Recent progress on boundary effects in kernel approximation

Thomas Hangelbroek

University of Hawaii at Manoa

FoCM 2014

work supported by: NSF DMS-1413726

Radial basis function approximation over Ω . Let $\Omega \subset \mathbb{R}^d$ and $\Xi \subset \Omega$ with $\#\Xi < \infty$. For a radial $k : \mathbb{R}^d \to \mathbb{R}$, approximate by using the finite dimensional spaces

$$S(\Xi) := \operatorname{span}_{\xi \in \Xi} k(\cdot - \xi)$$

Given $f: \Omega \to \mathbb{R}$, as $h:=\max_{x\in\Omega} \operatorname{dist}(x,\Xi) \to 0$ estimate

$$\operatorname{dist}(f, \mathcal{S}(\Xi))_{L_p(\Omega)}$$
.

▶ Use the Matérn function of order m > d/2:

$$k_m(x): \mathbb{R}^d \to \mathbb{R}: x \mapsto K_{m-d/2}(|x|) |x|^{m-d/2}.$$

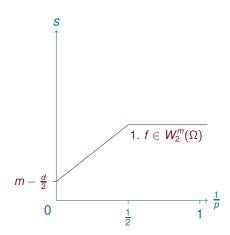
Here K_{ν} is a modified Bessel function of the second kind.

▶ Fundamental solution of $(1 - \Delta)^m$ on \mathbb{R}^d .

 Ω : compact, smooth boundary. $h := \max_{x \in \Omega} \operatorname{dist}(x, \Xi)$.

1. For $f \in W_2^m(\Omega)$:

$$\operatorname{dist}(f,S(\Xi))_{L_p(\Omega)}=O(h^{m-(d/2-d/p)_+})$$



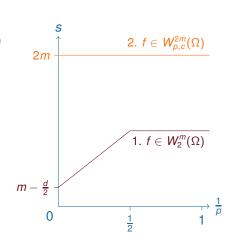
 Ω : compact, smooth boundary. $h := \max_{x \in \Omega} \operatorname{dist}(x, \Xi)$.

1. For $f \in W_2^m(\Omega)$:

$$\operatorname{dist}(f, S(\Xi))_{L_p(\Omega)} = O(h^{m-(d/2-d/p)_+})$$

2. For $f \in W^{2m}_{p,c}(\Omega)$ (compact support in interior of Ω)

$$\operatorname{dist}(f, S(\Xi))_{L_n(\Omega)} = O(h^{2m})$$



- Ω: compact, smooth boundary. $h := \max_{x \in Ω} \operatorname{dist}(x, \Xi)$.
- 1. For $f \in W_2^m(\Omega)$:

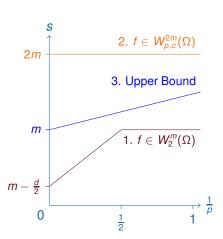
$$\operatorname{dist}(f, S(\Xi))_{L_p(\Omega)} = O(h^{m-(d/2-d/p)_+})$$

2. For $f \in W^{2m}_{p,c}(\Omega)$ (compact support in interior of Ω)

$$\operatorname{dist}(f, S(\Xi))_{L_n(\Omega)} = O(h^{2m})$$

3. For certain $\Xi\subset\Omega$ there are $f\in C^\infty(\overline{\Omega})$ so that

$$\operatorname{dist}(f, S(\Xi))_p \neq o(h^{m+1/p}).$$



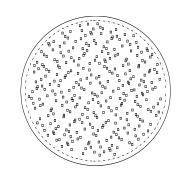
Boundary effects

Let $0 < \alpha < 1$. Consider $\Xi \subset \Omega$ satisfying

$$\operatorname{dist}(\Xi, \partial\Omega) > \alpha h \tag{1}$$

Theorem (Johnson (98))

For Ξ satisfying (1) there is $f \in C^{\infty}(\overline{\Omega})$ so that $\operatorname{dist}(f, S(\phi_m, \Xi))_p \neq o(h^{m+1/p}).$

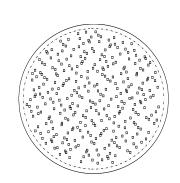


Boundary effects

Let
$$0<\alpha<1$$
. Consider $\Xi\subset\Omega$ satisfying
$${\rm dist}(\Xi,\partial\Omega)>\alpha h \tag{1}$$

Theorem (Johnson (98)) For Ξ satisfying (1) there is $f \in C^{\infty}(\overline{\Omega})$ so that $\operatorname{dist}(f, S(\phi_m, \Xi))_p \neq o(h^{m+1/p})$.

