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Boundary effects and error estimates

Radial basis function approximation over Ω. Let Ω ⊂ R
d and Ξ ⊂ Ω

with #Ξ < ∞. For a radial k : Rd → R, approximate by using the finite
dimensional spaces

S(Ξ) := spanξ∈Ξk(· − ξ)

Given f : Ω → R, as h := max
x∈Ω

dist(x ,Ξ) → 0 estimate

dist(f ,S(Ξ))Lp (Ω).

◮ Use the Matérn function of order m > d/2:

km(x) : R
d → R : x 7→ Km−d/2(|x |) |x |

m−d/2.

Here Kν is a modified Bessel function of the second kind.

◮ Fundamental solution of (1 −∆)m on R
d .



Boundary effects and error estimates

Ω: compact, smooth boundary. h := max
x∈Ω

dist(x ,Ξ).

1. For f ∈ W m
2 (Ω):

dist(f ,S(Ξ))Lp (Ω) = O(hm−(d/2−d/p)+)
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Boundary effects and error estimates

Ω: compact, smooth boundary. h := max
x∈Ω

dist(x ,Ξ).

1. For f ∈ W m
2 (Ω):

dist(f ,S(Ξ))Lp (Ω) = O(hm−(d/2−d/p)+)

2. For f ∈ W 2m
p,c (Ω) ( compact

support in interior of Ω)

dist(f ,S(Ξ))Lp (Ω) = O(h2m)
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Boundary effects and error estimates

Ω: compact, smooth boundary. h := max
x∈Ω

dist(x ,Ξ).

1. For f ∈ W m
2 (Ω):

dist(f ,S(Ξ))Lp (Ω) = O(hm−(d/2−d/p)+)

2. For f ∈ W 2m
p,c (Ω) ( compact

support in interior of Ω)

dist(f ,S(Ξ))Lp (Ω) = O(h2m)

3. For certain Ξ ⊂ Ω there are

f ∈ C∞(Ω) so that

dist(f ,S(Ξ))p 6= o(hm+1/p).
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Boundary effects

Let 0 < α < 1. Consider Ξ ⊂ Ω satisfying

dist(Ξ, ∂Ω) > αh (1)

Theorem (Johnson (98))
For Ξ satisfying (1) there is f ∈ C∞(Ω) so that

dist(f ,S(φm,Ξ))p 6= o(hm+1/p).



Boundary effects

Let 0 < α < 1. Consider Ξ ⊂ Ω satisfying

dist(Ξ, ∂Ω) > αh (1)

Theorem (Johnson (98))
For Ξ satisfying (1) there is f ∈ C∞(Ω) so that

dist(f ,S(φm,Ξ))p 6= o(hm+1/p).

Q: Is O(hm+1/p) attainable for f ∈ C∞(Ω)?

Q: By violating (1) can we get O(h2m)?



A useful kernel approximation scheme

In the integral representation f (x) =
∫
Rd (1 −∆)mf (α)km(x − α)dx

Replace km(x − α)! K (x , α) :=
∑

ξ∈Ξ a(α, ξ)km(x − ξ) ∈ S(Ξ) so
that |km(x − α)− K (x , α)| is suitably small.

TΞf (x) :=

∫

Rd

(1 −∆)mf (α)K (x , α)dx

=
∑

ξ∈Ξ

(∫

Rd

(1 −∆)mf (α)a(α, ξ)dx

)
km(x − ξ) ∈ S(Ξ)
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Representation on bounded domains

Green’s representation:

f (x) =

∫

Ω

(1 −∆)mf (α)km(x − α) dα

+

m−1∑

j=0

∫

∂Ω

[Sj f (α)λj,αkm(x − α)− λj f (α)Sj,αkm(x − α)] dσ(α)

λj - diff. operator of order j; Sj - diff. operator of order 2m − j − 1



Representation on bounded domains

Green’s representation:

f (x) =

∫

Ω

(1 −∆)mf (α)km(x − α) dα

+

m−1∑

j=0

∫

∂Ω

[Sj f (α)λj,αkm(x − α)− λj f (α)Sj,αkm(x − α)] dσ(α)

