INTRODUCTION

Although Galois realized the importance of fields in the early 19th century when
he completely determined the finite fields, generalization of the concept took some
time. In their 1907 paper N on-Desarguesian and non-Pascalian geometries, Veblen
and Wedderburn give examples of field-like structures displaying weakened or no
distributive properties. These structures arose from.their study of projective ge-
ometry as a means of coordinatizing finite plane gedmetries in which Desargues’
Theorem (a condition on triangles which holds in all projective spaces of dimension
three or higher) fails.

As the relationship between finite projective geometries and the algebraic struc-
tures which coordinatize them was better understood, progress was made in the
classification of finite projective planes. In 1949, Bruck and Ryser produced the
classical result omitting an infinite class of integers, those numbers which are not
the sum of two squares and are congruent to 1 or 2 mod 4, as possible orders of
projective planes.

A few years later, Lenz and Barlotti divided projective planes into 53 subclasses
which are often arranged into seven major groups based on the algebraic properties
of their coordinatizing structure. Of the 53 classes, 38 are known to be empty,
14 are nonempty, and one is uncertain. Of the 14 nonempty classes, only seven
contain planes with finitely many points and lines. (source: Quasigroups and Loops:
Theory and Application) Yet this classification is rather crude, and we prefer the
more natural approach of determining the number of planes of a given order.

The only known projective planes have prime power order, Conversely, every
finite field coordinatizes a projective plane. Bruck-Ryser’s result eliminates many
possible orders and a computer search has eliminated 10 as a possible order, but
the remaining possible orders, of which 12 is the smallest, are unknown. [GK]

Congruence lattices have been used to discover properties of general algebras for
many years, but the theory that illustrates Jjust how deeply revealing congruence
lattices can be sprung into existence around 1980 with a paper by P.P. Palfy and
P. Pudlak. By 1984, several authors had hammered out the basic details of tame
congruence theory and their work was compiled by Hobby and McKenzie in The
Structure of Finite Algebras. The theory reveals that locally finite varieties of
algebras are sharply divided into six families, each characterized by the behavior of
its congruences. One particular aspect of the theory is that each coverin g pair in the
congruence lattice of a finite algebra is associated with one of five types of algebras:
aunary, or permutational, algebra, a vector space over a finite field, the two-element
Boolean algebra, the two-element lattice, or the two-element semilattice. Knowing
which types occur (or do not occur) in the congruence lattice can reveal important
properties of the algebra. [HM]

The goal of this paper is to apply tame congruence analysis to ternary rings,
the generalized field-like algebras which coordinatize projective planes, and ob jects
strongly connected to ternary rings, to better understand their structures and prop-
erties.



1. Basic DEFINITIONS, CONCEPTS, AND NOTATIONS

Universal Algebras. By an (indezed) algebra we mean a nonempty set A and
some basic operations on the set requiring only finitely many variables. The un-
derlying set A will sometimes be called the universe of the algebra. We will be
working primarily with algebras with only one or two basic operations, and we
will generally write such algebras A = (A, {f; : i € I'}) where f; denotes the basic
operation indexed by i. Some simple examples of this notation are the ring of inte-
gers (Z,{fi : i € {+, —, x}}), and any group (G, w, ~1 c) (note that we often write
only the symbol indexing the operation to prevent the notation from becoming too
cumbersome). We say an algebra is finite if its universe has finite cardinality. In
this paper we shall be concerned exclusively with finite algebras.

The similarity type of an algebra is a function p : I — Z* U {0}, where I is the
index set for the basic operations, such that p(7) is the arity of the basic operation
fi. For the ring of integers mentioned above, p(+) = p(—) = p(x} = 2, and for the
group, p(*) = 2, p(*1) = 1, and p(e) = 0. Two algebras are said to be similar if
they have the same similarity type. Similarity is easily seen to be an equivalence
relation, and the equivalence classes will be called similarity classes.

When considering similar algebras, the concepts of homomorphism and Cartesian
product are defined in the obvious way. If A is an algebra, then a subset B of the
universe of A is called a subuniverse of A if it is closed under each basic operation.
If B is an algebra similar to A, the universe of B is a subuniverse of A, and the
basic operations of B are the restrictions to B of the basic operations of A, then
B is called a subalgebra of A. Let X be a subset of the universe A of an algebra
A. The subuniverse of A generated by X is the smallest subset of A containing X
which is closed under the basic operations of A. The subalgebra of A generated by
X is defined similarly. If the subalgebra of A generated by X is again A, we will
say that X generates A or A is generated by X.

By an n-ary operation on a set A, we mean a function f : A™ - A. In this paper
we will commonly use “unary”, “binary”, and “ternary” instead of l-ary, 2-ary,
and 3-ary. Let f1,...,fr be n-ary operations and let g be a k-ary operation. We

will commonly use the notation & to represent an n-tuple (zy,...,2,). Then the
composition of g with the fi's is the n-ary operation h(z) = g(fi(Z),..., fu(T)).
The n-ary projection operations are the functions p?*(z1,...,2n} = @;. A clone on

a nonempty set A is a set of operations on A which is closed under compositions
and contains the projections p! for all n and all 1 <i < n.
There are two examples of clones on an algebra which we will find useful.

Definition 1.1. The clone of term operations of an algebra A, denoted Clo(A,
is the smallest clone on the universe A that contains the basic operations of A. The
elements of Clo(A) will be called term operations, or, simply, terms.

The clone of polynomial operations of an algebra A, denoted Pol(A), is
.the smallest clone on the universe A that contains the basic operations of A and
the constant 0-ary operations. The elements of Pol(A) will be called polynomial
operations or just polynomials.

If we wish to refer only to the n-ary term or polynomial operations, we may use
the notation Clo,(A) and Pol,(A) to refer to those sets.
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If ¢t is an m + n-ary term operation on A, and @ = {a1,...,am), Where a; € A
for each i =1,...,m, then ¢(&) = f(@, ) is a polynomial operation on A. Indeed,
every polynomial operation arises via the substitution of constants for some of the
variables in a term operation.

