Beyond Quasi-unifomity: Kernel Approximation with a Local Mesh Ratio

Thomas Hangelbroek

University of Hawaii at Manoa

March 15, 2015

work supported by: NSF DMS-1413726

RBFs using centers with spatially varying density

Let $\Omega \subset \mathbb{R}^d$ and $\Xi \subset \Omega$ with $\#\Xi < \infty$. For a radial $k : \mathbb{R}^d \to \mathbb{R}$, approximate by using the finite dimensional spaces

$$S(\Xi) := \operatorname{span}_{\xi \in \Xi} k(\cdot - \xi).$$

- ▶ Results should not rely on $\rho = h/q$
- To treat realistic data, but also as a tool to treat boundaries
- ▶ How to measure $\operatorname{dist}(f, S(\Xi))_{L_p(\Omega)}$? Not $h := \max_{x \in \Omega} \operatorname{dist}(x, \Xi) \to 0$; error should depend on 'local density'
- ► Kernels are fundamental solutions of Δ^m and $(1 \Delta)^m$ on \mathbb{R}^d .

Boundary effects and error estimates

 Ω : compact, smooth boundary. $h := \max_{x \in \Omega} \operatorname{dist}(x, \Xi)$.

1. For $f \in W_2^m(\Omega)$:

$$\operatorname{dist}(f,S(\Xi))_{L_p(\Omega)}=O(h^{m-(d/2-d/p)_+})$$

Boundary effects and error estimates

 Ω : compact, smooth boundary. $h := \max_{x \in \Omega} \operatorname{dist}(x, \Xi)$.

1. For $f \in W_2^m(\Omega)$:

$$\operatorname{dist}(f, S(\Xi))_{L_p(\Omega)} = O(h^{m-(d/2-d/p)_+})$$

2. For $f \in W^{2m}_{p,c}(\Omega)$ (compact support in interior of Ω)

$$\operatorname{dist}(f, S(\Xi))_{L_n(\Omega)} = O(h^{2m})$$

Boundary effects and error estimates

- Ω: compact, smooth boundary. $h := \max_{x \in Ω} \operatorname{dist}(x, \Xi)$.
- 1. For $f \in W_2^m(\Omega)$:

$$\operatorname{dist}(f, S(\Xi))_{L_p(\Omega)} = O(h^{m-(d/2-d/p)_+})$$

2. For $f \in W^{2m}_{p,c}(\Omega)$ (compact support in interior of Ω)

$$\operatorname{dist}(f, S(\Xi))_{L_n(\Omega)} = O(h^{2m})$$

3. For certain $\Xi\subset\Omega$ there are $f\in C^\infty(\overline{\Omega})$ so that

$$\operatorname{dist}(f, S(\Xi))_p \neq o(h^{m+1/p}).$$

Boundary effects

Theorem (Johnson (98))

Let $0 < \alpha < 1$. For $\Xi \subset \Omega$ satisfying $\operatorname{dist}(\Xi, \partial\Omega) > \alpha h$, there is $f \in C^{\infty}(\overline{\Omega})$ so that

$$\operatorname{dist}(f, \mathcal{S}(\phi_m, \Xi))_p \neq o(h^{m+1/p}).$$

H('07)

Use Ξ with two fill distances:

- ▶ $h_1 = h(\Omega, \Xi)$ the global fill distance.
- ▶ h_2 fill distance near $\partial\Omega$. (In a Kh_2 tube of $\partial\Omega$.)

