On boundaries in approximation by polyharmonic kernels

Thomas Hangelbroek

University of Hawaii at Manoa

Curves and Surfaces 2014
work supported by: NSF DMS-1232409

Error estimates for kernel approximation

Given a metric space Ω and a kernel $k: \Omega \times \Omega \rightarrow \mathbb{R}$

- k is positive definite if for any finite set of centers 三, the collocation matrix

$$
\mathrm{C}_{\equiv}:=(k(\xi, \zeta))_{(\xi, \zeta) \in \equiv \times \equiv}
$$

is symmetric, positive definite.

- Interpolation: For $f \in C(\Omega)$,

$$
\text { I } f=\sum_{\xi \in \equiv} c_{\xi} k(\cdot, \xi)
$$

is the unique function in $\operatorname{span}_{\xi \in \equiv} k(\cdot, \xi)$ so that $\left.\xlongequal{ } f\right|_{\equiv}=\left.f\right|_{\equiv}$.

- Native space: There is a Hilbert space of continuous functions \mathcal{N} with k as its reproducing kernel: $f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{N}}$
- Error estimate:

$$
\|f-!\equiv f\|_{\mathcal{N}}^{2}+\|!f\|_{\mathcal{N}}^{2}=\|f\|_{\mathcal{N}}^{2}
$$

Error for kernels with $\mathcal{N} \subset W_{2}^{m}\left(\mathbb{R}^{d}\right)$

Let Ω be compact with smooth boundary. Let $h:=\max _{x \in \Omega} \operatorname{dist}(x, \equiv)$.

If $\mathcal{N} \subset W_{2}^{m}\left(\mathbb{R}^{d}\right)$ and $m>d / 2$ then

$$
\left\|f-\varliminf_{\equiv f} f\right\|_{L_{\infty}(\Omega)} \lesssim h^{m-d / 2}\left\|f-\Xi_{\equiv f}\right\|_{W_{2}^{m}(\Omega)}
$$

Error for kernels with $\mathcal{N} \subset W_{2}^{m}\left(\mathbb{R}^{d}\right)$

Let Ω be compact with smooth boundary. Let $h:=\max _{x \in \Omega} \operatorname{dist}(x, \equiv)$.

If $\mathcal{N} \subset W_{2}^{m}\left(\mathbb{R}^{d}\right)$ and $m>d / 2$ then

$$
\begin{aligned}
\|f-\leqq f\|_{L_{\infty}(\Omega)} & \lesssim h^{m-d / 2}\|f-\leqq f\|_{W_{2}^{m}(\Omega)} \\
& \lesssim h^{m-d / 2}\|f-\leqq f\|_{\mathcal{N}} \\
& \lesssim h^{m-d / 2}\|f\|_{\mathcal{N}}
\end{aligned}
$$

Error for kernels with $\mathcal{N} \subset W_{2}^{m}\left(\mathbb{R}^{d}\right)$

Let Ω be compact with smooth boundary. Let $h:=\max _{x \in \Omega} \operatorname{dist}(x, \equiv)$.

If $\mathcal{N} \subset W_{2}^{m}\left(\mathbb{R}^{d}\right)$ and $m>d / 2$ then

$$
\begin{aligned}
\|f-\leqq f\|_{L_{\infty}(\Omega)} & \lesssim h^{m-d / 2}\|f-\leqq f\|_{w_{2}^{m}(\Omega)} \\
& \lesssim h^{m-d / 2}\|f-\leqq f\|_{\mathcal{N}} \\
& \lesssim h^{m-d / 2}\|f\|_{\mathcal{N}}
\end{aligned}
$$

In general: $\|f-\underline{\equiv} f\|_{L_{p}(\Omega)}=O\left(h^{m-(d / 2-d / p)_{+}}\right)$for $f \in \mathcal{N}$

Error for kernels with $\mathcal{N} \subset W_{2}^{m}\left(\mathbb{R}^{d}\right)$

Let Ω be compact with smooth boundary.
Let $h:=\max _{x \in \Omega} \operatorname{dist}(x, \equiv)$.
If $\mathcal{N} \subset W_{2}^{m}\left(\mathbb{R}^{d}\right)$ and $m>d / 2$ then

$$
\begin{aligned}
\|f-\leqq f\|_{L_{\infty}(\Omega)} & \lesssim h^{m-d / 2}\|f-\leqq f\|_{w_{2}^{m}(\Omega)} \\
& \lesssim h^{m-d / 2}\|f-\leqq f\|_{\mathcal{N}} \\
& \lesssim h^{m-d / 2}\|f\|_{\mathcal{N}}
\end{aligned}
$$

