
intermediate differential equation (IDE) for (M,ω,Ω) is a 1-form α on M
satisfying the conditions that:

• dα = λω, λ ∈ {0, 1},
• (ω,Ω) ⊂ (ω, α).

If λ = 0, we say that α is a cylindrical intermediate equation (CIE); if λ = 1,
we say that α is a graph-like intermediate equation (GIE).

4. The symplectic characteristic variety

We now introduce a fundamental invariant for symplectic Monge-Ampère
PDEs, called the symplectic characteristic variety. This object was originally
introduced by Lychagin; see, e.g., [Lyc85]. It will play an important role in
our classification process.

Definition 4.1. For e ∈ M , the symplectic characteristic variety SCVe of
(M,ω,Ω) at e is the cone

(4.1) {v ∈ TeM | (v ω) ∧ (v Ω) = 0}.

Notice that if one takes any v ∈ TeM − SCVe, then there exists a unique
integral element Ev ⊂ TeM , necessarily containing v, on which both 1-forms
(v ω) and (v Ω) vanish. Consequently, SCVe can be interpreted as the
set of directions in TeM for which the extension to an integral element is
not unique. We note that the classical characteristic directions for a solution
s : D →M are given by the intersection of the 2-planes tangent to the image
of s with SCVe [Kos91].

We will generally find it more convenient to work with the “symplectically
dual” object

SCV∗
e = {v ω | v ∈ SCVe}.

We will use the term “symplectic characteristic variety” to refer to either
SCVe or SCV∗

e; it should be clear from the context which object is meant.

Proposition 4.2. Let α be a nowhere-zero 1-form on M satisfying

dα = λω, λ ∈ {0, 1}.
Then α is an IDE for the symplectic Monge-Ampère PDE (M,ω,Ω) if and
only if α ∈ SCV∗.

Proof. Let Xα be the unique vector field on M satisfying

Xα ω = −α.
Note that α ∈ SCV∗ if and only if Xα ∈ SCV.

Suppose that α is an IDE for (M,ω,Ω). Observe that the system (ω, α)
is differentially closed: dα = λω, where λ is either 0 or 1, and dω = 0.
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Furthermore, Xα is a Cauchy characteristic vector field for this system; i.e.,
Xα (ω, α) ⊂ (ω, α).

By definition, (ω,Ω) ⊂ (ω, α); therefore, Xα Ω ∈ (ω, α). Since Xα Ω
is a 1-form, it follows that it must be a multiple of α = −Xα ω. Therefore,

(Xα ω) ∧ (Xα Ω) = 0,

and Xα ∈ SCV, as desired.
Conversely, suppose that α ∈ SCV∗. Then Xα ∈ SCV, and so

(Xα ω) ∧ (Xα Ω) = 0.

Therefore,
(Xα Ω) = µ(Xα ω) = −µα

for some function µ on M . Now consider the 2-form Ω + µω, and compute
its wedge product with α (recalling that Ω ∧ ω = 0):

α ∧ (Ω + µω) = −(Xα ω) ∧ (Ω + µω)

= −Xα [ω ∧ (Ω + µω)] + ω ∧ [Xα (Ω + µω)]

= −Xα (µω ∧ ω)− ω ∧ (2µα)

= µ(α ∧ ω + ω ∧ α)− 2µω ∧ α
= 0.

Therefore,

Ω + µω ≡ 0 (mod α)

⇒ Ω ≡ 0 (mod ω, α).

It follows that
(ω,Ω) ⊂ (ω, α),

and α is an IDE for (M,ω,Ω), as desired. �

5. Elliptic, hyperbolic, and parabolic types

We now describe a well-known local invariant of a symplectic Monge-
Ampère PDE (M,ω,Ω). (See, e.g., [LRC93], [IL03].) Since every 4-form on
M is a multiple of ω ∧ω, we can write Ω∧Ω = τ ω ∧ω for some real-valued
function τ : M → R. (Note that τ is well-defined only up to multiplication
by a positive function.) In terms of the coordinate representation (2.2), we
may write τ(x, y, p, q) = AC −B2 −DE. A point e ∈M is called:

• an elliptic point if τ(e) > 0;
• a hyperbolic point if τ(e) < 0;
• a parabolic point if τ(e) = 0 and Ωe 6= 0;
• a zero point if Ωe = 0;
• a parabolic point of type change if e is a parabolic point and τ is not

identically zero on any neighborhood of e;
• a zero point of type change if Ωe = 0 and τ is not identically zero on

any neighborhood of e.
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A local C∞-coframing on an open subset U ⊂ M is a set of four 1-forms
{ω1, ω2, ω3, ω4} that comprises a basis for T ∗eM at each point e ∈ U . We
will say that such a coframing is symplectic if

(5.1) ω = ω1 ∧ ω2 + ω3 ∧ ω4.

The following observations are well-known; see [IL03] for an exposition. (A
similar normal form appears in [Kus98].)

(a) If e is an elliptic point, then SCVe = {0}, and there exists a local C∞-
symplectic coframing such that Ωe = ω2 ∧ ω3 + ω1 ∧ ω4.

(b) If e is a hyperbolic point, then SCVe consists of a pair of 2-planes Ve,
V e satisfying Ve ∩ V e = {0} and ω(Ve, V e) = 0. Furthermore, there
exists a local C∞-symplectic coframing such that Ωe = ω1∧ω2−ω3∧ω4.
In terms of this coframing, we have Ve = {ω1, ω2}⊥, V e = {ω3, ω4}⊥.
Every integral element in TeM intersects SCVe in two lines, one lying
in Ve and the other in V e. In this case,

SCV∗
e = V ⊥e ∪ V ⊥e = {ω1, ω2} ∪ {ω3, ω4}.

(c) If e is a parabolic point, then SCVe consists of a single 2-plane on which
ω vanishes. Furthermore, there exists a local C∞-symplectic coframing
such that Ωe = ω2 ∧ ω3. In terms of this coframing, we have SCVe =
{ω2, ω3}⊥. Every integral element in TeM either intersects SCVe in a
line or coincides with SCVe. In this case,

SCV∗
e = V ⊥e = {ω2, ω3}.

(d) If e is a zero point, then SCVe = TeM .

6. Normal forms for hyperbolic PDEs with intermediate
equations

Much study has been given to the problem of classifying certain types of
PDEs up to contact equivalence. Results along these lines regarding inter-
mediate equations include [LRC93], in which the authors show that any PDE
posessing intermediate integrals of a certain type must be contact equivalent
to either the heat equation or the flat wave equation; and [Zil99], in which
Zil’bergleit classifies intermediate integrals for Monge-Ampère PDEs of con-
stant type under the additional restriction that the PDE can be described
by an effective form Ω which is closed. (This is a significant restriction; for
instance, it implies that the PDE has a nontrivial conservation law of order
1.)