λj - diff. operator of order j; Sj - diff. operator of order 2m − j − 1

Native space representation:

f (x) =

∫

Ω

(1−∆)mf (α)km(x−α) dα+

m−1∑

j=0

∫

∂Ω

Nj f (α) λj,αkm(x−α) dσ(α)

Approximation scheme:
Replace each λj,αkm(x − α) by Kj (x , α) =

∑
ξ∈Ξ aj (α, ξ)km(x − ξ)

sf :=
∑

ξ∈Ξ



∫

Ω

a(α, ξ)∆mf (α) dα +

m−1∑

j=0

∫

∂Ω

aj(α, ξ)Nj f (α)dσ(α)


 km(·−ξ)



Results

Let Ω be a bounded domain in R
d with smooth boundary.

◮ For 1 < p < ∞, and f ∈ Bs
p,1(Ω), 0 < s ≤ m + 1/p

dist(f ,S(Ξ))p . hs‖f‖Bs
p,1

(Ω).
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Let Ω be a bounded domain in R
d with smooth boundary.

◮ For 1 < p < ∞, and f ∈ Bs
p,1(Ω), 0 < s ≤ m + 1/p

dist(f ,S(Ξ))p . hs‖f‖Bs
p,1

(Ω).

◮ Use two fill distances:
◮ h1 = h(Ω,Ξ) – the global fill distance.
◮ h2 local fill distance around ∂Ω. (In a Kh2 neighborhood of ∂Ω.)

Then, for f ∈ W 2m
p (Ω) (or C2m(Ω) when p = ∞)

dist(f ,S(Ξ))p . (h2m
1 + h

m+ 1
p

2 )‖f‖W 2m
p (Ω).



Results

Let Ω be a bounded domain in R
d with smooth boundary.

◮ For 1 < p < ∞, and f ∈ Bs
p,1(Ω), 0 < s ≤ m + 1/p

dist(f ,S(Ξ))p . hs‖f‖Bs
p,1

(Ω).

◮ Use two fill distances:
◮ h1 = h(Ω,Ξ) – the global fill distance.
◮ h2 local fill distance around ∂Ω. (In a Kh2 neighborhood of ∂Ω.)

Then, for f ∈ W 2m
p (Ω) (or C2m(Ω) when p = ∞)

dist(f ,S(Ξ))p . (h2m
1 + h

m+ 1
p

2 )‖f‖W 2m
p (Ω).

◮ For p = ∞, if h2 ≤ h2
1,

dist(f ,S(Ξ))∞ . h2m
1 ‖f‖C2m(Ω)



Localized bases
Joint work with: Ed Fuselier, Fran Narcowich, Christian Rieger,

Xingping Sun, Joe Ward, Grady Wright



Matérn kernels
◮ km is reproducing kernel for W m

2 (Rd ): f (x) = 〈f , km(x − ·)〉W m
2
(Rd )

◮ km is positive definite:

for any finite set of centers Ξ, the collocation matrix
CΞ :=

(
km(ξ − ζ)

)
(ξ,ζ)∈Ξ×Ξ

is symmetric, positive definite.

◮ km provides best interpolation: the unique interpolant to (yξ)Ξ
from S(Ξ) has least W m

2 (Rd ) norm.

◮

(
km(· − ξ)

)
ξ∈Ξ

forms a basis for S(Ξ) = spanξ∈Ξ km(· − ξ)

◮ So does the Lagrange basis
(
χξ

)
ξ∈Ξ

, where

χξ =
∑

η∈Ξ Aξ,ηkm(· − η) and for all ζ ∈ Ξ, χξ(ζ) = δ(ξ, ζ).

◮ The matrix of Lagrange coefficients
(
Aξ,ζ

)
(ξ,ζ)∈Ξ×Ξ

is the inverse

of the collocation matrix CΞ.

◮ The Lagrange function coefficients satisfy Aξ,η = 〈χξ, χζ〉W m
2

.

〈χξ, χζ〉W m
2
=

∑

η∈Ξ

Aζ,η〈χξ, k(·, η)〉W m
2
=

∑

η∈Ξ

Aζ,ηδ(ξ, η) = Aξ,η.