In general: $\|f-\underline{\equiv} f\|_{L_{\rho}(\Omega)}=O\left(h^{m-(d / 2-d / p)_{+}}\right)$for $f \in \mathcal{N}$

In "boundary free" settings the rates can increase:

- compactly supported f (Bejancu)
- 'doubling trick' (Schaback)
- shift-invariant approximation over $\Omega=\mathbb{R}^{d}$ (Buhmann, others)

Surface Spline Approximation in \mathbb{R}^{d}

For compact $\Omega \subset \mathbb{R}^{d}$ and $\equiv \subset \Omega$

$$
S\left(\phi_{m}, \equiv\right):=\left\{\sum_{\xi \in \equiv} \boldsymbol{A}_{\xi} \phi_{m}(\cdot-\xi) \mid \forall p \in \mathcal{P}_{m-1} \sum_{\xi \in \equiv} \boldsymbol{A}_{\xi} \boldsymbol{P}(\xi)=0\right\}+\mathcal{P}_{m-1}
$$

the surface splines:

$$
\phi_{m}(x-\alpha):= \begin{cases}|x-\alpha|^{2 m-d} \log |x-\alpha|, & d \text { even } \\ |x-\alpha|^{2 m-d}, & d \text { odd }\end{cases}
$$

- Native space approximation order: For $f \in W_{2}^{m}(\Omega)$, $\operatorname{dist}\left(f, S\left(\phi_{m}, \equiv\right)\right)_{L_{\rho}(\Omega)}=\mathcal{O}\left(h^{m-d\left(\frac{1}{2}-\frac{1}{p}\right)_{+}}\right)$
- Boundary free approximation order: If f is supported away from $\partial \Omega$ - or if \equiv is taken from a neighborhood of Ω - then for $f \in W_{p}^{2 m}(\Omega), \operatorname{dist}\left(f, S\left(\phi_{m}, \Xi\right)\right)_{L_{p}(\Omega)}=\mathcal{O}\left(h^{2 m}\right)$.

Boundary effects

Let $\alpha>0$. Consider $\equiv \subset \Omega$ satisfying

$$
\begin{equation*}
\operatorname{dist}(\equiv, \partial \Omega)>\alpha h \tag{1}
\end{equation*}
$$

Theorem (Johnson (98))
For \equiv satisfying (1) there is $f \in C^{\infty}(\bar{\Omega})$ so that

$$
\operatorname{dist}\left(f, S\left(\phi_{m}, \equiv\right)\right)_{p} \neq o\left(h^{m+1 / p}\right)
$$

Boundary effects

Let $\alpha>0$. Consider $\equiv \subset \Omega$ satisfying

$$
\begin{equation*}
\operatorname{dist}(\equiv, \partial \Omega)>\alpha h \tag{1}
\end{equation*}
$$

Theorem (Johnson (98))
For \equiv satisfying (1) there is $f \in C^{\infty}(\bar{\Omega})$ so that

$$
\operatorname{dist}\left(f, S\left(\phi_{m}, \equiv\right)\right)_{p} \neq o\left(h^{m+1 / p}\right)
$$

Q: Is $\mathcal{O}\left(h^{m+1 / p}\right)$ attainable for $f \in C^{\infty}(\bar{\Omega})$? A: Yes, for $1 \leq p \leq 2$, and for $f \in B_{2,1}^{m+1 / p}(\Omega)$ (Johnson '04)

Q: By violating (1) can we get $\mathcal{O}\left(h^{2 m}\right)$?

Surface Spline Approximation Orders

Q1: Is $m+1 / p$ the 'saturation order'? I.e. is $\mathcal{O}\left(h^{m+1 / p}\right)$ attainable?
Q2: Can we get $\mathcal{O}\left(h^{2 m}\right)$ by placing extra centers near boundary?

Results

Let Ω be a bounded domain in \mathbb{R}^{d} with smooth boundary.

- For $1<p<\infty$, and $f \in B_{p, 1}^{s}(\Omega), 0<s \leq m+1 / p$

$$
\operatorname{dist}\left(f, S\left(\phi_{m}, \Xi\right)\right)_{p} \lesssim h^{s}\|f\|_{B_{p, 1}^{s}(\Omega)}
$$

- For $p=1, \infty$ use $B_{1, \infty}^{S+\epsilon}(\Omega)$ or $C^{s+\epsilon}(\bar{\Omega})$

Results

Let Ω be a bounded domain in \mathbb{R}^{d} with smooth boundary.

