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Boundary effects and error estimates

Radial basis function approximation over Q. Let Q c R and = c Q
with #= < co. For a radial k : RY — R, approximate by using the finite
dimensional spaces

S(5) = spancezk(- ~ €)

Givenf:Q — R, as h:= max dist(x, =) — 0 estimate
Xe

dist(f, S(=))L,(0)-

» Use the Matérn function of order m > d/2:
Km(X) : RY — R X = Kn_q 2(|X]) |X|"~9/2.

Here K, is a modified Bessel function of the second kind.
» Fundamental solution of (1 — A)™ on R?.



Boundary effects and error estimates

Q: compact, smooth boundary. h := max dist(x, =).
X

1. For f € W3'(Q):

diSt(f, S(E))LP(Q) = O(hm—(d/Z—d/p)+)
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Boundary effects and error estimates

Q: compact, smooth boundary. h := max dist(x, =).
S

1. For f € WJ'(Q):
dist(f, S(2)), (@) = O(h™~(@/2=d/P)+)

2. For f € W37(Q) ( compact
support in interior of Q)

dist(f, S(=))1, () = O(F*™)
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Boundary effects and error estimates

Q: compact, smooth boundary. h := max dist(x, =).
X

1. For f € WJ'(Q):
dist(f, S(2)), (@) = O(h™~(@/2=d/P)+)

2. For f € WZ7(2) ( compact
support in interior of Q)

dist(f, S(=))1, () = O(F*™)

3. For cgrtain = C Qthere are
f € C>*(Q) so that

dist(f, S(Z))p # o(A™1/P).

2. fe WER(Q)
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3. Upper Bound
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Boundary effects

Let 0 < a < 1. Consider = C Q satisfying

dist(=,09Q) > ah

Theorem (Johnson (98))
For = satisfying (1) there is f € C>(Q) so that

dist(f, S(¢m, =))p # o(H™1/P).




Boundary effects
Let 0 < a < 1. Consider = C Q satisfying

dist(=,09Q) > ah

Theorem (Johnson (98))
For = satisfying (1) there is f € C>(Q) so that

dist(f, S(¢m, =))p # o(h™1/P).

Q: Is O(h™+1/P) attainable for f € C>(Q)?

Q: By violating (1) can we get O(h?™)?




A useful kernel approximation scheme

In the integral representation f(x) = [ps(1 — ()km(x — a)dx
—a) «» K(x,a) = de= a(a, E)km(X §) € S(=) so

Replace kn(x
that |km(x — a) — K(x, )] is suitably small.
Tef(x) = / (1 — AY"F(a)K(x, a)dx
RY
= | (1= A)"f(e)alo. £)dx | km(x — &) € S(2)
%L )




Representation on bounded domains

Green’s representation:

fx) = /Q (1 = B)f(a)km(x — a)da
m—1
+ IZ; /89 [S/f(a)/\j)akm(x — a) - )\/'f(Oé)Sj’akm(X — a)] dU(a)

A - diff. operator of order j; S; - diff. operator of order 2m — j — 1



Representation on bounded domains

Green’s representation:
fx) = /Q (1 = A)"f(a)km(x — a) da
m—1
+ IZ; /{)Q [S/f(a)Aj)akm(X — Oé) — )‘/f(a)sj,akm(x _ Oé)] dO'(Oé)

A - diff. operator of order j; S; - diff. operator of order 2m — j — 1
Native space representation:

m—1
f(x) = _/9(1—A)’"f(a)km(x—a)da+jzo /m Nif(a) Njakm(x—a)do(a)

Approximation scheme:
Replace each Aj o km(x — a) by Kj(x, ) = > ¢c= @i, E)km(X =€)

m—1
Sf = Z (/Q a(a, &)A™f(a) da + /Z; /aQ aj(a,é)l\ljf(a)da(a)) Kn(-—£)

ge=



Results

Let Q be a bounded domain in R? with smooth boundary.
» For1 <p<oo,andfe B (2),0<s<m+1/p

dist(f, S(=))p < h°lIfll6s,0)-



Results

Let Q be a bounded domain in R? with smooth boundary.
» For1 <p<oo,andfe B (2),0<s<m+1/p

dist(f, S(Z))p < P°[Ifll63, ()
» Use two fill distances:

» hy = h(Q, =) — the global fill distance.
» hy local fill distance around 99. (In a Kh, neighborhood of 692.)