Kernels on manifolds
M a compact d dimensional Riemannian manifold. If k : M×M → R

is the reproducing kernel for W m
2 (M), m > d/2

◮ Lagrange function is bounded in native space norm

‖χξ‖W m
2
(M) ≤ Cqd/2−m.

This is a bump estimate – compare χξ to an interpolant with
support in B(ξ, q). Here q := minξ∈Ξ dist(ξ,Ξ \ {ξ}).

◮ Lagrange coefficients are uniformly bounded:

|Aξ,ζ | = |〈χξ, χζ〉W m
2
| ≤ Cqd−2m

−→ ‖(CΞ)
−1‖∞ ≤ Cqd−2m(#Ξ)

◮ [De Marchi-Schaback, ’10] If Ξ is sufficiently dense in M, then a

zeros lemma ensures that the Lagrange function is bounded,
independent of #Ξ:

|χξ(x)| ≤ Cqd/2−mhm−d/2 = Cρm−d/2



Matérn kernels on manifolds(H-Narcowich-Ward, ‘10)

◮ For sufficiently dense Ξ, we have the energy bound for R > 0:

For R > 0, ‖χξ‖W m
2
(M\B(ξ,R)) ≤ Cqd/2−me−ν R

h



Matérn kernels on manifolds(H-Narcowich-Ward, ‘10)

◮ For sufficiently dense Ξ, we have the energy bound for R > 0:

For R > 0, ‖χξ‖W m
2
(M\B(ξ,R)) ≤ Cqd/2−me−ν R

h

◮ Lagrange functions have pointwise bounds

|χξ(x)| ≤ Cρm−d/2e−ν dist(ξ,x)
h

◮ Boundedness of Lebesgue constant,

◮ (H-N-Sun-W, ’11)Lp Stability: ‖
∑

ξ∈Ξ aξχξ‖p ∼ q
d
p ‖~a‖ℓp(Ξ),

◮ (H-N-S-W, ’11) Lp boundedness of L2 projector.



Matérn kernels on manifolds(H-Narcowich-Ward, ‘10)

◮ For sufficiently dense Ξ, we have the energy bound for R > 0:

For R > 0, ‖χξ‖W m
2
(M\B(ξ,R)) ≤ Cqd/2−me−ν R

h

◮ Lagrange functions have pointwise bounds

|χξ(x)| ≤ Cρm−d/2e−ν dist(ξ,x)
h

◮ Lagrange coefficients are bounded by

|Aξ,ζ | = |〈χξ, χζ〉W m
2
(M)| ≤ Cqd−2me− ν
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dist(ξ,ζ)



Matérn kernels on manifolds(H-Narcowich-Ward, ‘10)

◮ For sufficiently dense Ξ, we have the energy bound for R > 0:

For R > 0, ‖χξ‖W m
2
(M\B(ξ,R)) ≤ Cqd/2−me−ν R

h

◮ Lagrange functions have pointwise bounds

|χξ(x)| ≤ Cρm−d/2e−ν dist(ξ,x)
h

◮ Lagrange coefficients are bounded by

|Aξ,ζ | = |〈χξ, χζ〉W m
2
(M)| ≤ Cqd−2me− ν

2h
dist(ξ,ζ)

◮ Centers more than Kh | log h| away from ξ:

∑

dist(ζ,ξ)>Kh | log h|

|Aξ,ζ | ≤ Cqd−2mh
νK
2 ≤ Cρh

νK
2
+d−2m



Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, ’13]

◮ Let Υξ := Ξ ∩ B(ξ,Kh| log h|).

◮ Consider the truncated Lagrange basis
(
χ̃ξ

)
ξ∈Ξ

χ̃ξ :=
∑

ζ∈Υξ

Aξ,ζkm(·, ζ) −→ ‖χ̃ξ − χξ‖∞ ≤ Cρh( Kν
2
−2m)

◮ Still requires calculating all coefficients.



Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, ’13]

◮ Let Υξ := Ξ ∩ B(ξ,Kh| log h|).

◮ Consider the truncated Lagrange basis
(
χ̃ξ

)
ξ∈Ξ

χ̃ξ :=
∑

ζ∈Υξ

Aξ,ζkm(·, ζ) −→ ‖χ̃ξ − χξ‖∞ ≤ Cρh( Kν
2
−2m)

◮ Still requires calculating all coefficients.