In this section, we construct models for hyperbolic symplectic Monge-
Ampère PDEs with CIEs. These results should be considered preliminary
to those of §7, in which we will construct similar models for type-changing
PDEs. Our normal forms will be evolution equations of the form

(6.1) Ω = B (dq ∧ dt− dp ∧ dx) + C dx ∧ dq
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for C∞-functions B,C. The corresponding coordinate representation is

2B(x, t, fx, ft) fxt + C(x, t, fx, ft) ftt = 0.

Note that, in the tradition of evolution equations, we are using the variable
t in place of the variable y that appears in (2.1).

Since (M,ω,Ω) is hyperbolic, there exists a local symplectic coframing
{ω1, ω2, ω3, ω4} on M such that

ω = ω1 ∧ ω2 + ω3 ∧ ω4(6.2)

SCV∗ = V ⊥ ∪ V ⊥ = {ω1, ω2} ∪ {ω3, ω4}.

Recall that any CIE is a closed 1-form α = dh on M . It follows from
Proposition 4.2 that (M,ω,Ω) has a CIE if and only if one of the compo-
nents V ⊥, V ⊥ of the symplectic characteristic variety contains a nonzero
integrable subsystem.

The following theorem provides a preliminary classification of hyperbolic
symplectic Monge-Ampère PDEs for which each component of the charac-
teristic system contains a CIE.

Theorem 6.1. If (M,ω,Ω) is hyperbolic and V ⊥, V ⊥ each contain a 1-
dimensional integrable subsystem, then at any point e ∈ M , (M,ω,Ω) is
locally symplectically equivalent to (6.1), where the point e corresponds to
(x, t, p, q) = (0, 0, 1, 1) and B 6= 0. This equation has CIEs of the form
d(h(q)), d(h̄(x)), where h, h̄ are arbitrary nondegenerate C∞-functions of
one variable.

Remark 6.2. The choice of local coordinates satisfying (x, t, p, q) = (0, 0, 1, 1)
at e is in keeping with with the local normal forms that we will construct
near parabolic and zero points in Section 7.

Proof. We can choose a local coframing of the form (6.2) so that ω1 spans
an integrable subsystem of V ⊥ and ω3 spans an integrable subsystem of V ⊥.
Multiplying by nonvanishing functions, we can arrange that ω1 = dq and
ω3 = dx for some independent functions x and q. Furthermore,

dx ∧ dq ∧ ω = 0.

It follows from a theorem of Liouville [Bry95, Theorem 3] that we can com-
plete (x, q) to a local symplectic coordinate system (x, t, p, q), so that

(6.3) ω = ω1 ∧ ω2 + ω3 ∧ ω4 = dq ∧ dt+ dp ∧ dx.

Now ω ∧ dx = dq ∧ dt ∧ dx = dq ∧ ω2 ∧ dx; therefore,

ω2 ≡ dt+ γ dx (mod dq).

Similarly, ω ∧ dq = dp ∧ dx ∧ dq = dx ∧ ω4 ∧ dq; therefore,

ω4 ≡ −dp+ δ dq (mod dx).
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Next, equation (6.3) implies that δ = γ. If we set Q = C
2B = δ = γ (with

B 6= 0), then since Ω is only determined up to a nonzero multiple, we can
write

(6.4)

ω = dq ∧ (dt−Qdx) + (dp+Qdq) ∧ dx

Ω = B
(
dq ∧ (dt−Qdx)− (dp+Qdq) ∧ dx

)
= B(dq ∧ dt− dp ∧ dx) + C dx ∧ dq,

as claimed. Observe that, for any nondegenerate C∞-functions h, h̄ of one
variable, we have

d(h(q)) = h′(q) dq ∈ V ⊥, d(h̄(x)) = h̄′(x) dx ∈ V ⊥;

therefore, by Proposition 4.2, d(h(q)) and d(h̄(x)) are CIEs for (6.1). �

Note that in the course of this proof, we demonstrated the following corol-
lary.

Corollary 6.3. Under the conditions of Theorem 6.1, the components of
SCV∗ take the form

V ⊥ = {dq, dt−Qdx}, V ⊥ = {dx, dp+Qdq}.

For the remainder of the paper, we will consider refinements of the normal
form (6.1) under several additional assumptions. It will be useful to observe
that for this class of PDEs, the Frobenius system {ω1, ω3} = {dx, dq} defines
a local fibration π : M → R2 given by

π(x, t, p, q) = (x, q).

This fibration gives M the structure of the cotangent bundle T ∗R2 with ω as
its canonical symplectic form. Moreover, we have the product decomposition

T ∗R2 = T ∗R× T ∗R,
with π : T ∗R× T ∗R → R× R given by

π
[
(x, p)× (q,−t)

]
= (x)× (q).

In the cases of Theorems 6.4 and 7.5, this fibration is, in fact, canonical.
The subgroup of symplectomorphisms which preserve this product struc-

ture is generated by:
• Product diffeomorphisms (x, t, p, q) 7→ (χ(x), t/Q′(q), p/χ′(x),Q(q)),

where χ(x), Q(q) are C∞-diffeomorphisms of R. Under such a sym-
plectomorphism, the function Q in (6.4) transforms by
Q 7→ Q′(q)χ′(x)Q.

• F -translations (x, t, p, q) 7→ (x, t − Fq, p + Fx, q), where F (x, q) is
any C∞-function. Under such a symplectomorphism, the function Q
transforms by Q 7→ Q(x, t− Fq, p+ Fx, q) + Fxq.

The following theorem indicates that if each component of SCV∗ contains
both a CIE and a GIE, then there is a refined normal form for the PDE
(6.1) depending only on one real parameter a.
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Theorem 6.4. Let (M,ω,Ω) be as in Theorem 6.1, and suppose that V ⊥,
V ⊥ each contain at least one GIE. Then at any point e ∈ M , (M,ω,Ω) is
locally symplectically equivalent to (6.1), where e corresponds to (0, 0, 1, 1)
and Qpt = a for an invariant real constant a. Specifically:

(1) If a 6= 0, then (M,ω,Ω) has local normal form (6.1) with

Q =
C

2B
= ap(t+ 1).

The GIEs belonging to V ⊥, V ⊥ are represented by the 1-forms θh, θh̄,
where

h = t q +
1
a

ln(t+ 1) + k(q)

h̄ = (t+ 1) q +
1
a

ln |p|+ k̄(x),

and k and k̄ are arbitrary C∞-functions of one variable.
(2) If a = 0, then (M,ω,Ω) has local normal form (6.1) with

Q =
C

2B
=

p− t

x+ q + 1
.