Then, for f € WZ™(Q) (or C*™(Q2) when p = <)
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dist(f, S(2))p < (M +hy ")l wemay-



Results

Let Q be a bounded domain in R? with smooth boundary.
» For1 <p<oo,andfe B (2),0<s<m+1/p

dist(f, S(Z))p < P°[Ifll63, ()
» Use two fill distances:

» hy = h(Q, =) — the global fill distance.
» hy local fill distance around 99. (In a Kh, neighborhood of 692.)

Then, for f € WZ™(Q) (or C*™(Q2) when p = <)
. _ m m+1
dist(f, S(=))p < (H" + by ?)lIfll e
» For p= oo, if hp < 12,

dist(f, S(=))oc £ "]l gon(c)



Localized bases

Joint work with: Ed Fuselier, Fran Narcowich, Christian Rieger,
Xingping Sun, Joe Ward, Grady Wright

=} = = = £ DA



Matérn kernels

>

km is reproducing kernel for WS"(R?): f(x) = (f, km(x — ) wp (ro)

» Kpy is positive definite:

for any finite set of centers =, the collocation matrix
Cz = (km(¢ — g))(5 ___ is symmetric, positive definite.

()eE=X=
km provides best interpolation: the unique interpolant to (y¢)=
from S(=) has least W)"(R?) norm.

(Km(- — g))EEE forms a basis for S(=) = spangc= km(- — €)

So does the Lagrange basis (Xg)ge , where

X¢ = D,z A nkm(- —n) and for all ¢ € =, x¢(C) = d(, ).

The matrix of Lagrange coefficients (Af,g) (€.0)e=x= = is the inverse
of the collocation matrix C=.

The Lagrange function coefficients satisfy A, = (x¢, x¢)wp-

(e xwr =D Acnxe kKCmhwe =D Acnd(€m) = Ac-

ne= ne=



Kernels on manifolds

M a compact d dimensional Riemannian manifold. If k : M x M — R
is the reproducing kernel for WJ"(M), m > d/2

» Lagrange function is bounded in native space norm

Ixellwpery < Cq72™

This is a bump estimate — compare x¢ to an interpolant with
support in B(, ). Here q := mingc=dist(€, =\ {¢}).
» Lagrange coefficients are uniformly bounded:

a—
Ac.c| = [(xe: xc)wp| < Cq?2m

— (C2)Mllee < Cq* BT (#5)

» [De Marchi-Schaback, '10] If = is sufficiently dense in M, then a
zeros lemma ensures that the Lagrange function is bounded,
independent of #=:

|X§( )| < qu/Z mpm— d/j2 _ C m—d/2



Matérn kernels on manifoldsH-Narcowich-Ward, 10)
» For sufficiently dense =, we have the energy bound for R > 0:

For R>0, |Ix¢llwpanser) < Cqi/2~me~vi



Matérn kernels on manifoldsH-Narcowich-Ward, 10)
» For sufficiently dense =, we have the energy bound for R > 0:

For R>0, |Ixellwpensem) < Cq%2 e &

» Lagrange functions have pointwise bounds

dist(&,X)
—h

xe(x)| < Cp"2e7"

» Boundedness of Lebesgue constant,

o d.
> (H-N-Sun-W, "11)L,, Stability: | -, .= acxellp ~ g@lalle,z),
» (H-N-S-W, '11) L, boundedness of L, projector.



Matérn kernels on manifoldsH-Narcowich-Ward, 10)
» For sufficiently dense =, we have the energy bound for R > 0:

R

For R>0, |Ixellwpense.m) < Cq¥/2 Me™n

» Lagrange functions have pointwise bounds

xe(x)| < Cpm9/2g ™5
» Lagrange coefficients are bounded by

|Ac.c| = {xe, X¢)wpan | < Cqo2Me 5 4(&0)



Matérn kernels on manifoldsH-Narcowich-Ward, 10)
» For sufficiently dense =, we have the energy bound for R > 0:
For R>0, | Ixellwponse.ry < Cq?/2mevh
» Lagrange functions have pointwise bounds
xe(x)| < Cpm- /26
» Lagrange coefficients are bounded by
|Ac c| = |<X57XC>W2"’(M)| < qu—zme 2 dis(€.C)
» Centers more than Kh|log h| away from &:

S [Aecl < CqP T < g hEreEm
dist(¢,£)>Kh | log hl



Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, ’13]
» Let Te :==n B(¢, Khllog h|).