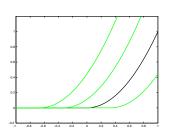
- Q: Is $\mathcal{O}(h^{m+1/p})$ attainable for $f \in C^{\infty}(\overline{\Omega})$?
- Q: By violating (1) can we get $\mathcal{O}(h^{2m})$?

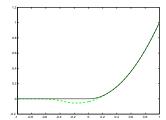


A useful kernel approximation scheme

In the integral representation $f(x) = \int_{\mathbb{R}^d} (1 - \Delta)^m f(\alpha) k_m(x - \alpha) \mathrm{d}x$ Replace $k_m(x - \alpha) \leftrightsquigarrow K(x, \alpha) := \sum_{\xi \in \Xi} a(\alpha, \xi) k_m(x - \xi) \in S(\Xi)$ so that $|k_m(x - \alpha) - K(x, \alpha)|$ is suitably small.

$$T_{\Xi}f(x) := \int_{\mathbb{R}^d} (1-\Delta)^m f(\alpha) K(x,\alpha) dx$$
$$= \sum_{\xi \in \Xi} \left(\int_{\mathbb{R}^d} (1-\Delta)^m f(\alpha) a(\alpha,\xi) dx \right) k_m(x-\xi) \in S(\Xi)$$





Representation on bounded domains

Green's representation:

$$f(x) = \int_{\Omega} (1 - \Delta)^m f(\alpha) k_m(x - \alpha) d\alpha$$

$$+ \sum_{j=0}^{m-1} \int_{\partial \Omega} [S_j f(\alpha) \lambda_{j,\alpha} k_m(x - \alpha) - \lambda_j f(\alpha) S_{j,\alpha} k_m(x - \alpha)] d\sigma(\alpha)$$

 λ_j - diff. operator of order j; S_j - diff. operator of order 2m - j - 1

Representation on bounded domains

Green's representation:

$$f(x) = \int_{\Omega} (1 - \Delta)^m f(\alpha) k_m(x - \alpha) d\alpha$$

$$+ \sum_{j=0}^{m-1} \int_{\partial \Omega} [S_j f(\alpha) \lambda_{j,\alpha} k_m(x - \alpha) - \lambda_j f(\alpha) S_{j,\alpha} k_m(x - \alpha)] d\sigma(\alpha)$$

 λ_j - diff. operator of order j; S_j - diff. operator of order 2m-j-1 Native space representation:

$$f(x) = \int_{\Omega} (1 - \Delta)^m f(\alpha) k_m(x - \alpha) d\alpha + \sum_{j=0}^{m-1} \int_{\partial \Omega} N_j f(\alpha) \lambda_{j,\alpha} k_m(x - \alpha) d\sigma(\alpha)$$

Approximation scheme:

Replace each
$$\lambda_{j,\alpha} k_m(x-\alpha)$$
 by $K_j(x,\alpha) = \sum_{\xi \in \Xi} a_j(\alpha,\xi) k_m(x-\xi)$

$$s_f := \sum_{\xi \in \Xi} \left(\int_{\Omega} a(\alpha, \xi) \Delta^m f(\alpha) d\alpha + \sum_{j=0}^{m-1} \int_{\partial \Omega} a_j(\alpha, \xi) N_j f(\alpha) d\sigma(\alpha) \right) k_m(\cdot - \xi)$$

Results

Let Ω be a bounded domain in \mathbb{R}^d with smooth boundary.

▶ For
$$1 , and $f \in B_{p,1}^s(\Omega)$, $0 < s \le m + 1/p$$$

$$\operatorname{dist}(f, S(\Xi))_p \lesssim h^s ||f||_{B^s_{p,1}(\Omega)}.$$

Results

Let Ω be a bounded domain in \mathbb{R}^d with smooth boundary.

For
$$1 , and $f \in B^s_{p,1}(\Omega)$, $0 < s \le m + 1/p$

$$\operatorname{dist}(f, S(\Xi))_p \lesssim h^s \|f\|_{B^s_{p,1}(\Omega)}.$$$$

- Use two fill distances:
 - $h_1 = h(\Omega, \Xi)$ the global fill distance.
 - ▶ h_2 local fill distance around $\partial \Omega$. (In a Kh_2 neighborhood of $\partial \Omega$.)

