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Quaternions and Rotations in E4

Joel L. Weiner and George R. Wilkens

1. INTRODUCTION. In 1843, Sir William Rowan Hamilton invented the quater-
nion algebra, which is customarily denoted H in his honor. Soon after, people rec-
ognized that quaternions could be used to represent rotations in E3. In 1855, Arthur
Cayley discovered that quaternions could also be used to represent rotations in E

4.
This note explores Cayley’s representation. Ultimately we use it to show that any rota-
tion in E4 is a product of rotations in a pair of orthogonal two-dimensional subspaces,
a result first proved by Edouard Goursat [3].

In section 2 we review the algebraic structure of H and show that H has a natural
inner product that allows us to identify it with four-dimensional Euclidean space E4. In
section 3 we show that a pair p and q of unit vectors (also called unit quaternions) in H

determines a rotation Cp,q : H → H. According to Goursat’s result, Cp,q is a product
of rotations in a pair of orthogonal planes. By this we mean the following: there exist
rotations R1, R2 : H → H and a pair of orthogonal planes V1 and V2 in H, such that
the restrictions R1|V2 and R2|V1 are identities on their respective planes and

Cp,q = R1 ◦ R2 = R2 ◦ R1.

Thus, H = V1 ⊕ V2, where V1 ⊥ V2, and Cp,q rotates vectors in the plane V1 through
a determined angle α1 and vectors in the plane V2 through a determined angle α2.

The principal goals of this note are to prove Theorems 1 and 2, which are stated
precisely in section 5. Theorem 1 not only proves Goursat’s result for Cp,q, but also
shows that one can easily determine the planes V1 and V2 and the angles α1 and α2 in
terms of p and q. Theorem 2 establishes that every rotation in E4 can be represented by
some Cp,q. Together, these theorems prove Goursat’s result for every four-dimensional
rotation.

The observation that Cp,q(Vi) = Vi (i = 1, 2) motivates the method of proof. The
Vi are known as invariant subspaces for Cp,q. If we wish to see that Cp,q is indeed a
product of rotations, it is natural to look first for invariant subspaces of that transfor-
mation. In section 4 we recall some elementary results from the theory of ordinary
differential equations that are related to subspaces and two-dimensional rotations. Fi-
nally, in section 5, we apply these results to find the Cp,q-invariant subspaces and the
rotation angles.
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2. THE QUATERNION ALGEBRA. Let H denote

{a1 + bi + cj + dk : a, b, c, d ∈ R},
and define addition and multiplication by a real scalar in component-wise fashion. In
so doing, H becomes a four-dimensional real vector space and {1, i, j,k} is a basis
for H. To define the product of two points in H, one simply asserts the following:
multiplication distributes over addition; 1 is the multiplicative identity; and

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

These operations of addition and multiplication on H satisfy all the axioms for a field,
except the commutativity of multiplication.

It is convenient to decompose a quaternion into two parts that are traditionally called
its scalar and vector parts. If q = q01 + q1i + q2j + q3k, then we write

q = q0 + �q,
where q0 = q01 and �q = q1i + q2j + q3k. We call q0 the scalar part and �q the vector
part of q. It is straightforward to check that the product

pq = (p0 + �p)(q0 + �q) = (p0q0 − �p · �q)+ (p0 �q + q0 �p + �p × �q), (1)

where �p · �q and �p × �q are, respectively, the usual inner product and vector cross prod-
uct in E3.

There is another important operation on H; it is called conjugation. If q = q0 + �q
belongs to H then q̄ = q0 − �q is called the conjugate of q. Conjugation has several
nice properties, the most important of which is the following:

pq = q̄ p̄

(note the change in order).
From equation (1) it also follows that

qq̄ = q2
0 + q2

1 + q2
2 + q2

3 = q̄q.

Thus, if we identify H with Euclidean four-space E4 by associating q with the vec-
tor (q0, q1, q2, q3) and denote the Euclidean inner product of p and q by 〈p,q〉, then
qq̄ = 〈q,q〉. Using the fact that qq̄ and 〈q,q〉 are quadratic forms (i.e., each is R-linear
in the two “slots” that appear in these expressions), it is a simple matter to verify that

pq̄ + qp̄ = 2〈p,q〉. (2)

Note, in particular, that p is orthogonal to q if and only if pq̄ + qp̄ = 0.
We denote the Euclidean norm of a quaternion q by |q|. Since scalars commute with

every quaternion,

|pq|2 = 〈pq,pq〉 = pqpq = pqq̄p̄ = p|q|2p̄ = |p|2|q|2.
This gives the following important result:

|pq| = |p||q|. (3)
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Once the norm of a quaternion is available, we can obtain a formula for the inverse
of a quaternion that is reminiscent of what occurs with complex numbers. It is easy to
show that if q �= 0, then

q−1 = q̄
|q|2 .