The GIEs belonging to V ⊥, V ⊥ are represented by the 1-forms θh, θh̄,
where

h = t q + t(x+ q + 1) + k(q)

h̄ = t q − p(x+ q + 1) + k̄(x),

and k and k̄ are arbitrary C∞-functions of one variable.

Proof. Choose a local coframing as in the proof of Theorem 6.1. By Corol-
lary 6.3, we can write the GIEs belonging to V ⊥ and V ⊥ as

θh = αdq + β (dt−Qdx)

θh̄ = ᾱ dx+ β̄ (dp+Qdq)

for some C∞-functions α, β, ᾱ, β̄. Thus we have

(6.5) d
[
αdq + β (dt−Qdx)

]
= d
[
ᾱ dx+ β̄ (dp+Qdq)

]
= ω.

Since d(t dq − p dx) = −ω = −dp ∧ dx− dq ∧ dt, this is equivalent to

(α+ t) dq + β dt− (β Q+ p) dx = dg(x, t, q)

(ᾱ− p) dx+ β̄ dp+ (β̄ Q+ t) dq = dḡ(x, p, q)
(6.6)

for some C∞-functions g, ḡ. Six of the twelve integrability conditions for
(6.6) are:

βp = 0 β̄t = 0(6.7)

(β Q+ p)p = 0 (β̄ Q+ t)t = 0(6.8)

βx + (β Q+ p)t = 0 β̄q − (β̄ Q+ t)p = 0.(6.9)
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As immediate consequences of equations (6.7) and (6.8), we have:

(6.10) Qp = − 1
β(x, t, q)

, Qt = − 1
β̄(x, p, q)

,

which imply that

(6.11) Qpp = 0 = Qtt.

Substituting β = − 1
Qp

and β̄ = − 1
Qt

into equations (6.9), we find that

QQpt −QpQt +Qpx = 0(6.12)

QQpt −QpQt −Qtq = 0.(6.13)

Differentiating (6.12) with respect to t shows that Qptx = 0, and differenti-
ating (6.13) with respect to p shows that Qptq = 0. Additionally, equation
(6.11) implies that Qptp = Qptt = 0; therefore, we conclude that Qpt is
constant. Hence there is a real number a such that

(6.14) Qpt = a = −
(

1
β

)
t

= −
(

1
β̄

)
p

.

Equations (6.11) and (6.14) imply that there exist functions b(x, q), c(x, q),
and Q̃(x, q) for which

(6.15) Q(x, t, p, q) = apt− b(x, q)p− c(x, q)t+ Q̃(x, q).

Hence,
1
β

= −at+ b(x, q),
1
β̄

= −ap+ c(x, q).

The functions b(x, q), c(x, q), and Q̃(x, q) are not arbitrary. When we
substitute equation (6.15) into (6.12) and (6.13), we find that

bx(x, q) + c(x, q) b(x, q) = aQ̃(x, q)

cq(x, q)− c(x, q) b(x, q) = −aQ̃(x, q).
(6.16)

Adding these equations, we obtain bx + cq = 0, which implies that (locally)
there exists a function u(x, q) satisfying

b(x, q) = uq(x, q), c(x, q) = −ux(x, q),(6.17)

uxq − uxuq = aQ̃(x, q).(6.18)

We need to consider separately the cases a 6= 0 and a = 0.
First, suppose that a 6= 0. Then

Q(x, t, p, q) = apt− uq(x, q) p+ ux(x, q) t+
1
a

[
uxq(x, q)− ux(x, q)uq(x, q)

]
= a

(
p+

ux

a

)(
t− uq

a

)
+
uxq

a
.

From this last expression, it is clear that applying an F -translation with
F (x, q) = −u(x,q)

a − q will transform Q to

(6.19) Q(x, t, p, q) = ap(t+ 1).
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From this normal form, a few calculations using equations (6.6) give

g(t, q) = −1
a

ln(t+ 1)− k(q)

ḡ(x, p) = −1
a

ln |p| − q − k̄(x),
(6.20)

where k and k̄ are arbitrary C∞-functions of one variable.
Next, suppose that a = 0. Equations (6.15), (6.17) and (6.18) imply that

(6.21) Q(x, t, q, p) = −uq(x, q) p+ ux(x, q) t+ Q̃(x, q),

where u(x, q) satisfies

(6.22) uxq(x, q) = ux(x, q)uq(x, q).

By applying an F -translation, we can transform Q̃ to zero.
The general solution of (6.22) is

u(x, q) = − ln |φ(q) + ψ(x)|;

moreover, the condition that V ⊥ and V ⊥ each contains a GIE implies that
neither V ⊥ nor V ⊥ is completely integrable. Therefore, uq = −Qp 6= 0 and
ux = Qt 6= 0; it follows that φ′(q) 6= 0, ψ′(x) 6= 0.

Under a product diffeomorphism (χ(x),Q(q)), the function

Q(x, t, p, q) =
φ′(q)

(φ(q) + ψ(x))
p− ψ′(x)

(φ(q) + ψ(x))
t

is transformed to

Q(x, t, p, q) =
φ′(Q(q))Q′(q)

(φ(Q(q)) + ψ(χ(x)))
p− ψ′(χ(x))χ′(x)

(φ(Q(q)) + ψ(χ(x)))
t.

Since φ′(q) 6= 0, ψ′(x) 6= 0, we can choose χ,Q so that

φ(Q(q)) = q, ψ(χ(x)) = x+ 1.

Applying this product diffeomorphism transforms Q to

Q(x, t, p, q) =
p− t

x+ q + 1
.

From this normal form, a few calculations using equations (6.6) give

g(x, t, q) = −t(x+ q + 1)− k(q)

ḡ(x, p, q) = p(x+ q + 1)− k̄(x),
(6.23)

where k and k̄ are arbitrary C∞-functions of one variable.
Observe that from equations (6.5) and (6.6), the GIEs are given by

αdq + β (dt−Qdx) = p dx+ q dt− d(tq − g) = θtq−g

ᾱ dx+ β̄ (dp+Qdq) = p dx+ q dt− d(tq − ḡ) = θtq−ḡ.
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When a 6= 0, equations (6.20) yield

h = tq − g = t q +
1
a

ln(t+ 1) + k(q)

h̄ = tq − ḡ = (t+ 1) q +
1
a

ln |p|+ k̄(x).

When a = 0, equations (6.23) yield

h = tq − g = t q + t(x+ q + 1) + k(q)

h̄ = tq − ḡ = t q − p(x+ q + 1) + k̄(x).