Then, for
$$f \in W_p^{2m}(\Omega)$$
 (or $C^{2m}(\overline{\Omega})$ when $p = \infty$)

$$\operatorname{dist}(f, S(\Xi))_{\rho} \lesssim (h_1^{2m} + h_2^{m+\frac{1}{\rho}}) \|f\|_{W_{\rho}^{2m}(\Omega)}.$$

Results

Let Ω be a bounded domain in \mathbb{R}^d with smooth boundary.

► For
$$1 , and $f \in B_{p,1}^s(\Omega)$, $0 < s \le m + 1/p$$$

$$\operatorname{dist}(f, \mathcal{S}(\Xi))_{\rho} \lesssim h^{s} \|f\|_{B^{s}_{\rho,1}(\Omega)}.$$

- Use two fill distances:
 - $h_1 = h(\Omega, \Xi)$ the global fill distance.
 - ▶ h_2 local fill distance around $\partial Ω$. (In a Kh_2 neighborhood of $\partial Ω$.)

Then, for
$$f \in W_p^{2m}(\Omega)$$
 (or $C^{2m}(\overline{\Omega})$ when $p = \infty$)

$$\operatorname{dist}(f, S(\Xi))_{\rho} \lesssim (h_1^{2m} + h_2^{m+\frac{1}{\rho}}) \|f\|_{W_{\rho}^{2m}(\Omega)}.$$

▶ For $p = \infty$, if $h_2 \le h_1^2$,

$$\operatorname{dist}(f,\mathcal{S}(\Xi))_{\infty} \lesssim |h_1^{2m}||f||_{C^{2m}(\overline{\Omega})}$$

Localized bases

Joint work with: Ed Fuselier, Fran Narcowich, Christian Rieger, Xingping Sun, Joe Ward, Grady Wright

Matérn kernels

- ▶ k_m is reproducing kernel for $W_2^m(\mathbb{R}^d)$: $f(x) = \langle f, k_m(x \cdot) \rangle_{W_2^m(\mathbb{R}^d)}$
- ▶ k_m is positive definite: for any finite set of centers Ξ , the collocation matrix $C_{\Xi} := (k_m(\xi - \zeta))_{(\xi,\zeta) \in \Xi \times \Xi}$ is symmetric, positive definite.
- ▶ k_m provides best interpolation: the unique interpolant to $(y_\xi)_{\equiv}$ from $S(\Xi)$ has least $W_2^m(\mathbb{R}^d)$ norm.
- $(k_m(\cdot \xi))_{\xi \in \Xi}$ forms a basis for $S(\Xi) = \operatorname{span}_{\xi \in \Xi} k_m(\cdot \xi)$
- ▶ So does the Lagrange basis $(\chi_{\xi})_{\xi \in \Xi}$, where $\chi_{\xi} = \sum_{\eta \in \Xi} A_{\xi,\eta} k_m (\cdot \eta)$ and for all $\zeta \in \Xi$, $\chi_{\xi}(\zeta) = \delta(\xi,\zeta)$.
- ► The matrix of Lagrange coefficients $(A_{\xi,\zeta})_{(\xi,\zeta)\in\Xi\times\Xi}$ is the inverse of the collocation matrix C_{Ξ} .
- ▶ The Lagrange function coefficients satisfy $A_{\xi,\eta} = \langle \chi_{\xi}, \chi_{\zeta} \rangle_{W_2^m}$.

$$\langle \chi_{\xi}, \chi_{\zeta} \rangle_{\textit{W}_{2}^{m}} = \sum_{\eta \in \Xi} \textit{A}_{\zeta, \eta} \langle \chi_{\xi}, \textit{k}(\cdot, \eta) \rangle_{\textit{W}_{2}^{m}} = \sum_{\eta \in \Xi} \textit{A}_{\zeta, \eta} \delta(\xi, \eta) = \textit{A}_{\xi, \eta}.$$

Kernels on manifolds

 \mathbb{M} a compact d dimensional Riemannian manifold. If $k : \mathbb{M} \times \mathbb{M} \to \mathbb{R}$ is the reproducing kernel for $W_2^m(\mathbb{M})$, m > d/2

► Lagrange function is bounded in native space norm

$$\|\chi_{\xi}\|_{W_2^m(\mathbb{M})} \leq Cq^{d/2-m}$$

This is a bump estimate – compare χ_{ξ} to an interpolant with support in $B(\xi, q)$. Here $q := \min_{\xi \in \Xi} \operatorname{dist}(\xi, \Xi \setminus \{\xi\})$.