We will encounter algebras for which Pol,(A) = Pol,(A) for all n > 1. That is,
algebras in which every function f: A™ — A is expressed by an n-ary polynomial
operation. Such algebras will be called functionally complete. If every n-ary func-
tion on the universe of an algebra is expressed by an n-ary term operation, we will
call the algebra primal.

A relation o on a set A is said to be compatible with a function f : A™ — A
if f(a1,...,an) @ f(b1,...,by) whenever a; @ b; for ¢ = 1,...,n. By an n-ary
admissible relation of an algebra A we mean a subset of A™ which is compatible
with all the basic operations of A. A congruence of A is an admissible equivalence
relation. Theset z/a = {y € A : z a y} is called the a-congruence class of z, or just
the a-class of 2. Congruences are extremely important in universal algebra in much
the same way that normal subgroups play a vital role in group theory. (In fact,
the normal subgroups of a group are in 1-1 correspondence with the congruences
on the group).

Lemma 1.2. Let 0 be an equivalence relation on an olgebra A. Then 0 is a con-
gruence if and only if 8 is compatible with all the unary polynomials of A.

Proof. ( == ) is by definition. Suppose @ is compatible with all the unary polyno-
mials of A. Let f be an n-ary basic operation of A. Then g(z) = f(z,a1,...,8n-1)

is a unary polynomial, and for all choices of the constants a;,...,an_1 € A, 0
is compatible with g(z). Interchanging the z and a; arguments to f for each
i = 1,...,n — 1 shows # is compatible with f. Since f was an arbitrary basic
operation, the result follows. O

As the analogy to group theory might suggest, we will need the concept of a
quotient algebra. Let « be a congruence on A and let f be an n-ary operation on
A . If A/a = {z/a:z € A} is the set of congruence classes, then

falzr/oy .. zn /o) = fla, ... 2n) /o
defines an n-ary operation f, on A/a. Soif A = (A, f1,..., fr) is an algebra and
a is a congruence on A, we define the gquotient algebra

A/O.‘ = (A/a‘lfl(_l'.!" -1.fka) .
Two algebras A and B are said to be polynomially equivalent if they have the
same universe and Pol(A) = Pol(B).

Lemma 1.3. Let A and B be polynomially equivalent algebras. Then the algebras
have precisely the same congruences.

Proof. Let & be a congruence on A. « is clearly an equivalence relation on B, since
the algebras have the same universe. It remains to show that « is an admissible
relation on B. Every basic operation of B is in Pol(B) = Pol(A). a is closed
-under members of Clo(A) since it is closed under the basic operations (and hence
compositions of basic operations). Since the diagonal terms (z,z) are in a for all
z € A, « is closed under all the constant operations, and hence it is closed under
polynomials. So « is a congruence on B. Interchanging the roles of A and B, the
result follows. O
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Definition 1.4. A|x = (X, (Pol(A))|x} where X is a subset of A and
(Pol(A))|x = {hlx : h € Pol,,(A) for some n, and h(X") C X}
is called the algebra induced on X by A.

Definition 1.5. Let A be an algebra and let X and Y be nonempty subsets of A. If
there are polynomials f,g € Poly(A) such that f(X) =Y, g(V) =X, fgly = idy
and gflx =idx, then X and Y are said Lo be polynomially isomorphic, denofed
X~Y.

Note that polynomial isomorphism is an equivalence relation on nonempty sub-
sets of A. It is also important to note that the map = = f]x is an algebra isomor-
phism from A|x to Aly.

Lattices. A lattice is an algebra (A, A, V) such that the following properties hold
for all a,b,c € A:
an(bAhc)=(aAb)Ac aV(bVve)=(aVvb)Ve

ahb=bAa avb=bVa
aha=a aVa=a
ah(aVb)=a aV(anb)=a

The collection of all equivalence relations becomes a lattice by taking A to be
set intersection and V to be the transitive closure of the union of two equivalence
relations (the transitive closure of a relation « is the smallest transitive relation
containing «). Another example of a lattice is the set of natural numbers with
A representing the highest common factor and V representing the least common
multiple. In a lattice, the operation A is referred to as the meet operation, and Vv
is called the join operation.

For any algebra A, Con A denotes the set of all congruences on A. It is a subset
of the collection of all equivalence relations on A, and hence it forms a lattice Con
A= (Con A, V,A) called the congruence lattice of A. It is important to note that
Con A is a complete lattice. That is, Con A is closed under infinite meets and
joins.

An algebra A is called simple if Con A is a two element lattice. An equivalent
condition to A having a two element congruence lattice is for A to have at least
two elements and every homomorphism f : A — B is either one-to-one or constant.

Varieties and Free Algebras. Varieties are a central theme in the study of
general algebras, as they offer a method of grouping algebras into classes based on
some model. A class K of similar algebras is called a variety if and only if I is
closed under the formation of homomorphic images (H), subalgebras (S), and direct
products (P). The notation V(K) denotes the smallest variety containing I, called
the variety generated by K. According to the HSP Theorem of G. Birkhoff,
V(K) = HSP(K). There are numerous volumes on the theory of varieties; we will
only mention here some fact we will need.

Let K be a class of similar algebras. Let an algebra U be similar to the elements
of K (though U need not be in K itself). Let X be a subset of U. If U is generated
by X, and if U has the property that for every A € K and for every mapping
¢ : X — A, there is an algebra homomorphism ¢ : U — A with ¢(z) = ¢(z) for
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every z € X, we will say that U is a free algebra in K, freely generated by X.
Note that a free algebra U in K is determined up to an isomorphism which is the
identity on the generating set X. If | X is finite, we will say U is finitely generated.

An important example of a free algebra is the so-called term algebra. Let o
denote the similarity type of a set I of operation symbols, and let K, be the class
of all algebras with similarity type o. Let X be a set disjoint from /. Let T" be the
smallest set of finite sequences from X U [ such that one-element sequences are in
T,and if Q € I, o(Q) = n, and wy,...,w, are in T, then Quiws ... w, € T. T
becomes an algebra by taking the basic operations to be Q(z1,...,%,) = QTy ... Ty
where @ € I and o(Q) = n. The algebra T is called the term algebra of type o over
X. The term algebra can be shown to be free in K, (see Section 4.11 of [MMT] for
details).