- For $1<p<\infty$, and $f \in B_{p, 1}^{s}(\Omega), 0<s \leq m+1 / p$

$$
\operatorname{dist}\left(f, S\left(\phi_{m}, \equiv\right)\right)_{p} \lesssim h^{s}\|f\|_{B_{p, 1}^{s}(\Omega)}
$$

- For $p=1, \infty$ use $B_{1, \infty}^{S+\epsilon}(\Omega)$ or $C^{s+\epsilon}(\bar{\Omega})$
- Use two fill distances:
- $h_{1}=h(\Omega$, 三) - the global fill distance.
- h_{2} local fill distance around $\partial \Omega$. (In a $K h_{2}$ neighborhood of $\partial \Omega$.)

Then, for $f \in W_{p}^{2 m}(\Omega)$ (or $C^{2 m}(\bar{\Omega})$ when $p=\infty$)

$$
\operatorname{dist}\left(f, S\left(\phi_{m}, \equiv\right)\right)_{p} \lesssim\left(h_{1}^{2 m}+h_{2}^{m+\frac{1}{\rho}}\right)\|f\|_{W_{p}^{2 m}(\Omega)} .
$$

Results

Let Ω be a bounded domain in \mathbb{R}^{d} with smooth boundary.

- For $1<p<\infty$, and $f \in B_{p, 1}^{s}(\Omega), 0<s \leq m+1 / p$

$$
\operatorname{dist}\left(f, S\left(\phi_{m}, \Xi\right)\right)_{p} \lesssim h^{s}\|f\|_{B_{p, 1}^{s}(\Omega)}
$$

- For $p=1, \infty$ use $B_{1, \infty}^{S+\epsilon}(\Omega)$ or $C^{S+\epsilon}(\bar{\Omega})$
- Use two fill distances:
- $h_{1}=h(\Omega, \equiv)$ - the global fill distance.
- h_{2} local fill distance around $\partial \Omega$. (In a $K h_{2}$ neighborhood of $\partial \Omega$.)

Then, for $f \in W_{p}^{2 m}(\Omega)$ (or $C^{2 m}(\bar{\Omega})$ when $p=\infty$)

$$
\operatorname{dist}\left(f, S\left(\phi_{m}, \equiv\right)\right)_{p} \lesssim\left(h_{1}^{2 m}+h_{2}^{m+\frac{1}{\rho}}\right)\|f\|_{W_{p}^{2 m}(\Omega)} .
$$

- For $p=\infty$, if $h_{2} \leq h_{1}^{2}$,

$$
\operatorname{dist}\left(f, S\left(\phi_{m}, \bar{\Xi}\right)\right)_{\infty} \lesssim h_{1}^{2 m}\|f\|_{C^{2 m}(\bar{\Omega})}
$$

Integral Representation for Bounded Domains

$$
\begin{aligned}
f(x)=\int_{\Omega} & \mathcal{L}_{m} f(\alpha) k(x, \alpha) \mathrm{d} \alpha+\sum_{j=0}^{m-1} \int_{\partial \Omega} N_{j} f(\alpha) \lambda_{j, \alpha} k(x, \alpha) \mathrm{d} \sigma(\alpha)+p(x) \\
& \mathcal{L}_{m}=\Delta^{m} \text { or }(1-\Delta)^{m} ; \\
& k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}-\text { its fundamental solution. } \\
& \Omega \subset \mathbb{R}^{d} \text { compact with smooth boundary. } \\
& f \in C^{2 m}(\bar{\Omega}) \text { and } x \in \Omega
\end{aligned}
$$

Integral Representation for Bounded Domains

$$
\begin{gathered}
f(x)=\int_{\Omega} \mathcal{L}_{m} f(\alpha) k(x, \alpha) \mathrm{d} \alpha+\sum_{j=0}^{m-1} \int_{\partial \Omega} N_{j} f(\alpha) \lambda_{j, \alpha} k(x, \alpha) \mathrm{d} \sigma(\alpha)+p(x) \\
= \\
\int_{\Omega} \mathcal{L}_{m} f(\alpha) k(x, \alpha) \mathrm{d} \alpha+\sum_{j=0}^{m-1} \int_{\partial \Omega}\left[S_{j} f(\alpha) \lambda_{j} k(x, \alpha)-\lambda_{j} f(\alpha) S_{j} k(x, \alpha)\right] \mathrm{d} \sigma(\alpha) \\
\text { (Green's Representation) }
\end{gathered}
$$