This completes the proof. �

Next, we consider the asymmetric case where V ⊥ contains both a CIE
and a GIE, while V ⊥ is completely integrable.

Theorem 6.5. Let (M,ω,Ω) be as in Theorem 6.1, and suppose that V ⊥

contains at least one GIE and V ⊥ is completely integrable. Then at any
point e ∈ M , (M,ω,Ω) is locally symplectically equivalent to (6.1), where e
corresponds to (0, 0, 1, 1) and Q = C

2B = p
2 . The CIEs belonging to V ⊥ are

represented by the 1-form dh̄, where

h̄ = h̄(x, p2eq),

and h̄ is an arbitrary C∞-function of two variables. The GIEs belonging to
V ⊥ are represented by the 1-form θh, where

h = t(q + 2) + k(q),

and k is an arbitrary C∞-function of one variable.

Proof. This proof will be very similar to that of Theorem 6.4. Choose a
local coframing as in the proof of Theorem 6.1. Then

V ⊥ = {ω3, ω4} = {dx, dp+Qdq}.
The complete integrability of V ⊥ implies that Qt = 0.

By Corollary 6.3, we can write the GIE belonging to V ⊥ as

θh = αdq + β (dt−Qdx)

for some C∞-functions α, β with β 6= 0. Thus we have

(6.24) d
[
αdq + β (dt−Qdx)

]
= ω.

Since d(t dq − p dx) = −ω = −dp ∧ dx− dq ∧ dt, this is equivalent to

(6.25) (α+ t) dq + β dt− (β Q+ p) dx = dg(x, t, q)

for some C∞-function g. Three of the six integrability conditions for (6.25)
are:

βp = 0(6.26)

(β Q+ p)p = 0(6.27)

βx + (β Q+ p)t = 0.(6.28)
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As an immediate consequence of equations (6.26) and (6.27) and the fact
that Qt = 0, we have:

(6.29) Qp = − 1
β(x, q)

.

Substituting β = − 1
Qp

into equation (6.28), we find that

(6.30) Qxp = 0.

Equations (6.29) and (6.30) imply that there exists a function Q̃(x, q) for
which

(6.31) Q(x, t, p, q) = − p

β(q)
+ Q̃(x, q).

Now apply a product diffeomorphism with χ(x) = x and Q(q) a solution
to the ODE

Q′(q) = −1
2β(Q(q));

this transforms Q to the normal form

Q(x, t, p, q) =
p

2
+ Q̃(x, q).

(The transformed function Q̃(x, q) may differ from that in (6.31).)
Finally, let F (x, q) be a solution for the linear hyperbolic PDE

Fxq(x, q) + 1
2Fx(x, q) + Q̃(x, q) = 0;

the corresponding F -translation will transform Q to

Q(x, t, q, p) =
p

2
.

From this normal form, a few calculations using equation (6.25) give

(6.32) g(x, t, q) = −2t− k(q),

where k is an arbitrary C∞-function of one variable.
Now consider the IDEs. We have

V ⊥ = {dx, dp+
p

2
dq} = {dx, d(p2eq)}.

Therefore, the CIEs belonging to V ⊥ have the form dh̄, where

h̄ = h̄(x, p2eq),

and h̄ is an arbitrary C∞-function of two variables.
As for the GIEs, observe that from equations (6.24) and (6.25), the GIEs

are are given by

αdq + β (dt−Qdx) = p dx+ q dt− d(t(q + 2) + k(q)) = θt(q+2)+k(q).

This completes the proof. �

The following case is the classical prototype for the main results of this
paper. It was known to Lie and Darboux and is included for completeness.
Note that the normal form is equivalent to the classical wave equation fxt =
0.
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Theorem 6.6. Let (M,ω,Ω) be as in Theorem 6.1, and suppose that V ⊥,
V ⊥ are both completely integrable. Then at any point e ∈ M , (M,ω,Ω) is
locally symplectically equivalent to (6.1), where e corresponds to (0, 0, 1, 1)
and Q = 1. The CIEs are given by dh, dh̄, where

(6.33) h = h(q, t− x), h̄ = h̄(x, p+ q),

and h, h̄ are arbitrary C∞-functions of 2-variables.

Proof. A similar argument to that given in the proof of Theorem 6.5 shows
that

Qp = Qt = 0,
and so Q = Q(x, q).

Let F (x, q) be a solution for the linear hyperbolic PDE

Fxq(x, q) = Q(x, q)− 1.

The corresponding F -translation will transform Q to

Q(x, t, q, p) = 1.

Now consider the IDEs. We have

V ⊥ = {dq, dt− dx}, V ⊥ = {dx, dp+ dq}.
Therefore, the CIEs have the forms dh, dh̄, where

h = h(q, t− x), h̄ = h̄(x, p+ q),

and h, h̄ are arbitrary C∞-functions of two variables. �

7. Main results: Normal forms for type-changing PDEs with
intermediate equations

Here we will adapt the methodology of Section 6 to the case where the
PDE (M,ω,Ω) has mixed type. Our key involutivity assumption will be that
the type-changing locus is defined by a CIE. We note that some early results
on normal forms for mixed type equations are given in [Kus92, Kus95];
however, these results are obtained under the assumption of a certain linear
independence condition which is not satisfied for our equations.

In general, if e ∈ M is a parabolic point of type change or a zero point,
then SCV∗

e need not C∞-extend to a neighborhood of e. Here we will use
IDEs to locally characterize a class of evolution equations for which both
components V ⊥, V ⊥, which are defined on the hyperbolic locus, extend
smoothly to the locus of parabolic points P ⊂ M . For this class, P is a
regular hypersurface, and parabolicity implies that V ⊥ coincides with V ⊥

at each point of P. This parabolic type-changing locus P will be involutive
in the sense that every Lagrangian surface s : D → P ⊂ M will also be a
solution to (M,ω,Ω).

If the PDE also has a locus of zero points Z ⊂ M , then V ⊥ and V ⊥ will
not C∞-extend to the zero points; specifically, SCV∗ = {0} at each point of
Z. Here we will assume that the zero locus will be involutive in the sense
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that Z is a C∞ Lagrangian surface, and hence defines a degenerate solution
for the PDE.