We will often write an element ¢ of the term algebra t(z1, ..., z,) where z1, ..., @,
are those distinct elements of the generating set which appear in the sequence. Ev-
ery element of the term algebra gives rise to a term operation t*(ay,...,a,) on an
algebra A € K; (a1,...,a, € A) via the algebra homomorphism ¢ : T — A such
that ¢(x1) = ay,...,¢(xs) = an (such a homomorphism exists by our definition of
free algebra). ¢4 is called the interpretation of ¢ in A.

When working with free algebras, we will be especially interested in the case
where K is a variety, and we will write Fic(X) to denote a free algebra in the
variety V(K) with generating set X. An important theorem is the following:

Theorem 1.6. Let K be a class of similar algebras such that V(K) contains a
nontrivial member and let T be the term algebra of the same type over a finite
generating set X. Let pyq € T. Then p® = ¢® for all A € K if and only if

pFR(X) = gFr(X)

Proof. [MMT] Theorem 4.127. O



2. CLASSIFICATION OF MINIMAL ALGEBRAS

One of the driving results of tame congruence theory is the theorem of Palfy
presented in this section. When considering a single algebra, a goal of the theory is
to describe the structure of the algebra via a localization process. In a way, we try
to describe the whole by its parts. Palfy’s Theorem completely classifies algebras
which are “small” in the following sense:

Definition 2.1. Let A be a finite algebra. If [ is either constant or a permutation
for all f € Poly(A), then A is called o« minimal algebra.

Examples.

e Any two element algebra is minimal.

e Since the unary polynomials in a vector space are of the form az + b, where
a is a scalar and b is a vector, any finite vector space is minimal.

e A set of permutations acting on a finite set, sometimes called a unary
permutational algebra is minimal.

Indeed, P.P. Palfy proved that these are the only minimal algebras. It is common
to further distinguish the two element algebras, as we will see at the end of this
section. First, we introduce some terminology, notation, and an elementary result,
stated without proof.

The reader is no doubt familiar with the concept of idempotence (e.g of an
element, of a function of one variable, etc.), though perhaps not in exactly our
framework. Nevertheless, our definition should not be too startling.

Definition 2.2. An n-ary operation f on an algebra A is called idempotent in
the i-th variable if the equation ’

f(mh"':mi—l:.f(xl\---vx'n.):xi-l-l»--'s;cn) = Jr(w]!'-'}xn)
holds for all z1,..., 2, € A.

In the general setting, we will refer to successive compositions in the same vari-
able, so it will be useful to have the following notation:

Definition 2.3. If f(xy,z2,...,2,) s an n-ary operation in an algebra A, i <n
and k > 0, then we define f(’;'.)(xl,;cg, ...y Zq ) inductively by
fg)(:;:l, s T = Ty
f(’f‘.a"l(u:l, oy Bn) = fldizess ,:rt-_1,f{§)(a:1, 335 568 )5 TEaAg 3 & wrp g b
In the next lemma, we see an important consequence of finiteness: that given any

operation, we may iterate it in one variable until it is idempotent in that variable.
Idempotent operations are central to the study of tame congruence theory.

Lemma 2.4. Let A be a finite algebra, let f be an n-ary operation on A, and let
1 <1 < n be an integer. Then there exists an integer k > 0 such that -f(ﬁ) (T1,...,2Zn)
is idempotent in the i-th variable.

Proof. Lemma 4.4 in [HM]. [

Definition 2.5. A ternary operation t(x,y,z) on a set A is said to be a Mal’cev
operation if it satisfies t(z,z,y) =y = t(y,z, z) for all z,y € A. An algebra A is
said to be Mal’cev if it has a term operation which is a Mal’'cev operation.



Examples.
e xy !z is a Mal’cev term operation on any group.
o ((xA2)Vy')A(zVz)is a Mal'cev term operation on the two element

Boolean algebra ({0,1}, A, V.)).

Definition 2.6. An algebra (G, "), where - is a binary operation, is a quasigroup
if the equations a-x = ¢ and y - b = ¢ have unigue solutions in G for all a,b,c € G.

Note that this definition is equivalent to saying that z-a and a-x are permutations
of G for all @ € G. The following lemma will be extremely useful, not only for
classifying minimal algebras, but in later sections as well. Quasigroups are discussed
in more detail in Chapter 4.

Lemma 2.7. Every finite quasigroup ts Mal’cev.

Proof. [CV] Let A = (A, f) be finite quasigroup. By Lemma 2.4, we may choose
k > 0 such that f(f‘l)(x, y) = fﬁ)(f(kn(w, y),y) holds in A. For all a € A, the opera-
tion f(kl)(:r:, a) is idempotent and a permutation of A by the note above. Since the
only idempotent permutation is the identity, f(kl)(a:, a) = z. Thus _ftkl)(:x:, y) =z
holds for all z,y € A, and if we define di(z,y) = f{;;* (z.y), then f(di(,y),y) = 2.
Note that dy(z,y) is a term operation. We may repeat this construction, iterat-

ing in the second variable this time, and get a term operation da(z,y) such that
flz,da(z,y)) = y. Define

!',(:L‘, Y, z) = f(dl(xa d?(yr y))! d'Z{ys Z))

From our definition of d (z, y), we have that f(di(y, d2(y,y)), d2(y,v)) = v (by tak-
ing y = d2(y,y)) and from our definiton of d2(z, y), we have f(y,d2(y,vy)) = y (tak-
ing z = y). Since A is a quasigroup, there is a unique solution to f(z,d2(y,y)) =y
for all y € A, so we may conclude that d (y, d2(y,y)) = y. Hence,

ty.y,z) = f(y.do(y,2)) = @
Again taking y = d2(y,y) in the definition of d;(z,y), we have

tz,y,y) = fldi(z, d2(y, y)), da(y,y)) = =
0

The next few results will be stated without proof to ease the presentation of
Palfy’s Theorem. For a one-shot version of Palfy’s Theorem, see [HM)]. For proofs
of these results, see [CV].