◮ Use bξ ∈ S(Υξ), local Lagrange functions: bξ(ζ) = δξ,ζ ∀ζ ∈ Υξ.

◮ Each element uses K | log N|d centers

◮ For sufficiently large K , (bξ)ξ∈Ξ is an Lp-stable basis for S(Ξ):

‖bξ − χξ‖∞ ≤ CρhJ when K =
2

ν
(J + 4m + d)

◮ “Quasiinterpolation” QΞf =
∑

ξ∈Ξ f (ξ)bξ gives near best

approximation in L∞.



Boundary Effects



How important is it to be “boundary-free”?

We must be able to decompose M into annuli around ξ.
ξ

R − Γh

Γh

M \ B(ξ,R)

1-step energy:
∃ǫ < 1, Γ > 0, (depending only on

m and M) so that

‖χξ‖W m
2
(M\B(ξ,R))

≤ ǫ‖χξ‖W m
2
(M\B(ξ,R−Γh))



ξ

R − 2Γh

Γh

M \ B
(
ξ,R − Γh

)

Bulk Chasing

‖χξ‖W m
2
(M\B(ξ,R))

≤ ǫ‖χξ‖W m
2
(M\B(ξ,R−Γh))

≤ ǫ2‖χξ‖W m
2
(M\B(ξ,R−2Γh))

...

≤ ǫn‖χξ‖W m
2
(M)



ξ

R ∼ Γhn Energy estimate

For R < rM/2

‖χξ‖W m
2
(M\B(ξ,R))

. e−ν( R
h
)‖χξ‖W m

2
(M)

. e−ν( R
h
) qd/2−m



How important is it to be “boundary-free”?
Consider Ω = [0, 1]2:

There are 22 annuli around the center (.45, .5)



How important is it to be “boundary-free”?
Consider Ω = [0, 1]2: This argument breaks down for centers near the
boundary where we can place fewer annuli.

There are 7 annuli around the center (.15, .5)

For R < dist(ξ, ∂Ω)

‖χξ‖W m
2
(Ω\B(x,R)) ≤ Cqd/2−me−ν R

h .



Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.
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Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.
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Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.
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Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.
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Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.
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Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.
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How important is it to be “boundary-free”?

For compact Ω ⊂ R
d , and 0 ≤ R, ΩR := {x ∈ Ω | dist(x , ∂Ω) ≥ R}.

Decompose Ω en annuli away from boundary

There exist positive constants C, h0 and ν depending only on ∂Ω and

m so that for h < h0 and dist(ξ, ∂Ω) ≤ R, we have

‖χξ‖W m
2
(ΩR) ≤ Cqd/2−me−ν R−dist(ξ,∂Ω)

h .

Question: For ξ ∈ ∂Ω, does |χξ(x)| decay along boundary?



Recent work: Inverse
Estimates



Bernstein estimates

Consider Ω ⊂ R
d , bounded. Let Ω̃ = {x ∈ R

d | dist(x ,Ω) < Kh| log h|}
be a small neighborhood of Ω.

Avoiding boundary effects: For a discrete set Ξ ⊂ Ω with h(Ξ,Ω)
sufficiently small, consider the spaces

VΞ = span
ξ∈Ξ

bξ

Given Ξ ⊂ Ω, one can easily extend this to Ξ̃ ⊂ Ω̃.

Bernstein estimates (H-Narcowich-Rieger-Ward, to appear):
For 0 ≤ τ ≤ m − (d/2 − d/p)+

‖
∑

ξ∈Ξ

aξbξ‖Wτ
p (Ω) ≤ Cρh

d
p
−τ‖a‖ℓp(Ξ)



Inverse estimates on Ω

Lower Riesz bound (H-Narcowich-Rieger-Ward, to appear):

‖a‖ℓp(Ξ)
≤ Cρh−d/p‖s‖Lp(Ω).

for all s =
∑

ξ∈Ξ aξbξ ∈ VΞ.

Inverse estimate (H-Narcowich-Rieger-Ward, to appear):

For s ∈ VΞ, 0 ≤ τ ≤ m − (d/2 − d/p)+

‖s‖Wτ
p (Ω) ≤ Cρh−τ‖s‖Lp(Ω).