Definition 7.1. Let (M,ω,Ω) be a symplectic Monge-Ampère PDE for
which every point of M is either a hyperbolic point, a parabolic point of type
change, or a zero point. Suppose that the locus P ⊂ M of parabolic points
is 3-dimensional, and that the locus Z ⊂M of zero points is a 2-dimensional
Lagrangian surface. We say that (M,ω,Ω) is involutive type-changing of
order m, m ∈ Z+, if:

• the closure of P is equal to P ∪ Z;
• there exists a C∞-function q : M → R, with dq nowhere-vanishing,

such that the zero locus of q is P ∪ Z;
• the components V ⊥, V ⊥ of SCV∗ each C∞-extend (as rank 2 Pfaffian

systems) to the parabolic locus P;
• dq is a CIE belonging to V ⊥ at each point of M − Z;
• Ω ∧ Ω = τ ω ∧ ω, where τ = q2mτ̂ , and τ̂ is C∞ and nonvanishing.

We will say that (M,ω,Ω) is involutive type-changing of order m with CIEs
if, in addition, there exists another function x : M → R such that dx is a
CIE belonging to V ⊥ at each point of M − Z, the pullback of dx to Z is a
nonvanishing 1-form on Z, and dq ∧ dx is a nonvanishing 2-form on M .

We will now prove analogs of the theorems in Section 6 for involutive
type-changing equations with CIEs. The following lemma will be useful.

Lemma 7.2. Let (M,ω,Ω) be involutive type-changing of order m with
CIEs.

(1) In a neighborhood of any parabolic point e ∈ M , we can complete
(x, q) to a symplectic coordinate system (x, t, p, q) (i.e., a coordinate
system for which ω = dq ∧ dt + dp ∧ dx) such that e corresponds to
the point (x, t, p, q) = (0, 0, 1, 0).

(2) In a neighborhood of any zero point e ∈ M , we can complete (x, q)
to a symplectic coordinate system (x, t, p, q) such that e corresponds
to the point (x, t, p, q) = (0, 0, 0, 0), and the zero locus near e has the
form Z = {q = p = 0}.

Proof. Because dx and dq lie in distinct characteristic subsystems, the proof
of (1) is immediate. For case (2), let (x, t, p, q) be any completion of (x, q) to
local symplectic coordinates in a neighborhood of e such that e corresponds
to (0, 0, 0, 0). Since Z is a Lagrangian surface on which q = 0 and dx is
nonvanishing, it must have the form

Z = {q = p− ϕ(x) = 0}
for some function ϕ(x) with ϕ(0) = 0. By making the symplectic coordinate
transformation

(x, t, p, q) 7→ (x, t, p+ ϕ(x), q)
we can assume that Z has the form

Z = {q = p = 0},
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as desired. �

Theorem 7.3. If (M,ω,Ω) is involutive type-changing of order m with
CIEs, then at any point e ∈ P, (M,ω,Ω) is locally symplectically equivalent
to the normal form

(7.1) Ω = qm (dq ∧ dt− dp ∧ dx) + C dx ∧ dq,

where the point e corresponds to (x, t, p, q) = (0, 0, 1, 0), and C is a C∞-
function which is nonzero on the parabolic locus P. The corresponding co-
ordinate representation is

2fm
t fxt + C(x, t, fx, ft)ftt = 0.

Furthermore, at any point e ∈ Z a similar conclusion holds, where the point
e now corresponds to (x, t, p, q) = (0, 0, 0, 0), with the additional condition
that C is a C∞-function which vanishes on the zero locus Z = {q = p = 0}.

Proof. Let dq, dx be the CIEs of Definition 7.1, and choose local symplectic
coordinates (x, t, p, q) in a neighborhood of e as in Lemma 7.2. We can divide
Ω by

√
|τ̂ | to arrange that τ = −q2m. Near this point, the characteristic

systems are given by

V ⊥ = {dq, qm dt− 1
2C dx}, V ⊥ = {dx, qm dp+ 1

2C dq},

and we can write

Ω = qm (dq ∧ dt− dp ∧ dx) + C dx ∧ dq

for some C∞ function C.
If e ∈ P, then C must be nonzero on a neighborhood of e, or more

precisely, on the intersection of the local symplectic coordinate neighborhood
with M − Z. If e ∈ Z, then C must vanish precisely on the intersection of
the local symplectic coordinate neighborhood with Z. �

Note that we have the following analog of Corollary 6.3:

Corollary 7.4. Under the conditions of Theorem 7.3, the components of
SCV∗ take the form

V ⊥ = {dq, qmdt− 1
2C dx}, V ⊥ = {dx, qmdp+ 1

2C dq}.

We will now prove analogs of Theorem 6.4, Theorem 6.5, and Theorem 6.6
for involutive type-changing PDEs with CIEs. For arbitrary order m these
normal forms are rather unwieldy; therefore, we will restrict our attention
to the case m = 1.

Theorem 7.5. Let (M,ω,Ω) be involutive type-changing of order 1 with
CIEs, and suppose that V ⊥, V ⊥ each contain at least one GIE. Then at
any point e in P or Z, (M,ω,Ω) is locally symplectically equivalent to (7.1),
where e corresponds to (0, 0, 1, 0) if e ∈ P and to (0, 0, 0, 0) if e ∈ Z, and
Cpt = 2aq for an invariant real constant a. Specifically:
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(1) If a 6= 0, then (M,ω,Ω) has local normal form (7.1) with

C = 2ap(tq + b)

for an invariant nonzero constant b. The GIEs belonging to V ⊥, V ⊥

are represented by the 1-forms θh, θh̄, where

h = t q +
1
a

ln |tq + b|+ k(q)

h̄ = tq + b ln |q|+ 1
a

ln |p|+ k̄(x),

and k and k̄ are arbitrary C∞-functions of one variable.
(2) If a = 0, then Z is empty and (M,ω,Ω) has local normal form (7.1)

with

C =
2q (φ′(q)p− t)
φ(q) + x+ 1

+ c0(x)

for some nonvanishing C∞ function c0(x) and some C∞ function
φ(q) satisfying φ(0) = 0 and φ′(q) 6= 0 when q 6= 0. The GIEs
belonging to V ⊥, V ⊥ are represented by the 1-forms θh, θh̄, where

h = t q +
1

φ′(q)

(
t(φ(q) + x+ 1)− 1

2q

∫
c0(x)(φ(q) + x+ 1) dx

)
+ k(q)

h̄ = t q − p(φ(q) + x+ 1)− 1
2
c0(x)

(
(x+ 1) ln |q|+

∫
φ(q)
q

dq

)
+ k̄(x),

and k and k̄ are arbitrary C∞-functions of one variable.

Remark 7.6. Note that many of the GIEs above do not extend smoothly to
the parabolic locus.

Proof. Choose local coordinates so that Ω has the normal form (7.1) with
m = 1. An analogous argument to that given in the proof of Theorem 6.4
shows that

C(x, t, p, q) = 2q[apt− uq(x, q)p+ ux(x, q)t+ Q̃(x, q)]

for some functions u(x, q), Q̃(x, q) satisfying

uxq − uxuq = aQ̃(x, q).