Theorem 2.8 (due to Smith and Gumm). If A has a Mal’cev polynomial t(z,y, z)
and satisfies

Ya Vo Yy, z, tHi,y) = tla,2) = t(,y) = t(v, 2)
for all term operations t(z,y), then if 0 € A,
(1) M = (A, +,—,0) is an abelian group with a + b = t(a,0,b) and
—a =1(0,a,0),
(2) R = {p(z) € Poly(A) : p(0) = 0} is a subring of End(M), the ring of all
endomorphisms of M, and
(3) M is an R-module polynomially equivalent to A.
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Lemma 2.9 (Twin Lemma I). Let A be a minimal algebra with at least three
elements and f(Z,y) € Pol(A). If¢,d € A, then f(¢,y) is a permutation of A iff

f(d,y) is.

Definition 2.10. An n-ary polynomial f(zy,...,x,) is said to depend on the
variable x; if the unary polynomial f(ai,...,ai—1, i Giz1,...,0n) 18 nonconstant
Jor some choice of the a;, j € {1,...,n} — {i}.

Lemma 2.11. Let A be an algebra and suppose that f € Pol{A) depends on at
least n variables. Then for each k, 1 < k < n, A has a k-ary polynomial operation
that depends on all k variables.

Theorem 2.12 (Palfy’s Theorem). If A is a finite minimal algebra with at least
three elements, then either

(1) every basic operation of A depends on at most one variable, or

(2) A is polynomially equivalent to a vector space over a finite field.

Proof. [CV] Assume that f € Pol(A) depends on more than one variable. By
Lemma 2.11, we may assume [ is binary. Since f(z,y) depends on x, there exists
a ¢ € A such that f(z,¢) is nonconstant. Since A is minimal, f(z,c¢) must be
a permutation. By the Twin Lemma (2.9), f(z,¢) is a permutation for all ¢ €
A. Similarly, f(e,y) is a permutation for all ¢ € A. As we noted above, this is
sufficient to prove that (A4, f) is a quasigroup. By Lemma 2.7, A has a Mal'cev
term operation.

Now let g(z,y) € Pol(A) be any polynomial. Let @,b,¢,d € A, and suppose
g(a,c) = gla,d). If ¢ = d, then g(b,c) = g(b,d), so assume ¢ # d. Since ¢ and
d were arbitrary, g(a,y) must be constant. By the Twin Lemma, g(b,y) is also
constant, so g(b, c¢) = g(b, d). We have shown

Va Vb Ve,d g(a,c) = g(a,d) => g(b,c)=g(b,d)

for every polynomial g(Z,y) € Pol(A). Hence we may apply Theorem 2.8 and
conclude that A is polynomially equivalent to a module M over a ring R as defined
in the theorem. Since A is minimal, every nonzero element p of R is a permutation,
so it has an inverse which is in R because p(0) = 0. Thus, R is a finite division
ring, that is, a field, so M is a vector space over a finite field. (]

Corollary 2.13. Let A be a finite minimal algebra. Then A is polynomially equiv-
alent to one of the following (of which none are polynomially equivalent):

(1) a unary permutational algebra
(2) a vector space over a finite field
(3) the two-element boolean algebra
(4) the two-element lattice

(5) the two-element semilattice.

We define the type of a finite minimal algebra A, denoted typ(A), to be the number
in the enwmeration of the algebra to which A is polynomially equivalent.

‘We will prove the Corollary shortly, but first we present a lemma due to Werner,

‘which can be found in [W].
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Lemma 2.14 (The Composition Theorem for Operations). Let A be a finite set
and 0,1 € A with 0 # 1. Let A and V be binary operations on A satisfying ahl = a,
ah0=0,aV0=a=0Va and for every a € A, let

(z) = 1 ife=a
9 =0 iz4a

be a unary operation on A. Let & be an n-tuple of indeterminants and a be an
n-tuple of elements of A. Let

9a(Z) = (... ((9as (@1) A gaa (2)) A gas(@3)) A - ..) A Ga, (Tn).
Then every operation f : A™ — A can be written
@) =V {}@)@) A gal@)}
aeAn

where ¢}, (%) is the n-ary constant operation which evaluates to f(a).

Proof. This is essentially obvious from the definitions in the lemma. Note that all
terms in the join are 0 except possibly one, so the fact that we did not assume
commutativity or associativity is not a problem. O

Definition 2.15. Let < be a partial order on a set A. A function f : A" — A

is said to preserve < if flay,...,an) < f(bi,...,by) whenever a; < b; for each
i=1,...,n. f is said to be order-preserving if f preserves < for every partial
order < on A.

Lemma 2.16. Let A be an algebra and < C A? a partial order on A. Suppose that

oo
Pol(A) ¢ U {g: A" — A g is order-preserving}.

n=1

Then there exists f € Poli(A) which does not preserve <.

Proof. Let g € Pol,(A) fail to preserve <. Then there exist n-tuplesa = (a1,...,an)
and b = (by,...,by) such that a; < b; for i = 1,...,n and g(a) £ g(b). Starting
at i = 1, we set each a; = b; and observe the resulting change in g(a). There
exists a largest j € {1,...,n} such that g(b1,...,bj—1,a5,8j41,...,@n) £ g(b).
Thus, the unary polynomial g(z) = g(b1,...,bj—1,%,@j+1,...,an) is not <-order-

preserving. O

The proof of Corollary 2.13 will involve a systematic elimination of cases based
on a few properties:

Property I: A has a binary polynomial f which depends on both variables.

Property 11: For f € Pola(A), Va,b,c,d € A, f(a,c) = f(a,d) = f(b,c) = f(b,d).

(Compare to the condition in Theorem 2.8).

Property IIT: All polynomials on A are order-preserving.

Property IV: A is polynomially equivalent to a semilattice.

The following flowchart outlines the proof. If a Property holds, the proof pro-
gresses along the rightmost path.




Property 1
typ(A)=1 Property I1
Property 111 typ(A)=2
typ(A)=3 Property IV
typ(A)=4 typ(A)=5

A partial proof of the Corollary is given in [HM], with several things left as
exercises. We present a complete proof, along the lines of [HM)], with the details
included.

Proof. One element algebras are trivially type 1, and the finite minimal algebras
with at least three elements are handled by Palfy’s Theorem, so suppose A is a two
element minimal algebra.