For for $f \in C^{2m}(\overline{\Omega})$, if $h_2 \leq h_1^2$,

$$\operatorname{dist}(f, S(\Xi))_{\infty} \lesssim |h_1^{2m}||f||_{C^{2m}(\overline{\Omega})}$$

Requires non-quasi-uniform points

RBF results with local parameter

A local density parameter is a function $h_m: \Omega \to [0, \infty)$ possessing a local polynomial reproduction of degree m:

a kernel $a: \Xi \times \mathbb{R}^d \to \mathbb{R}: (\xi, \alpha) \mapsto a(\xi, \alpha)$ satisfying

- ▶ For all $p \in \Pi_m$, $\sum_{\xi \in \Xi} a(\xi, \alpha) p(\xi) = p(\alpha)$.
- $a(\xi, \alpha) = 0$ when $|\xi \alpha| > h_m(\alpha)$,
- ▶ $\sum_{\xi \in \Xi} |a(\xi, \alpha)| < K$ for all α .

Wu and Schaback ('93):

Given a local density parameter h_m , the error from interpolation satisfies

$$|f(x) - I_{\Xi}f(x)| \le C(h_m(x))^{m-d/2} ||f||_{W_2^m(\mathbb{R}^d)}$$

RBF results with local parameter

DeVore and Ron ('10):

Suppose Ξ has local density parameter h_m possessing ϵ slow growth

$$\forall x, \alpha \in \mathbb{R}^d$$
 $h_m(\alpha) \leq Ch_m(x) \left(1 + \frac{|x - \alpha|}{h_m(x)}\right)^{1 - \epsilon}$.

If $\sigma \leq 2m$ and $f \in C_0^{\sigma}(\mathbb{R}^d)$, there is $s_f \in S(\Xi)$

$$|f(x)-s_f(x)|\lesssim (h_m(x))^{\sigma}\|f\|_{C^{\sigma}}$$

In other words,

$$\operatorname{dist}_{L_{\infty}(h_{m}^{-\sigma})}(f,S(\Xi))\lesssim \|f\|_{C^{\sigma}}$$

Where $L_{\infty}(h_m^{-\sigma})$ is the normed linear space with weighted norm $\|f\|_{L_{\infty}(h_m^{-\sigma})} = \|\frac{f}{h_m^{\sigma}}\|_{\infty}$.

No such results are known for bounded regions.

RBF results with local parameter

H('12):

If Ξ has local density parameter h_m possessing ϵ slow growth and local quasi-uniformity:

$$\forall \xi \in \Xi$$
 $\frac{h_m(\xi)}{\min_{\zeta \neq \xi}(\xi,\zeta)} \leq \rho$

then

$$|\chi_{\xi}(x)| \lesssim \rho^{m-d/2} \exp \left[-\nu \left(\frac{|x-\xi|}{h_m(\xi)}\right)^{\epsilon}\right].$$

The Lebesgue constant $\mathcal{L}_{\Xi,\sigma} = \|I_{\Xi}\|_{L_{\infty}(h_{m}^{-\sigma}) \to L_{\infty}(h_{m}^{-\sigma})}$ is uniformly bounded (for $\sigma \leq 2m$) and

$$|f(x) - I_{\Xi}f(x)| \lesssim (1 + \mathcal{L}_{\Xi,\sigma}) (h_m(x))^{\sigma} ||f||_{C^{\sigma}}$$

Kernels on manifolds [H-Narcowich-Ward, '10]

 \mathbb{M} a compact d dimensional Riemannian manifold. If $k : \mathbb{M} \times \mathbb{M} \to \mathbb{R}$ is the reproducing kernel for $W_2^m(\mathbb{M})$, m > d/2

► Lagrange function is bounded in native space norm

$$\|\chi_{\xi}\|_{W_2^m(\mathbb{M})} \leq Cq^{d/2-m}.$$

This is a bump estimate – compare χ_{ξ} to an interpolant with support in $B(\xi, q)$. Here $q := \min_{\xi \in \Xi} \operatorname{dist}(\xi, \Xi \setminus \{\xi\})$.