If q in H has |q| = 1, then we call q a unit quaternion. For a unit quaternion q
we see that q−1 = q̄. If, in particular, u is a pure unit quaternion (i.e., if u = �u),
then u−1 = −u. Thus every pure unit quaternion is a square root of −1. Also, by
equation (2), two pure unit quaternions u and v are orthogonal if and only if it is the
case that uv + vu = 0.

If q = q0 + �q is a unit quaternion, then q2
0 + |�q |2 = 1. Hence there is a real num-

ber θ and a pure unit quaternion u such that q = 1 cos θ + u sin θ . Since u2 = −1, the
power series expansion of et leads to

euθ =
∞∑

n=0

(uθ)n

n! = 1 cos θ + u sin θ, (4)

providing equivalent representations for a unit quaternion q = q0 + �q = 1 cos θ +
u sin θ = euθ . Note that neither u nor θ is uniquely determined by q. When q �= ±1,
sin θ = ±|�q| and u = ±�q/|�q|; when q = ±1, u can be any pure unit quaternion.

We note that euθ acts like the usual exponential as a function of a complex variable.
However, since the multiplication in H is not commutative, if u and v are linearly
independent pure unit quaternions, it is not the case that euθevφ is the same as either
evφeuθ or euθ+vφ . However, since each component of euθ is a differentiable function of
θ , it is not difficult to verify that

d

dθ
euθ = −1 sin θ + u cos θ = ueuθ = euθu.

3. ROTATIONS IN E3. We introduce the R-linear transformations representing left
and right multiplication in H. Let q be a quaternion. Then Lq : H → H and Rq :
H → H are defined as follows:

Lq(x) = qx, Rq(x) = xq (x ∈ H).

If q is a unit quaternion, then both Lq and Rq are orthogonal transformations of H.
This is an easy consequence of equation (3). Specifically, when |q| = 1

|Lq(x)| = |qx| = |q||x| = |x|.
Thus, for unit quaternions p and q, the mapping Cp,q : H → H defined by

Cp,q = Lp ◦ Rq = Rq ◦ Lp

is also an orthogonal transformation of H. It is worth noting for later applications (in
Theorems 2 and 3) that

Cp1,q1 ◦ Cp2,q2 = Cp1p2,q2q1 .

We examine briefly the transformation Cq,q̄, where q is a unit quaternion. For
the time being, we simply denote it by C . If we write q = euθ , where u is a pure
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unit quaternion, then C(x) = qxq̄ = euθxe−uθ . First, observe that C preserves scalar
quaternions because C(1) = q1q̄ = qq̄1 = 11 = 1. Since C is an orthogonal transfor-
mation of H, it must also preserve the orthogonal complement to the scalars, the space
of pure quaternions that we henceforth denote by E3. We restrict C to E3 and call the
resulting map C as well. Note that u = �u is a member of E

3.

Proposition 1. If q is a unit quaternion, then there exist a pure unit quaternion u
and a real scalar θ such that q = euθ . The transformation C : E3 → E3 defined by
C(x) = qxq̄ is a rotation in the plane orthogonal to �u through an angle 2θ .

Proof. We have already shown that every unit quaternion has an exponential represen-
tation. Choose u and θ so that q = euθ . Observe that C(�u) = euθue−uθ = �u, because
u commutes with euθ . Thus C fixes the one-dimensional subspace L spanned by �u,
hence fixes its orthogonal complement L⊥ (⊂ E

3) as well. Let v = �v be a unit vector
in L⊥ and set w = uv = �u × �v. Notice that uv = −vu, since u and v are orthogonal.
This implies that ve−uθ = euθv. Accordingly,

C(�v) = euθve−uθ = e2uθv = cos(2θ)�v + sin(2θ) �w.
Notice that we can represent every rotation (i.e., every proper orthogonal transfor-

mation of E
3) as Cq,q̄ for an appropriate unit quaternion q. A transformation is proper

if it is orientation-preserving or, in other words, if it has positive determinant.
For an elaboration of the topics presented so far the reader can refer to chapters 17

and 18 of the text by Michael Henle [4].