If every basic operation of A depends on at most one variable, then every poly-
nomial is either a constant or a permutation, so A is type 1. So assume A has a
basic operation which depends on more than one variable. By Lemma 2.11, A has
a binary polynomial operation f that depends on both variables. Suppose

(%) Va,b,e,d € {0,1}, f(a,¢) = fla,d) == f(b,c) = f(b,d).

If f(0,0) =0, then f(0,1) = 1 since, otherwise, (x) implies that f(1,0) = f(1,1)
and f depends on only one variable. Now f(1,0) = 1 since f(1,0) = 0 will con-
tradict either (*) or the fact that f depends on both variables. Finally, by (%),
f(1,1) = 0. If f(0,0) = 1, then we may go through a similar argument and deter-
mine that the Cayley table for f is either

f|01 f|01
0|1 0 or 00 1.
110 1 111 0

In the former case, f(f(x,y), z) is a Mal'cev term, and in the latter case, f(f(z, 2),y)
is a Mal’cev term. By Theorem 2.8, A is polynomially equivalent to a module. This
module is a vector space over a finite field by the same argument as in the proof of
Palfy’s Theorem, so A is type 2.

Now suppose (x) fails. Then there are a, b, ¢, d € {0, 1} such that f(a,c) = f(a,d)
and f(b,c) # f(b,d). This obviously requires that a # b and ¢ # d, so the Cayley
table of f must contain exactly three zeros or three ones.

If A has a polynomial which is not order-preserving, then by Lemma 2.16, there
is an operation ’ € Pol;(A) which is not order-preserving. There are only three
partial orders on {0,1}, and the trivial one {(0,0), (1, 1)} is necessarily preserved
by all polynomials. The other two are {(0,0), (1,1), (0,1)} and {(0,0), (1,1), (1,0)}.
Clearly, there is but one unary operation which fails to preserve one (and hence
both) of these partial orders, so ' is the “negation” operation which swaps 0 and 1.

Recall that, by assumption, the Cayley table of f(z,y) contains either three 0s or
three 1s. If the table contains three Os, it is straightforward to observe that one of
fla,y), f(@',y), flz,y') and f(z’,y’) is a meet operation A. Similarly, if the table
contains three 1s, one of these four is a join operation V. Finally, z Ay = (2’ Vy¢')’
and zVy = (2’ Ay'), so Pol(A) contains the polynomial clone of the two-element
Boolean algebra. The reverse inclusion is given by Lemma 2.14, so A is type 3.
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Next, assume all polynomials on A are order-preserving.
It can be easily seen by examining cases that the join and meet operations

vVIi0 1 A0 1
0|10 1 and 0(0 0
11 1 110 1

are the only two order-preserving binary operations on {0,1} which depend on
both variables, so Pol(A) must contain at least one of these. Lattices contain both
as basic operations, so the polynomial clone on the two-element lattice is the set
of all order-preserving operations on {0,1}. Without loss of generality, suppose
A € Pol(A). A (meet) semilattice is an algebra which satisfies this criterion. If A
is a semilattice, it is type 5.

Suppose there is ¢ € Pol,(A) which is not a semilattice polynomial. We must
show Pol(A) contains a join operation. Note that g is not constant, so both 0 and
1 are in the range of g.

For aset I C {1,...,n}, let zy = (z1,...,2,) be the n-tuple such that z; = 1
ifi € I and x; = 0 otherwise. Since g is order-preserving, for I C J C {1,.. .}
we have g(zr) < g(xs). Since 1 is in the range of g, the set {I : g(xz;) = 1} has at
least one minimal member. If there is only one such set Iy, then g(z;) = 1 if and
only if Iy C I, so

glzy,...,zn) = /\ ity
iely
which contradicts the assumption that g is not a meet semilattice polynomial.

Thus, there are two distinct sets I1, Io C {1,...,n} such that g(z;,) = g(z;,) = 1
and g(x;) = 0 whenever J C I; or J C I. We create a binary operation b(z,y) as
follows: If i € Iy — I3, replace z; by @ in g. If ¢ € Iy — I, replace x; by y in g. If
1 ¢ Iy U I, replace ; by 0 in g. If i € I} N I, replace z; by 1 in g.

The resulting polynomial is b(z,y). Observe that b(1,0) = g(z;,) = 1 and
b(0,1) = g(zr,) = 1, while b(0,0) = g(x1,n1,) = 0, so b is a join operation. Thus
Pol(A) contains the polynomial clone of a lattice. It remains to show that the
polynomial clone of a lattice contains the set of all order-preserving operations on
{0,1}.

Let h: {0,1}" — {0,1} be order preserving. Then we claim

WMz, ..., zn) = V /\ .
i€S
where the join is taken over all sets S C {1,...,n} such that h(zs) = 1.
If S is any subset of {1,...,n} such that h(zg) = 1, then the expression

A

ieS
will evaluate to 1. By joining over all such S, our expression for h is clearly 1 if
h(zg) = 1. Conversely, if our expression evaluates to 1, then the z; are coordinates
of an n-tuple x7 which is 1 in each coordinate zg is 1 for each S such that h(zs) = 1.
That is, S C T for every S such that h(zg) = 1. Since h is order-preserving, h(zr)
must be 1. Hence, our expression is 1 if and only if h{zi1,...,2,) = 1, so every
order-preserving operation on {0, 1} may be expressed as a polynomial on the two-
element lattice.

So A is a lattice, and it is type 4.
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It is obvious that a unary algebra is not polynomially equivalent to an algebra
with operations which depend on two or more variables. We have seen that the
two-element Boolean algebra is not polynomially equivalent to the lattice or semi-
lattice because it has a polynomial which is not order-preserving. Putting a 0 into
a polynomial which is a composition of meet operations must evaluate to 0, and
dually, a 1 in a polynomial of joins must evaluate to 1, so semilattices are polyno-
mially inequivalent to lattices. Finally, lattices, semilattices, and Boolean algebras
all contain a non-Abelian operation, and hence are polynomially inequivalent to a
vector space. Thus the five types are indeed distinct. O
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3. TAME QUOTIENTS IN FINITE ALGEBRAS

Following [CV], we define a neighborhood of an algebra:

Definition 3.1. A neighborhood of an algebra A is a subset U C A such that
U = e(A) for some idempotent e € Pol;(A).