The crucial difference in this case is that the functions u(x, q), Q̃(x, q) cannot
both be continuous at e ∈ P or e ∈ Z, because C cannot vanish identically
on the set {q = 0}. This will limit our ability to normalize these functions
via F -translations and product diffeomorphisms, since these transformations
must be given by C∞ functions. As in Theorem 6.4, we need to consider
separately the cases a 6= 0 and a = 0.

First, suppose that a 6= 0. Then

C(x, t, p, q) = 2q
[
apt− uq(x, q) p+ ux(x, q) t+

1
a

[
uxq(x, q)− ux(x, q)uq(x, q)

]]
= 2q

[
a
(
p+

ux

a

)(
t− uq

a

)
+
uxq

a

]
.
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The condition that C is C∞, but not identically vanishing, along q = 0
forces

u(x, q) = −ab ln |q|+ ũ(x, q)
for some nonzero constant b and some C∞ function ũ(x, q). (This can be
seen by examining the first-order Taylor expansion of C at q = 0: one sees
immediately that ux, uq, and uxq can each differ from a C∞ function only by
terms involving times q−1, and that the corresponding ln |q| term in u must
be independent of x.)

By applying an F -translation with F = − ũ(x,q)
a , we can transform ũ(x, q)

to zero, and so C becomes

C(x, t, p, q) = 2q
[
ap

(
t+

b

q

)]
= 2ap (tq + b).

Product diffeomorphisms leave the constants a and b unchanged, so these
are invariants of the system (M,ω,Ω). Calculations analogous to those in
Theorem 6.4 show that the GIEs have the stated form.

Next, suppose that a = 0. Then

C(x, t, p, q) = 2q
[
−uq(x, q) p+ ux(x, q) t+ Q̃(x, q)

]
,

where
uxq = uxuq

and
Q̃(x, q) =

c0(x)
2q

+ Q̄(x, q)

for some C∞ functions c0(x), Q̄(x, q). As in Theorem 6.4, we have

u(x, q) = − ln |φ(q) + ψ(x)|
where we assume without loss of generality that φ(0) = 0, and with φ′(q) 6=
0, ψ′(x) 6= 0 on the hyperbolic locus. (It is, however, possible that φ′(0) = 0.)
Since ψ′(x) 6= 0, it follows that u cannot be singular at every point of the
set {q = 0}, and therefore c0(x) must be nonzero.

By applying a product diffeomorphism, we can transform ψ(x) to x+ 1.
Then we have

C(x, t, p, q) = 2q
[
φ′(q)p− t

φ(q) + x+ 1
+
c0(x)
2q

+ Q̄(x, q)
]
.

By applying an F -translation, where F is a solution of

Fxq +
φ′(q)Fx − Fq

φ(q) + x+ 1
+ Q̄ = 0

in a neighborhood of e, we can transform Q̄ to zero. Finally, we have

C(x, t, p, q) =
2q (φ′(q)p− t)
φ(q) + x+ 1

+ c0(x).

Note that if this equation had a zero locus, it would be given by

Z = {q = c0(x) = 0}.
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This contradicts our hypotheses regarding Z; therefore, the function c0(x)
must be nonvanishing, and Z is empty. Calculations analogous to those in
Theorem 6.4 show that the GIEs have the stated form. �

Next we consider the analog of Theorem 6.5 in the involutive type-changing
case. Because V ⊥ is singled out as being the characteristic subsystem con-
taining the CIE that defines the type-changing locus, there are two versions
of this theorem, depending on whether V ⊥ or V ⊥ is the completely inte-
grable subsystem. The case of Theorem 7.7 will be of interest to us in
[CKW].

Theorem 7.7. Let (M,ω,Ω) be involutive type-changing of order 1 with
CIEs, and suppose that V ⊥ contains at least one GIE and V ⊥ is completely
integrable. Then at any point e in P or Z, (M,ω,Ω) is locally symplecti-
cally equivalent to (7.1), where e corresponds to (0, 0, 1, 0) if e ∈ P and to
(0, 0, 0, 0) if e ∈ Z, and Cp = 2b for an invariant real, nonzero constant b.
Specifically:

(1) If b is not a negative integer, then (M,ω,Ω) has local normal form
(7.1) with

C = 2bp.

The CIEs belonging to V ⊥ are represented by the 1-form dh̄, where

h̄ = h̄(x, pqb)

and h̄ is an arbitrary C∞ function of two variables. The GIEs be-
longing to V ⊥ are represented by the 1-form θh, where

h =
(
b+ 1
b

)
tq + k(q)

and k is an arbitrary C∞ function of one variable.
(2) If b is a negative integer, then (M,ω,Ω) has either the local normal

form above, or the local normal form (7.1) with

C = 2bp+ 2c(x)q−b

for some C∞ function c(x). In the latter case, the CIEs belonging to
V ⊥ are represented by the 1-form dh̄, where

h̄ = h̄(x, pqb + c(x) ln |q|)

and h̄ is an arbitrary C∞ function of two variables, and the GIEs
belonging to V ⊥ are represented by the 1-form θh, where

h =
(
b+ 1
b

)
tq −

(
1
b

)
q−b

∫
c(x) dx+ k(q)

and k is an arbitrary C∞ function of one variable.

Remark 7.8. Note that the CIEs in Case (2) above do not extend smoothly
to the parabolic locus.
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Proof. Choose local coordinates so that Ω has the normal form (7.1) with
m = 1. An analogous argument to that given in the proof of Theorem 6.5
shows that

(7.2) C(x, t, p, q) = − 2p
β(q)

+ C̃(x, q),

where β(q) is a C∞ function which satisfies β(0) 6= 0.
The effect of a product diffeomorphism is more subtle than that in The-

orem 6.5. In order to preserve the singular locus P ∪ Z, we must restrict
to diffeomorphisms Q(q) satisfying Q(0) = 0, and under such a product
diffeomorphism (χ(x),Q(q)) with χ(x) = x, we have

β(q) 7→ Q(q)
qQ′(q)

β(Q(q)).

In particular, we can write

Q(q) = cq + q2Q̄(q)

for some nonzero constant c and C∞ function Q̄(q), and then we have

β(0) 7→

(
c+ qQ̄(q)

Q̄′(q)

∣∣∣∣
q=0

)
β(0) =

(c
c

)
β(0) = β(0).

Thus, the value β(0) is invariant under product diffeomorphisms.
Now, set β̄(q) = β(q)

β(0) , and consider the initial value problem

(7.3) qQ′(q) = Q(q)β̄(Q(q)), Q(0) = 0.

