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RBFs using centers with spatially varying density

Let Q c R? and = c Q with #= < co. For aradial k : RY — R,
approximate by using the finite dimensional spaces

S(Z) := spang=k(- — ).

» Results should not rely on p = h/q "
» To treat realistic data, but also as a tool
to treat boundaries N
» How to measure dist(f, S(=Z)),)? o0
Not h := maxyeq dist(x,=) — 0; o
error should depend on ‘local density’ . .
» Kernels are fundamental solutions of A™ |-~ - . -~
and (1 — A)"™ on RY. R
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Boundary effects and error estimates

Q: compact, smooth boundary. h := max dist(x, =).
X

1. For f € W3'(Q):

diSt(f, S(E))LP(Q) = O(hm—(d/Z—d/p)+)
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Boundary effects and error estimates

Q: compact, smooth boundary. h := max dist(x, =).
S

1. For f € WJ'(Q):
dist(f, S(2)), (@) = O(h™~(@/2=d/P)+)

2. For f € W37(Q) ( compact
support in interior of Q)

dist(f, S(=))1, () = O(F*™)
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2m
1. fe W5'(Q)
m— 4 -
0 i 1‘
2

o=



Boundary effects and error estimates

Q: compact, smooth boundary. h := max dist(x, =).
X

1. For f € WJ'(Q):
dist(f, S(2)), (@) = O(h™~(@/2=d/P)+)

2. For f € WZ7(2) ( compact
support in interior of Q)

dist(f, S(=))1, () = O(F*™)

3. For cgrtain = C Qthere are
f € C>*(Q) so that

dist(f, S(Z))p # o(A™1/P).

2. fe WER(Q)
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3. Upper Bound
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Boundary effects

Theorem (Johnson (98))
Let0 < a < 1. For= C Q satisfying dist(=, 0%2) > ah, there is
f e C>(Q) so that

dist(f, S(¢m, =))p # o(h™1/P).
H('07)
Use = with two fill distances:
» hy = h(Q, =) —the global fill distance.

» ho fill distance near 9Q. (In a Kh, tube of 01.)
For for f € C2™(Q), if hy < h2,

dist(f, S(=))s0 < h$m||f||czm(§)

Requires non-quasi-uniform points




RBF results with local parameter

A local density parameter is a function hp, : Q — [0, o0) possessing a
local polynomial reproduction of degree m:
akernela: = xRY = R : (£, a) — a(€, «) satisfying

> Forall p e Mm, > = al€, a)p(§) = p(a).
» a(,a) =0when [£ — a| > hp(a),
> Y eezlalé o) < Kforall

Wu and Schaback ('93):
Given a local density parameter hy, the error from interpolation
satisfies a2

[£(x) = EF()] < C(m(x) ™2 |l wp(ee)



RBF results with local parameter

DeVore and Ron ('10):
Suppose = has local density parameter h,, possessing e slow growth

1—e¢
Vx,a € R hp(a) < Chy(x) (1 + |;m(x‘);|> :

If o <2mand f € CJ(RY), there is s¢ € S(=)
F(x) = s:()| S (hm(x)) |Ifllc-

In other words,
disth(hr;g)(f, S(E)) < fllee

Where L. (h,,7) is the normed linear space with weighted norm
1l by = Iz ll oo

No such results are known for bounded regions.



RBF results with local parameter

H('12):
If = has local density parameter h,, possessing e slow growth and
local quasi-uniformity:

hm (&)

HEE (e ©

then

oz (559)].

The Lebesgue constant Lz, = ||/z[l,__ n=7)— 1. (-7 is uniformly
bounded (for o < 2m) and

f(x) = ()| S (14 L=2,0) (Am(x)) |1l oo



Kernels on manifolds [H-Narcowich-Ward, '10]

M a compact d dimensional Riemannian manifold. If k : M x M — R
is the reproducing kernel for WJ"(M), m > d/2

» Lagrange function is bounded in native space norm
Ixellwpery < Cq72™

This is a bump estimate — compare x¢ to an interpolant with
support in B(, ). Here q := mingc=dist(€, =\ {¢}).
» Lagrange coefficients are uniformly bounded:

a—
Ac.c| = [(xe: xc)wp| < Cq?2m

— (C2)Mllee < Cq* BT (#5)

» [De Marchi-Schaback, *10] If = is sufficiently dense in M, then a
zeros lemma ensures that the Lagrange function is bounded,
independent of #=:

[xe(0)] < Cq2- =912 = g2



How important is it to be “boundary-free”?

We must be ablegto decompose M into annuli around &.

M\ B(<. R)

1-step energy:
Je < 1,T > 0, (depending only on
m and M) so that

Ixe llwpase.R)

< ellxellwpase,R-rhy)

Dac



M\ B(¢&,R—Th)

Bulk Chasing

Ixe llwra\(e.RY)
< ellxell W (M\B(¢,R—Th))

< 62||X£|| Wi (M\B(¢,R—2r h))

< €llxellwgpaa

DA



Energy estimate

(R
IXellwpaae,A) e 0 xel wpqeay

S
< g ) gre-m

o = = E = 9Dae



Energy estimate

(A
Ixellwpensery < € Flixellwpen
< g go/em

Pointwise estimate

m—d/2 list(€,x
() < (g) e (*5)

=] 5 = E £ DA



How important is it to be “boundary-free”?
Consider Q = [0, 1]2:

There are 22 annuli around the center (.45, .5)




How important is it to be “boundary-free”?
Consider Q = [0, 1]?: This argument breaks down for centers near the
boundary where we can place fewer annuli.

There are 7 annuli around the center (.15, 5)

For R < dist(¢, 092)

Ixellwp@\Bx,R)) < Cq¥/2mevE.



Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.144 , 0.497 )




Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.120 , 0.506 )
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Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.087 , 0.499 )




Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.060 , 0.495 )
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Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.029 , 0.502 )
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Boundary effects for Lagrange functions

A Lagrange function centered in the interior of [0, 1]2.

Lagrange function centered at ( 0.001, 0.501 )
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How important is it to be “boundary-free”?
For compact Q ¢ R?, and 0 < R, Qg := {x € Q| dist(x,092) > R}.

Decompose Q en annuli away from boundary

There exist positive constants C, hy and v depending only on 92 and
m so that for h < hg and dist(¢, 9Q) < R, we have

(£,00)

_ _ . R—disy
Ixellwpan) < Cq?/Fmem .

Question: For ¢ € 09, does |x¢(x)| decay along boundary?



A final experiment

Lagrange function centered at (0,0), 378 centers
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378 relatively equispaced centers, and the (log-scaled)
Lagrange function centered at the origin.



A final experiment

Lagrange function centered at (0,0), 2116 centers.
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Adding three rings of centers near the boundary, with

spacing h, = .0033.
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A final experiment

IR R AN R AR RN R AR R R R AR

Replacing these with nicely varying centers (created with
DistMesh), having .0033 < h(x) < .057, and satisfying

X = Y|\7/12
) < B (1 + 22

(i.e., e = 5/12).