Recall that a congruence on an algebra is an equivalence relation which is “com-
patible” with the basic operations, and hence the polynomials, of the algebra. The
idea of tame congruence theory is to use the congruences of a finite algebra to re-
veal as much as possible about the algebra’s polynomials. This is accomplished by
looking at certain neighborhoods of the algebra, an idea we begin to develop now.

Definition 3.2. Let A be an algebra and let U € A, Then the induced algebra
Aly is the algebra

(U, Af@)|u : f € Poln(A), f(U™) € U,n finite})
The following important theorem is due to Palfy and Pudlak.

Theorem 3.3. Let U be a neighborhood of an algebra A. Then the restriction map
0+ 0|y from Con(A) to Con(A|y) is a surjective lattice homomorphism.

Proof. [CV] Let e be an idempotent unary polynomial on A such that e(A) = U.
Clearly, the mapping # — 6|y sends € to an equivalence relation on U. By Lemma
1.2, 0 is compatible with all unary polynomials on A, so its restriction is compatible
with all restrictions of unary polynomials on A. Thus #|y is a congruence.
That restriction preserves the meet of two congruences is straightforward, and
hence restriction preserves the lattice order (which is defined as a < b & a = aNb).
Claim: For a € Con(A|y),

&= {{z,y) € A% : {ef(z),ef(y)) € a for all polynomials f}

is the largest congruence on bf A whose restriction to U is a. In particular,

the restriction map is surjective.

Proof of Claim: & is obviously an equivalence relation on A. Let (a,b) € & and
f € Poly(A). If g is another unary polynomial, {egf(e), egf(b)) € o by definition
of & So (f{a), f(b)) € &, and & is a congruence by Lemma 1.2. o < &y is clear,
and if (a,b) € &|y, then (¢*(a),e?(b)) = (a,b) € o, s0 &y = o

To finish the proof of the claim, let # be another congruence such that 8|y = a.
Let {a,b) € 6. Let f be an aribitrary unary polynomial. Then {ef(a),ef(b)) € 8,
and (ef(a),ef(b)) € U?, so (ef(a),ef(b)) € 6]y = a. By definition, (a,b) € 4,
¢ C &, and the claim is proven.

Finally, we show that restriction preserves joins. Let 6; and #2 be two congru-
ences of A. Let 8= 6, V82 and o = 61|y V 62|y. Since 61,602 < 8, O1|u, 02| <
Blu because restriction preserves lattice order, and thus a < f|y. Conversely,
v, 02|l < @, s0 81,02 < & by the Claim. Thus 8 < & and Bly < ély = a. 0

Definition 3.4. A pair (o, 8) with o < 3 € Con(A) in finite algebra A is called a
congruence quotient of A.
The set of («, B)-separating polynomials of A is

Sep(a, B) = { € Poly(a) : (6) € a).
Let Ua(a, 3) = {f(A) : f € Sep(e, B)}. The (e, 3)-minimal sets are the elements

of Ua(e, 8) which are minimal with respect to set inclusion. The set of (o, 8)-
minimal sets is denoted Ma (e, ).
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—-Possible minimal set
Alpha class
|

Beta congruence class

Mot a
minimal set

The (e, §)-minimal sets for which o < @ are the “certain neighborhoods” referred
to above. We now prove that they are indeed neighborhoods.

Lemma 3.5. Let a < G be congruences of a finite algebra A. The (a, 3)-minimal
sets are neighborhoods of A.

Proof. [CV] Let U € Ma(w,3). Let K = {f € Pol1(A) : f(A) C U}. Observe that
p={{z,y) e f:{f(z), f(y)) e aforall fe K}

is an equivalence relation on A. By Lemma 1.2, it suffices to show that x is com-
patible with the unary polynomials. If {a,b) € p and g € Pol;(A), then fg € K,
so {fg(a), fg(b)) € a for all f € K. By definition of g, {g(a), g(b)) € u. Thus y is
a congruence on A.

Let (z,y) € a < B. Then {f(z), f(y)) € « for all f € K because o is a
congruence. Hence, by definition, a < u < &, so u is either a or 3.

Since U € Ma (e, 3}, there is h € Sep(a, 8) with h(A) = U. Since h separates
A, let (a,b) € § such that (h(a), k(b)) ¢ «, and hence (a,b) ¢ p. Therefore, p = a.
By definition of p, there is a k € K such that (kh(a), kh(b)) ¢ c.

So k(A), kh(A) C U and kh(8) € a. By the minimality of U, kh(A) = U. Since
h(A) =U, k(U) = U and k|y is a permutation. Iterating k, we get an idempotent
unary polynomial e(z) with e(A) = U. 0

Tame congruence theory takes its name from the next definition.

Definition 3.6. A congruence quotient {«, ) is called tame if there exist a set
V € Ma(e,8) and an idempotent e € Poli(A) such that e(A) = V and |v is
a lattice homomorphism such that the preimages of o|y and B|p are o and 3,
respectively.

A crucial result in the development of the theory was McKenzie's characteriza-
tion of (e, #)-minimal sets through tame quotients. In particular, M4 (e, 8) is an
equivalence class under polynomial isomorphism when (o, ) is a tame quotient.

Theorem 3.7. Let (o, 3) be a tame quotient of a finite algebra A. Then,
(1) Any two («, 8)-minimal sets are polynomially isomorphic.
(2) Buvery (o, 8)-minimal set U is a neighborhood; moreover, the map |y is
(a, B)-separating.
(3) For all U € Ma(a,B) and f € Poli(A), if f(Blu) € a, then f(U) €
Ma(e, 8) and f is a polynomial isomorphism between U and f(U).
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(4) If (a,b) € B8 —a and U € Ma(a,B), then there exists a polynomial f €
Poli(A) such that f(A) =U and (f(a), f(b)) & c.
(5) If U € Ma(w, B), B is the transitive closure of

aU{{g(x),9(y)) : {z,y) € Blu and g € Pol;(A)}.
(6) If f € Sep(a, B), then there is a U € Ma(a, 8) with U ~ f(U).