4. SOME FACTS ABOUT ORDINARY DIFFERENTIAL EQUATIONS. We
now turn our attention to Cp,q for arbitrary unit quaternions p and q. It was Cayley
who first noticed that these are proper orthogonal transformations of E4. As has been
known for some time (see [3]), such transformations must be the product of two ro-
tations in a pair of orthogonal two-dimensional subspaces of E4. We would like to
see how these rotations and subspaces are related to p and q. Coxeter elucidated this
relation in an earlier paper in this journal [2]. We intend to do the same using distinctly
different methods and, in fact, we will show from first principles that Cp,q is a product.
To do that we call upon one tool from the theory of ordinary differential equations.

Proposition 2. Let x̃ : R → Rn satisfy a kth-order linear homogeneous differential
equation, where 1 ≤ k ≤ n. Then the image of x̃ lies in a k-dimensional subspace
of R

n.

Proof. We present the proof for the case k = 2, which suits our application. The reader
should be able to generalize this to any k.

Let x0 = x̃(0) and x′
0 = dx̃/dt(0) be the initial position and initial velocity for the

given curve x̃. Additionally, suppose that x̃ satisfies the second-order linear homoge-
neous differential equation

d2x
dt2

+ α
dx
dt

+ βx = 0,

where α and β are differentiable real-valued functions of t . From standard ODE theory,
we know that when two solutions of this differential equation have the same initial
position and the same initial velocity, the two solutions are identical.

72 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 112



Now suppose that fi (i = 0, 1) are real-valued functions that satisfy the differential
equation f ′′ + α f ′ + β f = 0 and, in addition, f0(0) = 1, f ′

0(0) = 0, f1(0) = 0, and
f ′
1(0) = 1. Then the curve x(t) = f0(t)x0 + f1(t)x′

0 satisfies the same ODE as x̃ and
has the same initial position and initial velocity. Thus x̃ = f0(t)x0 + f1(t)x′

0, so we
see that the image of x̃ lies in the subspace of R

n spanned by x0 and x′
0.

That the functions f0 and f1 of the preceding proof exist is guaranteed by the stan-
dard theory for linear ordinary differential equations [1]. The following proposition is
an easy consequence of the proof of Proposition 2. It will prove to be quite useful.

Proposition 3. Suppose that x̃ : R → H satisfies the differential equation

d2x̃
dt2

+ ω2x̃ = 0,

where ω > 0 is a constant, and that the initial position vector x̃(0) and the ini-
tial velocity vector dx̃/dt(0) satisfy the conditions |x̃(0)| = ω−1|dx̃/dt(0)| and
〈x̃(0), dx̃/dt(0)〉 = 0. Then x̃(1) = R(x̃(0)), where R is a rotation in the plane of the
image of x̃ through an angle ω in the direction that turns x̃(0) toward ω−1dx̃/dt(0).

Proof. Following the construction in the proof of Proposition 2, we choose f0(t) =
cos(ωt) and f1(t) = ω−1 sin(ωt). Then

x̃(t) = x̃(0) cos(ωt)+ ω−1 dx̃(0)
dt

sin(ωt),

which shows that

x̃(1) = x̃(0) cos(ω)+ ω−1 dx̃(0)
dt

sin(ω).

That the rotation R exists follows from the assumptions that x̃(0) and ω−1dx̃/dt(0) are
orthogonal vectors and have the same length.

5. PROPER ORTHOGONAL TRANSFORMATIONS OF E
4. Let C be short-

hand for Cp,q, where for suitable choices of pure unit quaternions u and v and cor-
responding real numbers θ and φ, p = euθ and q = evφ . We seek two-dimensional
invariant subspaces for C . If x in H lies in some C-invariant subspace S, so does Cn(x)
for all integers n. Moreover, if Ct made sense for arbitrary real t , we would expect the
same to be true of Ct(x). It is this observation that motivates what we do next.

First, notice that Ct does make sense; in fact, for any real t let Ct be defined by

Ct(x) = euθ t xevφt .