» Consider the truncated Lagrange basis (Qg)565

—~ —~ Kv _
Xe = 3 Acckn(+Q)  — [Xe — Xelloo < C,hZ72M
CET,

» Still requires calculating all coefficients.



Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, ’13]
» Let Te :==n B(¢, Khllog h|).

» Consider the truncated Lagrange basis (Qg)565

Ne= Y Acckn(n0) > IINe — xell < C,F 72
CET,
Still requires calculating all coefficients.
Use be € S(T¢), local Lagrange functions: be(¢) = d¢,c V¢ € Te.
Each element uses K|log N|? centers
For sufficiently large K, (be)ec= is an L,-stable basis for S(=):

vV v vvY

|be — Xelloo < C,h’ when K = %(J+4m+ d)

v

“Quasiinterpolation” Q=f = 3. = f(£)b¢ gives near best
approximation in L.



Boundary Effects



How important is it to be “boundary-free”?

We must be ablegto decompose M into annuli around &.

M\ B(<. R)

1-step energy:
Je < 1,T > 0, (depending only on
m and M) so that

Ixe llwpase.R)

< ellxellwpase,R-rhy)

Dac



M\ B(¢&,R—Th)

Bulk Chasing

Ixe llwra\(e.RY)
< ellxell W (M\B(¢,R—Th))

< 62||X£|| Wi (M\B(¢,R—2r h))

< €llxellwgpaa

DA



Energy estimate
For R < y/2

Ixellwypanae, Ay

—_u(B
e |Ixellwrauy

S
< d/2—m

e—V(%) q

o < = = z 9ac



How important is it to be “boundary-free”?
Consider Q = [0, 1]2:

There are 22 annuli around the center (.45, .5)




How important is it to be “boundary-free”?
Consider Q = [0, 1]?: This argument breaks down for centers near the
boundary where we can place fewer annuli.

There are 7 annuli around the center (.15, 5)

For R < dist(¢, 092)

Ixellwp@\Bx,R)) < Cq¥/2mevE.



Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.144 , 0.497 )




Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.120 , 0.506 )
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Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.087 , 0.499 )




Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.060 , 0.495 )
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Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.029 , 0.502 )
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Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.001, 0.501 )
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How important is it to be “boundary-free”?
For compact Q ¢ R?, and 0 < R, Qg := {x € Q| dist(x,092) > R}.

Decompose Q en annuli away from boundary

There exist positive constants C, hy and v depending only on 92 and
m so that for h < hg and dist(¢, 9Q) < R, we have

(£,00)

_ _ . R—disy
Ixellwpan) < Cq?/Fmem .

Question: For ¢ € 09, does |x¢(x)| decay along boundary?



ReoerE work: Inverse
stimates



Bernstein estimates

Consider Q c RY, bounded. Let Q = {x € R? | dist(x, Q) < Kh] log h|}
be a small neighborhood of Q.

Avoiding boundary effects: For a discrete set = C Q with h(=, Q)
sufficiently small, consider the spaces

V= = span b¢
ez

Given = C Q, one can easily extend this to = c Q.

Bernstein estimates (H-Narcowich-Rieger-Ward, to appear):
ForO<rt<m-(d/2—d/p)+

d_
1Y " acbellws ) < Coho~7lallg,z)
ez



Inverse estimates on 2

Lower Riesz bound (H-Narcowich-Rieger-Ward, to appear):

lallg,z) < Coh™ /P8l Lye-

foralls =3 ;.= acb: € V=

Inverse estimate (H-Narcowich-Rieger-Ward, to appear):
Forse V=,0<7<m-(d/2-d/p)+

Isllwg @) < Coh™ 7|8 L,(0)-