Proof. The proof is rather long, although we have already proved (2), so it will be
omitted here. See [HM] or [CV] complete proofs. O

Examples.

e If A is a simple algebra, then Sep(0,1) is the set of all nonconstant unary
polynomials and M4 (0,1) is the set of all minimal ranges of such polyno-
mials.

e If A is assumed to be minimal, then Sep(0,1) is the set of permutations
on A, and Ma(0,1) = {A}. Conversely, if Ma(0,1) = {A}, then every
element of Sep(0,1) maps A onto itself, that is, permutes the elements of
A. But only constant maps can collapse the 1-congruence to 0, so A is
minimal.

e If A is a finite, simple, nonabelian group (or even loop, which will be
defined later), then the minimal sets are two-element boolean algebras.
Moreover, Ma{0,1) contains all two-elements subsets of A. This result is
highly nontrivial, particularly in the case of loops, and depends on the fact
that every n-ary function on A4 is a polynomial.

Definition 3.8. Let L be a lattice with a unique smallest element 0 and a unique
largest element 1 relative to the lattice order. A lattice homomorphism f : L — L’
is called (0,1)-separating if f~1{f(0)} = 0 and f~1{f(1)} = 1.

If 1 < |L| < oo, every nonconstant lattice homomorphism is (0, 1)-separating,
and if, for every function u: L — L such that p(z) > x and p(z Ay) = p(x) A py),
i is constant, then L is said to be a tight lattice.

Example. The two-element lattice is tight. More generally, for any covering pair
a < (3 in a finite lattice L, the interval sublattice I[a, 8] = {yeL:a <y < G} is
tight.

Theorem 3.9. If (o, 8) is a congruence quotient of a finite algebra A such that
Ia, B8] is tight, then {(a, B) is tame.

Proof. [HM] Let U € Ma(a, B). A rather technical argument, found in [HM], shows
that since the interval lattice is tight, there is an idempotent unary polynomial e
with e(A) = U and e(8) € a. Then the restriction |y considered as a map on
I|ev, B] is a non-constant, surjective lattice homomorphism by Theorem 3.3. Since
I[e, 4] is tight, |y is (0, 1)-separating. O

Corollary 3.10. Every congruence quotient (o, 8) of a finile algebra A such that
a < 3 is tame.

~ Due to this corollary, our analysis of finite algebras will be primarily concerned
with covering pairs in the congruence lattice.

Definition 3.11. Let A be a finite algebra, a < 3 congruences on A, and U a
set in Ma(a,8). The Blu congruence classes which contain more than one aluy
congruence class are called (o, §)-traces.
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The union of all («, 8)-traces of U is called the body of U. The remainder,
U — body(U) is called the tail of U.

Note that every (e, 3)-minimal set contains at least one («, §)-trace by definition,
and if § = 1, then the minimal set is the trace.

Proposition 3.12. Any two (o, 8)-traces of a finite algebra A are polynomially
isomorphic.

Proof. [CV] Proposition 2.12. O

Lemma 3.13. Let a < § be congruences of a finile algebra A.

(1) Pol(A/a) = {fa: f € Pol(A)}

(2) If Ma(a, 8) = {A}, then Maa(0, 6/a) = {A/a}.

(3) If U is an (o, @)-minimal set of A, then Ufa is a (0, 8/a)-minimal set of

Ale.

Proof. [HM] (1): The set of all operations f on A such that f preserves a and
Jo € Pol(A/a) is easily seen to be closed under compositions and to contain the
constant operations, the trivial projection operations and the basic operations of
A Dby our definition of quotient algebra. Thus f € Pol(A) = f, € Pol{A/a).
The reverse inclusion follows similarly.

(2): Suppose Ma(a,8) = {A} and that f € Poli(A/a) and f(8/a) € 0. By
(1), we have that f = g, for some g € Pol;(A), so there are z/a,y/a € Afa
such that (z/o,y/a) € B/a but {ga(z/a},gal(y/a)} ¢ 0. That is, (z,y) € 3
but (g(x),g(y)) ¢ «. Since Ma(a,8) = {A}, g is a permutation of A. Thus
f(A/a) = A/a, and by finiteness, f is a permutation. Thus every unary polynomial
that does not collapse 3/a to 0 is a permutation, so Ma (0, 3/c) = {A/a}.

(3): Let @« < 8 and U € Ma(a,3). By Theorem 3.7, there is an idempotent
unary polynomial e such that e(A) = U and e(8) € .

Claim: For any f € Poli(A), f(8) € a & fo(B/a) €0
Proof of Claim: Let f € Poly(A).

f(B)¢da & 3{ab)ef—asuchthat (f(a), f(b)) ¢
& d{a/a,bfa) € 8/a — 0 such that (f(a)/a, f(b)/a) &0
& falB/a) £ 0

By the Claim, e, (3/a) € 0. Since e is idempotent,

ealealz/a)) = eale(z)/a) = e(e(z))/a = e(z)/a = eq(z/a),
and eq(A/a) = e(A)/a = U/a. So U/a is the image of a (0, 5/a)-separating
polynomial. It remains to show U/a is minimal.

Let fo € Poli(A/a) such that fo(4/a) C U/ and fo(B/a) € 0. It follows
from part (1) that f, corresponds to a unary polynomial f on A which is (e, 8)-
separating by the Claim. Let y € f(A). Since fo(A/a) C U/, y/a € Ufw, that
is, 3z € U such that z/a = y/a. In particular, y € z/a, so y € U. Therefore,
f(A) C U, and f(A) = U by the minimality of U. So fo(A/a) = U/a and the
‘result follows. O

Proposition 3.14. If a < 3 are congruences in a finite algebra A and N is an
(e, B)-trace, then o|n is a congruence on Aly and A|y/a|n is a minimal simple
algebra.
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Proof. [CV] By Lemma 3.13 (3), we can assume that a = 0. We must show
that every unary polynomial on A|y is either constant or a permutation. Let
p(z) € Poly(Al|x), and let g(z) € Poli(A) such that p(z) = ¢(z)|n and g(N) C N.
Let U € Ma(0,3) minimal set containing N. Since there is an idempotent unary
polynomial e on A with e(A) = U, we may assume g(A) € U by replacing g by eq.

If p is not constant, then g(8|x) € 0. By the minimality of U, ¢(U) = U. Since
U is finite, g, and hence p, is a permutation of N.