To each quaternion x we associate a curve x̃ : R → H defined by x̃(t) = Ct(x). We
will compute two derivatives of x̃. Note that the usual formulas for differentiating a
product or a composition apply, as the reader can check by examining the components
in these formulas or by considering equation (1) with the real constants replaced with
real-valued functions. Keep in mind, however, that the order of terms in products is
important. As the first derivative of x̃ we obtain

dx̃
dt
(t) = uθ euθ t x evφt + euθ t x evφt vφ = uθ x̃(t)+ x̃(t) vφ. (5)
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Differentiating the left-hand and right-hand sides of (5), at the same time using (5) to
eliminate first-order derivatives of x̃(t), we get

d2x̃
dt2

(t) = −(θ2 + φ2)x̃(t)+ 2θφux̃(t)v. (6)

Now if it happened that

ux̃(t)v = λ(t)x̃(t), (7)

where λ is a real-valued function, then x̃ would satisfy a linear homogeneous second-
order ordinary differential equation with real coefficients. By Proposition 2, the image
of x̃ would lie in a two-dimensional subspace and necessarily the span of x = x̃(0)
and C(x) = x̃(1) would be an invariant subspace. Note however that |ux̃(t)v| = |x̃(t)|,
because u and v are unit vectors. Thus if equation (7) were to hold, then λ would have
to be either the constant function 1 or the constant function −1 (since all the functions
we consider are continuous). In fact, we can simplify the condition of equation (7)
with λ = ±1.

Lemma 1. For x in H, uxv = ±x if and only if ux̃(t)v = ±x̃(t) holds for all t .

Proof. Since x = x̃(0), the if direction is obvious. To prove the only if direction, as-
sume that uxv = ±x. Apply Ct to both sides of this equation to get

±Ct(x) = Ct(uxv) = euθ t uxvevφt = uCt(x)v

(i.e., ±x̃(t) = ux̃(t)v).

Thus we look for those x in H that satisfy one of the linear equations ux ± xv = 0.
To do this we introduce a basis for H. A natural choice is the set consisting of 1, u,
v, and uv. Of course, this is not a basis if u = ±v, but it is otherwise. (Note: when
p = ±1 or q = ±1, at least one of u or v may be chosen arbitrarily. When this occurs,
we always choose u and v to be orthogonal.)

We first consider the case where u = ±v and look for solutions to ux ± xu = 0. It is
easy to see that 1 and u are solutions to ux − xu = 0; in fact, they form an orthonormal
basis for the solutions to this equation. On the other hand, the solutions to ux + xu = 0
are the pure quaternions x that are orthogonal to u. In a minor abuse of notation we use
�u⊥ (recall that �u is the vector part of u) to signify this set of solutions. Since any pure
quaternion is necessarily orthogonal to 1, the space �u⊥ is the orthogonal complement
of the space spanned by 1 and u. Thus the solution spaces to the two equations ux ±
xu = 0 give a decomposition of H into the sum of two two-dimensional orthogonal
subspaces.

Now assume that u �= ±v. One can then introduce the basis {1,u, v,uv} and in a
straightforward fashion find solutions. However, it is easier to guess solutions. For
example, x = u + v satisfies ux − xv = 0. For this x, the curve x̃ lies in a two-
dimensional invariant subspace; hence dx̃/dt(0) is also in that subspace. Using (5),
we see that for x = u + v

dx̃
dt
(0) = uθ (u + v)+ (u + v) vφ = (θ + φ)(uv − 1).

A direct calculation confirms that x = uv − 1 is another solution of ux − xv = 0.
Moreover, since Ct is a rotation for every t , |x̃(t)| = |Ct(u + v)| = |u + v| is a con-
stant. It follows that x̃(0) = u + v is orthogonal to x̃′(0) and thus to uv − 1. Observe
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also that, since uv − 1 = (u + v)v, equation (3) implies that these two quaternions
have the same norm. A direct calculation gives the common value of these norms:√

2(1 + cosα), where α (0 < α < π) is the angle between u and v. In a similar fash-
ion, we can show that v − u and uv + 1 are orthogonal solutions of ux + xv = 0, each
having norm

√
2(1 − cosα). Finally, it is easy to check that each pair of vectors is or-

thogonal to the other pair. Thus the vectors u + v, uv − 1, v − u, and uv + 1 constitute
an orthogonal basis for H.

Assume that u �= −v, let x = u + v, and recall that this x satisfies ux − xv = 0 (or
equivalently uxv = −x). Here |u + v| = |uv − 1| = √

2(1 + cosα) even when α = 0.
For this x, (6) becomes

d2x̃
dt2

(t)+ (θ + φ)2x̃(t) = 0. (8)

Also, by (5) evaluated at t = 0,

dx̃
dt
(0) = θux + φxv = (θ + φ)(ux) = (θ + φ)(uv − 1).