► Lagrange coefficients are uniformly bounded:

$$|A_{\xi,\zeta}| = |\langle \chi_{\xi}, \chi_{\zeta} \rangle_{W_2^m}| \le Cq^{d-2m}$$

 $\longrightarrow \|(C_{\Xi})^{-1}\|_{\infty} \le Cq^{d-2m}(\#\Xi)$

▶ [De Marchi-Schaback, '10] If \(\equiv \) is sufficiently dense in \(\mathbb{M} \), then a zeros lemma ensures that the Lagrange function is bounded, independent of \(#\equiv \):

$$|\chi_{\xi}(x)| \le Cq^{d/2-m}h^{m-d/2} = C\rho^{m-d/2}$$

► For sufficiently dense Ξ , we have the energy bound for R > 0:

For
$$R>0$$
, $\|\chi_{\xi}\|_{W_2^m(\mathbb{M}\setminus B(\xi,R))}\leq Cq^{d/2-m}e^{-\nu\frac{R}{h}}$

▶ For sufficiently dense Ξ , we have the energy bound for R > 0:

For
$$R > 0$$
, $\|\chi_{\xi}\|_{W_2^m(\mathbb{M} \setminus B(\xi,R))} \le Cq^{d/2-m}e^{-\nu \frac{R}{h}}$

► Lagrange functions have pointwise bounds

$$|\chi_{\xi}(x)| \leq C \rho^{m-d/2} e^{-\nu \frac{\operatorname{dist}(\xi,x)}{h}}$$

- ► Boundedness of Lebesgue constant,
- (H-N-Sun-W, '11) L_p Stability: $\|\sum_{\xi\in\Xi}a_\xi\chi_\xi\|_p\sim q^{\frac{a}{p}}\|\vec{a}\|_{\ell_p(\Xi)}$,
- ► (H-N-S-W, '11) L_p boundedness of L_2 projector.

► For sufficiently dense Ξ , we have the energy bound for R > 0:

For
$$R > 0$$
, $\|\chi_{\xi}\|_{W_2^m(\mathbb{M} \setminus B(\xi,R))} \leq Cq^{d/2-m}e^{-\nu\frac{R}{h}}$

► Lagrange functions have pointwise bounds

$$|\chi_{\xi}(x)| \leq C \rho^{m-d/2} e^{-\nu \frac{\operatorname{dist}(\xi,x)}{h}}$$

► Lagrange coefficients are bounded by

$$|A_{\xi,\zeta}| = |\langle \chi_{\xi}, \chi_{\zeta} \rangle_{W_2^m(\mathbb{M})}| \leq Cq^{d-2m}e^{-\frac{\nu}{2h}\mathrm{dist}(\xi,\zeta)}$$

► For sufficiently dense Ξ , we have the energy bound for R > 0:

For
$$R > 0$$
, $\|\chi_{\xi}\|_{W_2^m(\mathbb{M} \setminus B(\xi,R))} \le Cq^{d/2-m}e^{-\nu\frac{R}{h}}$

► Lagrange functions have pointwise bounds

$$|\chi_{\xi}(x)| \leq C \rho^{m-d/2} e^{-\nu \frac{\operatorname{dist}(\xi,x)}{h}}$$

Lagrange coefficients are bounded by

$$|A_{\xi,\zeta}| = |\langle \chi_{\xi}, \chi_{\zeta} \rangle_{W_2^m(\mathbb{M})}| \leq Cq^{d-2m}e^{-\frac{\nu}{2\hbar}\operatorname{dist}(\xi,\zeta)}$$

▶ Centers more than $Kh | \log h |$ away from ξ :

$$\sum_{\operatorname{dist}(\zeta,\xi)>\mathit{Kh}\,|\log h|} |A_{\xi,\zeta}| \leq \mathit{Cq}^{d-2m} h^{\frac{\nu^{\mathit{K}}}{2}} \leq \mathit{C}_{\rho} h^{\frac{\nu^{\mathit{K}}}{2}+d-2m}$$

Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, '13]

- ▶ Let $\Upsilon_{\xi} := \Xi \cap B(\xi, Kh|\log h|)$.
- ▶ Consider the truncated Lagrange basis $(\widetilde{\chi_{\xi}})_{\xi \in \Xi}$

$$\widetilde{\chi_{\xi}} := \sum_{\zeta \in \Upsilon_{\xi}} A_{\xi,\zeta} k_{m}(\cdot,\zeta) \longrightarrow \|\widetilde{\chi_{\xi}} - \chi_{\xi}\|_{\infty} \le C_{\rho} h^{(\frac{\kappa_{\nu}}{2} - 2m)}$$

► Still requires calculating all coefficients.

Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, '13]

- ▶ Let $\Upsilon_{\xi} := \Xi \cap B(\xi, Kh|\log h|)$.
- ► Consider the truncated Lagrange basis $(\widetilde{\chi_{\xi}})_{\xi \in \Xi}$

$$\widetilde{\chi_{\xi}} := \sum_{\zeta \in \Upsilon_{\xi}} A_{\xi,\zeta} k_m(\cdot,\zeta) \longrightarrow \|\widetilde{\chi_{\xi}} - \chi_{\xi}\|_{\infty} \le C_{\rho} h^{(\frac{\kappa_{\nu}}{2} - 2m)}$$

- Still requires calculating all coefficients.
- ▶ Use $b_{\xi} \in S(\Upsilon_{\xi})$, local Lagrange functions: $b_{\xi}(\zeta) = \delta_{\xi,\zeta} \ \forall \zeta \in \Upsilon_{\xi}$.
- ► Each element uses K | log N | d centers
- ▶ For sufficiently large K, $(b_{\xi})_{\xi \in \Xi}$ is an L_p -stable basis for $S(\Xi)$:

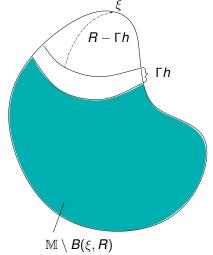
$$\|b_{\xi}-\chi_{\xi}\|_{\infty}\leq C_{\rho}h^{J}$$
 when $K=rac{2}{
u}(J+4m+d)$

• "Quasiinterpolation" $Q_{\Xi}f = \sum_{\xi \in \Xi} f(\xi)b_{\xi}$ gives near best approximation in L_{∞} .

Boundary Effects

How important is it to be "boundary-free"?

We must be able to decompose M into annuli around ξ .

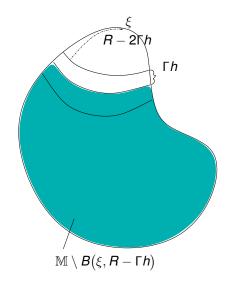


1-step energy:

 $\exists \epsilon < 1, \, \Gamma > 0$, (depending only on m and \mathbb{M}) so that

$$\|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\setminus B(\xi,R))}$$

$$\leq \epsilon \|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\setminus B(\xi,R-\Gamma h))}$$



Bulk Chasing

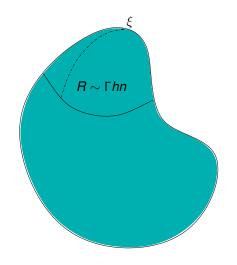
$$\|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\backslash B(\xi,R))}$$

$$\leq \epsilon \|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\backslash B(\xi,R-\Gamma h))}$$

$$\leq \epsilon^{2} \|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\backslash B(\xi,R-2\Gamma h))}$$

$$\vdots$$

$$\leq \epsilon^{n} \|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M})}$$



Energy estimate

For $R < r_{\mathbb{M}}/2$

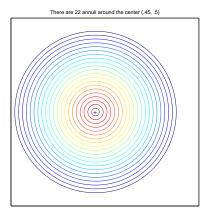
$$\|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\setminus B(\xi,R))}$$

$$\lesssim e^{-\nu(\frac{R}{h})}\|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M})}$$

$$\lesssim e^{-\nu(\frac{R}{h})}q^{d/2-m}$$

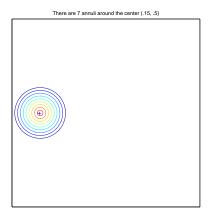
How important is it to be "boundary-free"?

Consider $\Omega = [0, 1]^2$:



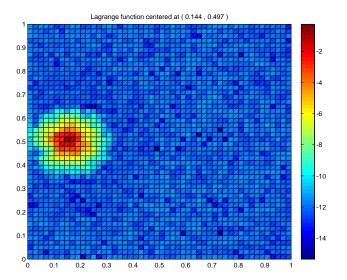
How important is it to be "boundary-free"?

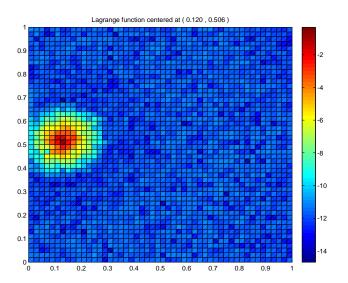
Consider $\Omega = [0, 1]^2$: This argument breaks down for centers near the boundary where we can place fewer annuli.