► Lagrange coefficients are uniformly bounded:

$$|A_{\xi,\zeta}| = |\langle \chi_{\xi}, \chi_{\zeta} \rangle_{W_2^m}| \le Cq^{d-2m}$$

$$\longrightarrow \|(C_{\Xi})^{-1}\|_{\infty} \le Cq^{d-2m}(\#\Xi)$$

▶ [De Marchi-Schaback, '10] If \(\equiv \) is sufficiently dense in \(\mathbb{M}\), then a zeros lemma ensures that the Lagrange function is bounded, independent of \(\p#\)\(\equiv \):

$$|\chi_{\mathcal{E}}(x)| \le Cq^{d/2-m}h^{m-d/2} = C\rho^{m-d/2}$$

How important is it to be "boundary-free"?

We must be able to decompose M into annuli around ξ .

1-step energy:

 $\exists \epsilon < 1, \, \Gamma > 0$, (depending only on m and \mathbb{M}) so that

$$\|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\setminus B(\xi,R))}$$

$$\leq \epsilon \|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\setminus B(\xi,R-\Gamma h))}$$

Bulk Chasing

$$\|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\backslash B(\xi,R))}$$

$$\leq \epsilon \|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\backslash B(\xi,R-\Gamma h))}$$

$$\leq \epsilon^{2} \|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\backslash B(\xi,R-2\Gamma h))}$$

$$\vdots$$

$$\leq \epsilon^{n} \|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M})}$$

Energy estimate

$$\begin{split} \|\chi_{\xi}\|_{W^m_2(\mathbb{M}\setminus B(\xi,R))} &\lesssim e^{-\nu(\frac{R}{h})}\|\chi_{\xi}\|_{W^m_2(\mathbb{M})} \\ &\lesssim e^{-\nu(\frac{R}{h})}\,q^{d/2-m} \end{split}$$

Energy estimate

$$\|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M}\setminus B(\xi,R))} \lesssim e^{-\nu(\frac{R}{\hbar})} \|\chi_{\xi}\|_{W_{2}^{m}(\mathbb{M})} \\ \lesssim e^{-\nu(\frac{R}{\hbar})} q^{d/2-m}$$

Pointwise estimate

$$|\chi_{\xi}(x)| \lesssim \left(\frac{h}{q}\right)^{m-d/2} e^{-\nu \left(\frac{\operatorname{dist}(\xi,x)}{h}\right)}$$

How important is it to be "boundary-free"?

Consider $\Omega = [0, 1]^2$:

How important is it to be "boundary-free"?

Consider $\Omega = [0, 1]^2$: This argument breaks down for centers near the boundary where we can place fewer annuli.

For $R < \operatorname{dist}(\xi, \partial \Omega)$

$$\|\chi_{\xi}\|_{W_2^m(\Omega\setminus B(x,R))}\leq Cq^{d/2-m}e^{-\nu\frac{R}{h}}.$$

How important is it to be "boundary-free"?

For compact $\Omega \subset \mathbb{R}^d$, and $0 \le R$, $\Omega_R := \{x \in \Omega \mid \operatorname{dist}(x, \partial\Omega) \ge R\}$.

There exist positive constants C, h_0 and ν depending only on $\partial\Omega$ and m so that for $h < h_0$ and $\mathrm{dist}(\xi, \partial\Omega) \le R$, we have

$$\|\chi_{\xi}\|_{W_2^m(\Omega_R)} \leq Cq^{d/2-m}e^{-\nu \frac{R-\operatorname{dist}(\xi,\partial\Omega)}{h}}.$$

Question: For $\xi \in \partial \Omega$, does $|\chi_{\xi}(x)|$ decay along boundary?

A final experiment

378 relatively equispaced centers, and the (log-scaled) Lagrange function centered at the origin.

A final experiment

Adding three rings of centers near the boundary, with spacing $h_2 = .0033$.

A final experiment

Replacing these with nicely varying centers (created with DistMesh), having $.0033 \le h(x) \le .057$, and satisfying

$$h(x) \lesssim h(y)(1 + \frac{|x-y|}{h(y)})^{7/12}$$

(i.e.,
$$\epsilon = 5/12$$
).