Hence |θ + φ|−1|dx̃/dt(0)| = |x̃(0)| and 〈x̃(0), dx̃/dt(0)〉 = 0. Thus we can invoke
Proposition 3 and conclude that C restricted to the plane spanned by u + v and uv − 1
is a rotation through the angle |θ + φ| in the direction that turns u + v toward sign(θ +
φ)(uv − 1). Stated more simply, C restricted to the plane spanned by u + v and uv − 1
is a rotation through θ + φ in the direction that turns u + v toward uv − 1. In a similar
fashion, when u �= v we can show that C restricted to the plane spanned by v − u and
uv + 1 is a rotation by θ − φ in the direction that turns v − u towards uv + 1. The
same kind of results hold in the remaining cases when u = ±v.

We consolidate what we have learned into our first theorem:

Theorem 1. Let p = euθ and q = evφ , where u and v are pure unit quaternions.
The orthogonal transformation Cp,q of H is a product of two rotations in orthog-
onal planes. If u �= ±v, then Cp,q rotates the plane spanned by u + v and uv − 1
through the angle |θ + φ| and the plane spanned by v − u and uv + 1 through the
angle |θ − φ|. If u = ±v, then the invariant planes are the span of 1 and u and its or-
thogonal complement, and the rotation angles in appropriate planes are still |θ + φ|
and |θ − φ|.

As an aside, we note the following special case of Theorem 1. When θφ = 0, which
implies that p = 1 or q = 1, the differential equation (8) is equivalent to (6). Then for
every x the associated curve x̃ satisfies (8), and we see that every nonzero x lies in a
C-invariant plane and is rotated through the same angle, namely, |θ + φ|.

We can now prove that every proper orthogonal transformation of H is of the
form Cp,q and so can be described by Theorem 1 as well. First note that C = Cp,q

is proper since its determinant is 1. This follows from the fact that det(Ct) is a con-
tinuous function of t and can only take on the values ±1 (each Ct is orthogonal).
However, C0 is the identity, which has determinant 1.

Theorem 2. If A is a proper orthogonal transformation of H, then there exist unit
quaternions p and q such that A = Cp,q.

Proof. Let A be a proper orthogonal transformation of H, and let p = A(1). Clearly,
p is a unit quaternion. Observe that Cp,1 maps 1 to p. Then C−1

p,1 ◦ A fixes 1 and thus
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defines a proper orthogonal transformation in E
3. By Proposition 1, there exists a unit

quaternion q such that C−1
p,1 ◦ A = Cq,q̄. It follows that A = Cp,1 ◦ Cq,q̄ = Cpq,q̄.

It is not the case that each A is uniquely represented as Cp,q. Our final theorem
shows precisely to what extent this representation is not unique.

Theorem 3. Let p1, p2, q1, and q2 be unit quaternions. The transformations Cp1,q1

and Cp2,q2 are equal if and only if p2/p1 = q2/q1 = ±1.

Proof. The theorem follows from the observation that Cp,q is the identity transforma-
tion if and only if p = q = ±1. One direction of this equivalence is obvious, and the
proof of the other direction is an easy application of Theorem 1, which we leave to the
reader.
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Another Proof of the Fundamental
Theorem of Algebra

José Carlos de Sousa Oliveira Santos

The goal of this note is to prove the fundamental theorem of algebra. To be more
precise, we show that the degree of an irreducible polynomial in R[X ] is either 1 or 2.
The same method can be used to prove that the degree of an irreducible polynomial in
C[X ] is always 1.

Let n be an integer larger than 1, and let P be an irreducible polynomial in R[X ]
of degree n. We assert that n = 2. Denote by 〈P〉 the ideal generated by P in the
ring R[X ]. Since P is irreducible, the quotient of the ring R[X ] by 〈P〉 is a field. If we
define ψ : R

n −→ R[X ]/〈P〉 by

(a0, a1, . . . , an−1) $→ a0 + a1 X + · · · + an−1 Xn−1 + 〈P〉,
then ψ is a group isomorphism from (Rn,+) onto (R[X ]/〈P〉,+). This isomorphism
induces in the obvious way a field structure in R

n , the addition being the usual one. The
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