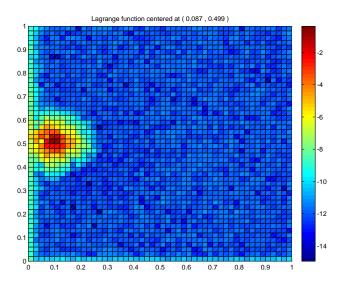


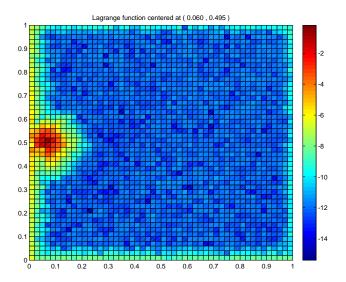
For $R < \operatorname{dist}(\xi, \partial \Omega)$

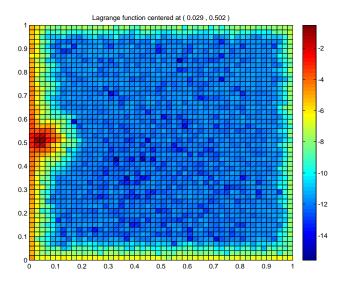
$$\|\chi_{\xi}\|_{W_2^m(\Omega\setminus B(x,R))}\leq Cq^{d/2-m}e^{-\nu\frac{R}{h}}.$$

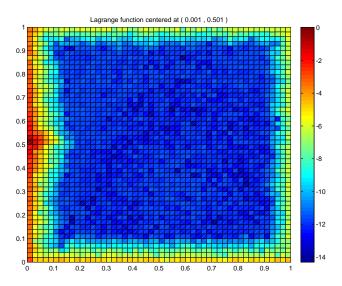






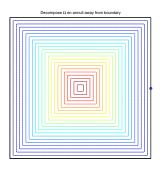






How important is it to be "boundary-free"?

For compact $\Omega \subset \mathbb{R}^d$, and $0 \le R$, $\Omega_R := \{x \in \Omega \mid \operatorname{dist}(x, \partial\Omega) \ge R\}$.



There exist positive constants C, h_0 and ν depending only on $\partial\Omega$ and m so that for $h < h_0$ and $\mathrm{dist}(\xi, \partial\Omega) \leq R$, we have

$$\|\chi_{\xi}\|_{W_2^m(\Omega_R)} \leq Cq^{d/2-m}e^{-\nu \frac{R-\operatorname{dist}(\xi,\partial\Omega)}{h}}.$$

Question: For $\xi \in \partial \Omega$, does $|\chi_{\xi}(x)|$ decay along boundary?

Recent work: Inverse Estimates

Bernstein estimates

Consider $\Omega \subset \mathbb{R}^d$, bounded. Let $\tilde{\Omega} = \{x \in \mathbb{R}^d \mid \operatorname{dist}(x,\Omega) < Kh | \log h | \}$ be a small neighborhood of Ω .

Avoiding boundary effects: For a discrete set $\Xi \subset \Omega$ with $h(\Xi, \Omega)$ sufficiently small, consider the spaces

$$V_{\Xi} = \operatorname{span}_{\xi \in \Xi} b_{\xi}$$

Given $\Xi \subset \Omega$, one can easily extend this to $\tilde{\Xi} \subset \tilde{\Omega}$.

Bernstein estimates (H-Narcowich-Rieger-Ward, to appear): For $0 < \tau < m - (d/2 - d/p)_+$

$$\|\sum_{\xi\in\Xi}a_{\xi}b_{\xi}\|_{W^{\tau}_{
ho}(\Omega)}\leq C_{
ho}h^{rac{d}{
ho}- au}\|a\|_{\ell_{
ho}(\Xi)}$$

Inverse estimates on Ω

Lower Riesz bound (H-Narcowich-Rieger-Ward, to appear):

$$\|\mathbf{a}\|_{\ell_{p}(\Xi)} \leq C_{\rho} h^{-d/p} \|s\|_{L_{p}(\Omega)}.$$

for all $s = \sum_{\xi \in \Xi} a_{\xi} b_{\xi} \in V_{\Xi}$.

Inverse estimate (H-Narcowich-Rieger-Ward, to appear):

For
$$s \in V_{\Xi}$$
, $0 \le \tau \le m - (d/2 - d/p)_+$

$$\|s\|_{W^{\tau}_{\rho}(\Omega)} \leq C_{\rho}h^{-\tau}\|s\|_{L_{\rho}(\Omega)}.$$