Lemma 7.9. The initial value problem (7.3) has a C∞ solution Q(q) in a
neighborhood of q = 0.

Proof of Lemma. By hypothesis, we can write

1
β̄(q)

= 1 + qβ̄1(q)

for some C∞ function β̄1(q). Then equation (7.3) can be written as

Q′(q)
Q(q)

+ β̄1(Q(q))Q′(q) =
1
q
.

Integrating yields
lnQ(q) + β1(Q(q)) = ln q + k,

where β1(q) =
∫
β̄1(q) dq. Exponentiating yields

Q(q)eβ1(Q(q)) = Kq

for some nonzero constant K, and this equation clearly has a C∞ solution
Q(q) in a neighborhood of q = 0. �
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Now apply a product diffeomorphism with χ(x) = x and Q(q) a solution
of (7.3); this transforms C to the normal form

C(x, t, p, q) = 2bp+ C̃(x, q)

where b = − 1
β(0) 6= 0. (The transformed function C̃(x, q) may differ from

that in (7.2).)
Next, we compute that under an F -translation, we have

C̃(x, q) 7→ C̃(x, q) + 2qFxq + 2bFx.

So if we could solve the equation

(7.4) qFxq + bFx = −1
2 C̃(x, q)

for a C∞ function F (x, q), we could transform C̃(x, q) to zero via an F -
translation. The formal solution of (7.4) is

F (x, q) = −1
2

∫ [
q−b

∫
qb−1C̃(x, q) dq

]
dx.

However, this function is not necessarily C∞ in all cases. In particular,
consider the (N − 1)th-order Taylor expansion of C̃(x, q) in terms of q,
where N > |b|+ 1:

C̃(x, q) =
N−1∑
k=0

ck(x)qk + qN C̃N (x, q),

where C̃N (x, q) is C∞. If b is a negative integer, then the c−b(x)q−b term in
this expansion will give rise to a term in Fx which is not C∞. The following
lemma shows how to resolve this issue.

Lemma 7.10. The differential equation

(7.5) qFxq + bFx = −1
2 Ĉ(x, q),

has a C∞ solution F (x, q) in a neighborhood of (x, q) = (0, 0), where

Ĉ(x, q) =

{
C̃(x, q)− c−b(x)q−b if b is a negative integer
C̃(x, q) otherwise.

Proof of Lemma. Choose N > |b|+ 1, and write

(7.6) Ĉ(x, q) =
N−1∑
k=0

ck(x)qk + qN ĈN (x, q),

where ĈN (x, q) is C∞. By hypothesis, we have c−b(x) ≡ 0 if b is a negative
integer.

By applying an F -translation with

F (x, q) =
∫  N−1∑

k=0,k 6=−b

− ck(x)qk

2(k + b)

 dx,
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we can transform the leading terms of Ĉ(x, q) to zero; i.e., we can assume
that

Ĉ(x, q) = qN ĈN (x, q).
Now the formal solution

F (x, q) = −1
2

∫ [
q−b

∫ q

0
λN+b−1ĈN (x, λ) dλ

]
dx

is in fact a smooth solution of (7.5), as desired. �

Lemma 7.10 shows that by performing an F -translation, we can arrange
that:

• C(x, t, p, q) = 2bp if b is not a negative integer.
• C(x, t, p, q) = 2bp + 2c(x)q−b for some C∞ function c(x) if b is a

negative integer.
Calculations analogous to those in Theorem 6.4 show that the CIEs and
GIEs have the stated form. �

Remark 7.11. In Case (2) above, a product diffeomorphism (χ(x),Q(q)) with
Q(q) = q transforms the function c(x) to χ′(x)c(χ(x)). Thus, if c(0) 6= 0
(or if c(x) vanishes to finite order n at x = 0), we can apply such a product
diffeomorphism to arrange that c(x) = 1 (or that c(x) = xn).

Theorem 7.12. Let (M,ω,Ω) be involutive type-changing of order 1 with
CIEs, and suppose that V ⊥ is completely integrable and V ⊥ contains at
least one GIE. Then Z is empty, and at any point e ∈ P, (M,ω,Ω) is locally
symplectically equivalent to (7.1), where e corresponds to (0, 0, 1, 0) and

C = 2tq + c0(x)

for some nonvanishing function c0(x). The CIEs belonging to V are repre-
sented by the 1-form dh, where

h = h
(
q, 2tqe−x −

∫
c0(x)e−x dx

)
and h is an arbitrary C∞ function of two variables. The GIEs belonging to
V ⊥ are represented by the 1-form θh̄, where

h̄ = tq + p+ 1
2c0(x) ln |q|+ k̄(x)

and k̄ is an arbitrary C∞ function of one variable.

Remark 7.13. Note that the GIEs above do not extend smoothly to the
parabolic locus.

Proof. Choose local coordinates so that Ω has the normal form (7.1) with
m = 1. An analogous argument to that given in the proof of Theorem 6.5 –
with the roles of V ⊥ and V ⊥ reversed – shows that

(7.7) C(x, t, p, q) = − 2tq
β̄(x)

+ C̃(x, q),

where β̄(x) is a C∞ function which satisfies β̄(0) 6= 0.
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Under a product diffeomorphism (χ(x),Q(q)) with Q(q) = q, we have

β̄(x) 7→ 1
χ′(x)

β̄(χ(x)).

By applying such a product diffeomorphism with χ(x) a solution of

χ′(x) = β̄(χ(x)),

we can arrange that β̄(x) ≡ 1 in a neighborhood of x = 0.
Next, we compute that under an F -translation, we have

C̃(x, q) 7→ C̃(x, q) + 2q(Fxq − Fq).

We can write
C̃(x, q) = c0(x) + qC̃1(x, q)

for some C∞ function C̃1(x, q), and by performing an F -translation with F
a solution to

Fxq − Fq + 1
2 C̃1(x, q) = 0,

we can transform C̃1(x, q) to zero. We now have

C(x, t, p, q) = 2tq + c0(x),

as desired. The same argument as that given at the end of the proof of
Theorem 7.5 shows that the function c0(x) must be nonvanishing, and that
therefore Z is empty. Calculations analogous to those in Theorem 6.4 show
that the CIEs and GIEs have the stated form. �

The following theorem extends the classical Lie-Darboux normal form of
Theorem 6.6 to the involutive type-changing setting, and indicates that only
one of the Martinet generic normal forms [Mar70] occurs in the context of
involutive type-changing symplectic Monge-Ampère PDEs.