Integral Representation for Bounded Domains

$$
f(x)=\int_{\Omega} \mathcal{L}_{m} f(\alpha) k(x, \alpha) \mathrm{d} \alpha+\sum_{j=0}^{m-1} \int_{\partial \Omega} N_{j} f(\alpha) \lambda_{j, \alpha} k(x, \alpha) \mathrm{d} \sigma(\alpha)+p(x)
$$

Dirichlet boundary operators $\lambda_{j}, j=0 \ldots m-1$:

$$
D_{n} \Delta^{\frac{j-1}{2}} \text {, or } \operatorname{Tr} \Delta^{\frac{j}{2}}
$$

Integral Representation for Bounded Domains

$$
\begin{gathered}
f(x)=\int_{\Omega} \mathcal{L}_{m} f(\alpha) k(x, \alpha) \mathrm{d} \alpha+\sum_{j=0}^{m-1} \int_{\partial \Omega} N_{j} f(\alpha) \lambda_{j, \alpha} k(x, \alpha) \mathrm{d} \sigma(\alpha)+p(x) \\
\text { Operator of "Order" } 2 m-j-1
\end{gathered}
$$

$$
N_{j}=\sum \psi \operatorname{Tr} B
$$

- B a differential operator,
- Tr trace on the boundary,
- ψ a pseudodifferential operator on boundary.
- $\operatorname{Order}(B)+\operatorname{Order}(\psi) \leq 2 m-j-1$.

Integral Representation for Bounded Domains

$$
f(x)=\int_{\Omega} \mathcal{L}_{m} f(\alpha) k(x, \alpha) \mathrm{d} \alpha+\sum_{j=0}^{m-1} \int_{\partial \Omega} N_{j} f(\alpha) \lambda_{j, \alpha} k(x, \alpha) \mathrm{d} \sigma(\alpha)+p(x)
$$

Approximation scheme:

Replace $k(x, \alpha)$ by $K(x, \alpha)=\sum_{\xi \in \equiv} c(\alpha, \xi) k(x, \xi)$
Replace each $\lambda_{j, \alpha} k(x, \alpha)$ by $K_{j}(x, \alpha)=\sum_{\xi \in \equiv} c_{j}(\alpha, \xi) k(x-\xi)$

$$
s_{f}(x):=\sum_{\xi \in \equiv} A_{\xi} k(x, \xi)+p
$$

with

$$
A_{\xi}=C_{m, d} \int_{\Omega} c(\alpha, \xi) \Delta^{m} f(\alpha) \mathrm{d} \alpha+\sum_{j=0}^{m-1} \int_{\partial \Omega} c_{j}(\alpha, \xi) N_{j} f(\alpha) \mathrm{d} \sigma(\alpha)
$$

Dirichlet Problem via Boundary Layer Potentials

Find a solution of the Dirichlet Problem

$$
\begin{cases}\mathcal{L}_{m} u(\alpha)=0, & \alpha \in \Omega \\ \lambda_{j} u(\alpha)=h_{j}(\alpha) & \alpha \in \partial \Omega, j=0, \ldots, m-1\end{cases}
$$

using boundary layer potentials $V_{j} g(x):=\int_{\partial \Omega} \lambda_{j, \alpha} k(x, \alpha) g(\alpha) \mathrm{d} \alpha$. I.e., of the form

$$
u(x)=\sum_{j=0}^{m-1} v_{j} g_{j}(x)=\sum_{j=0}^{m-1} \int_{\partial \Omega} \lambda_{j, \alpha} k(x, \alpha) g_{j}(\alpha) \mathrm{d} \sigma(\alpha) .
$$

Dirichlet Problem via Boundary Layer Potentials

Find a solution of the Dirichlet Problem

$$
\begin{cases}\mathcal{L}_{m} u(\alpha)=0, & \alpha \in \Omega \\ \lambda_{j} u(\alpha)=h_{j}(\alpha) & \alpha \in \partial \Omega, j=0, \ldots, m-1\end{cases}
$$

using boundary layer potentials $V_{j} g(x):=\int_{\partial \Omega} \lambda_{j, \alpha} k(x, \alpha) g(\alpha) \mathrm{d} \alpha$. I.e., of the form

$$
u(x)=\sum_{j=0}^{m-1} V_{j} g_{j}(x)=\sum_{j=0}^{m-1} \int_{\partial \Omega} \lambda_{j, \alpha} k(x, \alpha) g_{j}(\alpha) \mathrm{d} \sigma(\alpha)
$$