Theorem 7.14. Let (M,ω,Ω) be involutive type-changing of order 1 with
CIEs, and suppose that V ⊥, V ⊥ are both completely integrable. Then Z is
empty, and at any point e ∈ P, (M,ω,Ω) is locally symplectically equivalent
to (7.1), where e corresponds to (0, 0, 1, 0) and C = 2. The CIEs belonging
to V ⊥ and V ⊥ are represented by the 1-forms dh and dh̄, respectively, where

h = h(q, tq − x), h̄ = h̄(x, qep),

and h, h̄ are arbitrary C∞ functions of two variables.

Proof. Choose local coordinates so that Ω has the form (7.1) with m = 1.
As in the proof of Theorem 6.6, the complete integrability of V and V ⊥

yields Cp = Ct = 0, so that

C = C(x, q).

Under an F -translation, we have

C(x, q) 7→ C(x, q) + 2qFxq.

We can write
C(x, q) = c0(x) + qC1(x, q)
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for some C∞ function C1(x, q), and by performing an F -translation with F
a solution to

Fxq + 1
2C1(x, q) = 0,

we can transform C1(x, q) to zero. We now have C = c0(x), and the same
argument as that given at the end of the proof of Theorem 7.5 shows that
the function c0(x) must be nonvanishing, and that therefore Z is empty.

Under a product diffeomorphism (χ(x),Q(q)) with Q(q) = q, we have

c0(x) 7→ χ′(x)c0(χ(x)).

By applying such a product diffeomorphism with χ(x) a solution of

χ′(x) =
2

c0(χ(x))
,

we can arrange that c0(x) ≡ 2 in a neighborhood of x = 0. Then we have
C(x, t, p, q) ≡ 2, as desired. Calculations analogous to those in Theorem 6.4
show that the CIEs have the stated form. �

8. Applications

8.1. Local existence for ill-posed initial value problems. Consider
the collection of indefinite (formal) functionals

(8.1) Ls(f) =
∫ s

0

∫
R
L(ft) fx dx dt,

where z = f(x, t) : R× R → E is viewed as a path

t 7→ f(·, t)

in the space of C∞ functions from R to the Euclidean line, based at f0(x) =
f(x, 0). Here L(q) is a smooth function with isolated zeros. (Note that these
functionals are “geometric” in the sense that they are invariant under the
groups of diffeomorphisms x→ χ(x).) The Euler-Lagrange PDE

(8.2) 2L′(ft)fxt + fxL
′′(ft)ftt = 0

for the functional (8.1) is a symplectic Monge-Ampère PDE. On the sym-
plectic reduction M = T ∗R2, the natural initial value problem is:

p0(x) = fx(x, 0), q0(x) = ft(x, 0).

If L(q) has a nondegenerate critical point at q = qc, then (8.2) is involutive
type-changing of order 1 with CIEs as in Theorem 7.7, Case (1), with b = 1

2
and

P ∪ Z = {q = qc}, Z = {q = qc, p = 0}.
More concretely, near such a critical point q = qc, there is a symplecto-

morphism

q 7→ Q(q), t 7→ t

Q′(q)
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which transforms (8.2) to the Euler-Langrange equation for the functional
L(q) = 1

2q
2:

(8.3) 2ftfxt + fxftt = 0,

with initial conditions

(8.4) p̄0(x) = fx(x, 0), q̄0(x) = ft(x, 0)

for |x| < ε, |p̄0(x)| < ε, |q̄0(x)| < ε. In [MR98], the authors consider this
PDE as the geodesic equation for a natural metric on curves in the space of
embeddings f : R → E and construct global, nonsingular solutions.

If p̄0(0) = 0, q̄0(0) 6= 0, then the initial value problem (8.3), (8.4) is ill-
posed in the classical sense; i.e., ftt(x, 0) cannot be expressed in terms of the
initial conditions. However, this initial data yields non-characteristic initial
value problems for the GIEs

f = 3tft + k(ft),

where k is an arbitrary function of one variable. This GIE effectively “re-
pairs” the original initial value problem. On the other hand, if q̄0(0) =
p̄0(0) = 0, then the initial conditions intersect the zero locus Z, and there
is no local existence theory for the second-order initial value problem (8.3),
(8.4). In [CKW], we will extend these methods to show how the intermedi-
ate equations may be used to prove local and global existence for this type
of initial value problem. In particular, we will construct global solutions
for (8.3) with topologically nontrivial singularites. Note that the parabolic
locus does play an indirect role, in that it must interact with the zero locus
in order that we have our simple normal form.

These results are not obvious; for some PDEs with noninvolutive zero
points, there are obstructions to the existence of such solutions. However,
for an involutive type-changing PDE with zero points as in the first part of
Theorem 7.7, we have the following consequences of our normal form. First,
there exists a transverse foliation of a neighborhood of Z by Lagrangian
solutions, given in the above local coordinates by

{x = x0, t = t0}, x0, t0 ∈ R.

As an example, the involutive type-changing PDE

2(ft)mfxt + fx(ftt − fxxftt + f2
xt) = 0

with Z = {p = q = 0} has the transverse foliation by Lagrangian solutions
of the form

f(x, t) = (x− x0)2 + (t− t0)2.

We conjecture that this foliation is unique when m = 1.
Second, a linearization tensor constructed at the zero points can be used

to show that there do not exist any local Langrangian solutions s : D →M
which are transverse both to Z and to the above foliation. This linearization
is a Lie derivative construction analogous to the “linear part” of a zero
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point in a vector field, and suggests that there is a global index theory for
symplectic Monge-Ampère equations with zero points.

8.2. Symmetry groups. The well-known theorem of Noether guarantees
a one-to-one correspondence between symmetries and conservation laws for
PDEs which arise as Euler-Lagrange equations for variational problems.
(See, e.g., [Lyc79] for a discussion of Noether’s theorem.) However, the
relationship between symmetries and IDEs for such PDEs is more subtle.
For example, the Euler-Lagrange PDEs for the functionals L(q) = qmL̄(q)
and L(q) =

∫
eL̄(q) dq, as in §8.1, have no Noether-type correspondence be-

tween IDEs and symmetry vector fields of (M,ω,Ω). Furthermore, while the
exterior differential system (R4, ω,Ω) given by (8.3) is smooth on a neigh-
borhood of the origin, the F -translations defined by

F (x, q) =
c(x)
q
,

with c(x) C∞ on a neighborhood of the origin, define an infinite set of sym-
metries of the EDS which do not C∞-extend to the origin. These phenomena
merit further study, and the normal forms of §6 and §7 should be useful for
exploring and clarifying the relationship between symmetries and IDEs for
symplectic Monge-Ampère PDEs of Euler-Lagrange type.
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