Equivalently: solve the system of integral equations:

$$
\widetilde{L}\left(\begin{array}{c}
g_{0} \\
\vdots \\
g_{m-1}
\end{array}\right):=\left(\begin{array}{c}
\lambda_{0}\left(V_{0} g_{0}+V_{1} g_{1}+\cdots+V_{m-1} g_{m-1}\right) \\
\vdots \\
\lambda_{m-1}\left(V_{0} g_{0}+V_{1} g_{1}+\cdots+V_{m-1} g_{m-1}\right)
\end{array}\right)=\left(\begin{array}{c}
h_{0} \\
\vdots \\
h_{m-1}
\end{array}\right)
$$

System of integral equations

$\tilde{L}:\left(\mathcal{D}^{\prime}(\partial \Omega)\right)^{m} \rightarrow\left(\mathcal{D}^{\prime}(\partial \Omega)\right)^{m}$ is a pseudodifferential operator. It is elliptic and that the augmented operator

$$
L:=\left(\begin{array}{c|c}
\widetilde{L} & P \\
P^{*} & 0
\end{array}\right) \quad \text { where } \quad P=\left(\begin{array}{ccc}
\lambda_{0} p_{1} & \ldots & \lambda_{0} p_{N} \\
\vdots & \ddots & \vdots \\
\lambda_{m-1} p_{1} & \cdots & \lambda_{m-1} p_{N}
\end{array}\right),
$$

($p_{1} \ldots p_{N}$ a basis for \mathcal{P}_{m-1}) is boundedly invertible from

$$
\mathcal{A}_{p, s}:=W_{p}^{s}(\partial \Omega) \times \cdots \times W_{p}^{s+m-1}(\partial \Omega) \times \mathbb{R}^{N}
$$

to

$$
\mathcal{B}_{p, s+2 m-1}:=W_{p}^{s+2 m-1}(\partial \Omega) \times \cdots \times W_{p}^{s+m}(\partial \Omega) \times \mathbb{R}^{N}
$$

for any $s \in \mathbb{R}, 1<p<\infty$. The solution $\mathbf{g}=\left(g_{0} \ldots g_{m-1}\right)^{T}$ and the coefficients $\mathbf{a}=\left(a_{1} \ldots a_{N}\right)^{T}$ of $p=\sum a_{j} p_{j}$ are

$$
\binom{\mathbf{g}}{\mathbf{a}}=L^{-1}\binom{\mathbf{h}}{\mathbf{0}}, \quad \mathbf{h}=\left(\lambda_{0} f \ldots \lambda_{m-1} f\right)^{T}
$$

1. For any $s \in \mathbb{R}$ and $1<p<\infty, \widetilde{L}$ is bounded from $W_{p}^{s}(\partial \Omega) \times \cdots \times W_{p}^{s+m-1}(\partial \Omega)$ to $W_{p}^{s+2 m-1}(\partial \Omega) \times \cdots \times W_{p}^{s+m}(\partial \Omega)$
2. It is self-adjoint

$$
\begin{aligned}
(\widetilde{L})^{*}: & \left(W_{p}^{s+2 m-1} \times \cdots \times W_{p}^{s+m}\right)^{\prime} \longrightarrow\left(W_{p}^{s} \times \cdots \times W_{p}^{s+m-1}\right)^{\prime} \\
& \left(W_{p^{\prime}}^{-s+1-2 m} \times \cdots \times W_{p^{\prime}}^{-s-m}\right) \rightarrow\left(W_{p^{\prime}}^{-s} \times \cdots \times W_{p^{\prime}}^{-s-m+1}\right)
\end{aligned}
$$

3. The range of \tilde{L} is closed in $W_{p}^{s+2 m-1} \times \cdots \times W_{p}^{s+m}$ (it has a right parametrix $\widetilde{L} R=I+K)$.
4. Injectivity does not necessarily hold for \widetilde{L}, but it does for

$$
L=\left(\begin{array}{c|c}
\widetilde{L} & P \\
\hline P^{*} & 0
\end{array}\right)
$$

5. $\operatorname{ran} L=\overline{\operatorname{ran} L}=\perp \operatorname{ker} L^{*}=\perp\{0\}$

END