Finally, since 0 < 3, 0|x < f|n, and since N is a F-congruence class, the largest
congruence on A|y is N x N = f|y. So A|y is simple. O

Thanks to Palfy’s Theorem, we know all the minimal algebras. We called the type
of a minimal algebra to be the number associated with its polynomial equivalent in
the listing of Palfy’s Theorem. We can now extend this defintion.

Definition 3.15. Let o < 8 be congruences in a finite algebra A. The type of the
quotient (o, B), written typ(a, 8), is the type of the minimal algebra A|n/a|n for
any (&, 8)-trace N.

The type set of a finite algebra A is the set

typ{A} = {typ(e,8) : « < § in Con(A)}.

Note that the type of a congruence quotient is well-defined by Proposition 3.12
and the fact that algebras induced by restriction to polynomially isomorphic subsets
are isomorphic. Giving a type to each covering pair turns Con(A) into a labelled
lattice, so the definition of type set seems natural. Freese and Kiss [preprint] have
shown that the type set actually depends only on the types of the join irreducibles
with their unique lower cover, which considerably reduces the amount of computa-
tion needed to find an algebra’s type set.

Lemma 3.16. [somorphic algebras have the same type set.

Proof. Let m : A — B be an algebra isomorphism. Then, as a map of sets,
m: A — B is a bijection, and h is an n-ary operation of A if and only if there ex-
ists a unique n-ary operation A’ of B such that wh(zy,...,zn) = W' (7zy1, ..., 72,).
Hence the polynomial clones of A and B have the same cardinality, and corre-
sponding polynomials “behave the same” when viewed as functions. As a result,
g is a congruence on A if and only if w(#) is a congruence on B. Moreover, given
congruences o and 3 on A, f € Sep(a, 8) if and only if there is a corresponding
f' € Sep(w(a), n(8)) subject to the condition above. Since pairs of congruences and
the polynomials which separate them determine the type of a congruence quotient,
and hence the type set of an algebra, the type sets of A and B are identical. [

Lemma 3.17. Let A be either unary or polynomially equivalent to a lattice or
semilattice. Then A is not Mal’cev.

Proof. To be a Mal'cev algebra, A must have a ternary term operation t(z,y, z)
such that t(z,z,y) = v = t(y,z,z) for all z,y € A. This obviously eliminates

‘the possibility that a Mal’cev algebra is unary. If A is a lattice with at least two

elements (we may make this assumption, since a one-element algebra is necessarily
unary) and a Mal’cev term operation ¢, leta < b € A, a # b. Then t(a,a,b) = b and
t(a, b, b) = a. But t is a composition of join and meet operations, which are lattice
order preserving, so ¢ must preserve the lattice order as well, a contradiction. Hence
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A cannot have a Mal'cev term. The polynomial clone of a semilattice is properly
contained in the polynomial clone of a lattice, so a semilattice is not Mal’cev. 0O

Lemma 3.18. If A is Mal’cev, then typ{A} C {2, 3}.

Proof. [CV] If & < 3 are congruences on A, we must determine typ(a, 3), that is,
the type of the algebra A|y/a|y for any (a, f)-trace N. Homomorphic images of
Mal’cev algebras are easily seen to be Mal’cev, so we can replace A by A/« and
assume o = 0. Let p(z,y, z) be a Mal’cev polynomial, U be a (0, 8)-minimal set,
and NV a (0, 8)-trace in U. Let e be an idempotent unary polynomial whose range
isU.

e(p(z,y,z))|n clearly satisfies the equations defining a Mal’cev operation, so we
need only show that it is a polynomial of A|y. Let a,b,c € N. Then a § b,
so e(p(a,b,c)) B e(p(b,b,c)) = ¢ and N is the class of everything S-related to e,
e(p(a,b,c)) € N for all a,b,c € N. So Aly is a minimal simple algebra with a
Mal’cev polynomial, hence by the previous lemma, it has type 2 or 3. g

We conclude with our second “Twin Lemma”. This one is due to Kiss, and will
be of use to us later.

Definition 3.19. Two n-ary polynomials f(z) and g(z) are called twins if there
is a k-ary polynomial p(%,7), k > n and two tuples & and b such that f(z) = p(&, a)
and g(z,b). If the tuples come from the body of a minimal set, f and g are called
body twins.

Theorem 3.20 (Twin Lemma II). Let a < G be congruences on a finite algebra
A. Suppose Ma(e,3) = {A}. If A has two unary body twins of which one is
a permutation and the other is not, then the body B of A consists of a single
(c, B)-trace which is a union of two a congruence classes. Furthermore, A has a
polynomial which induces a semilattice operation on B/a, so typ(a, 3) € {3,4, 5}.

Proof. [CV] Lemma 3.15. ]
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4. TERNARY RINGS AND PROJECTIVE PLANES

Definition 4.1. A ternary ring is an algebra R = (R, T'), where R is a nonemply
set containing (at least) the elements 0 and I and T : R x R x R — R satisfying:

(i) For alla, b, ¢ in R,
T(0,b,¢) =T(a,0,c) =c
T(1,a,0) =T(a,1,0)=a

(ii) For a, b, ¢ in R, there exists a unique element z € R such that T'(a, b, z) = c.

(ii¢) If a,b,c,d are in R with a # ¢, there exists a unique element 2 € R such that
T(z,a,b) =T(z,¢d).

(iv} If a,b,c,d are in R with a # c, there exists a unique ordered pair z,y € R
such that T'(a,z,y) = b and T'(c,z,y) = d.

(v) If a,b,c are in R with a # 0, there exist unique elements x,y € R such that
T(z,a,b) = c and T{a,y,b) = c.

Since all ternary rings contain 0 and 1, we will, when necessary, consider these
among the basic operations of the algebra.

Example. There are many examples of ternary rings in the literature. A large
class of ternary rings comes from division rings. If (D, +,,0,1) is a division ring,
then (D, T) is a ternary ring where T'(a,b,¢) = (a - b) + ¢. So in a sense, a ternary
ring is a generalization of a division ring.

Given a ternary ring (R,T'), we associate a geometry Il defined as follows. The
set of points of the geometry is P = {(a,b) : a,b € R} U {(m) : m € R} U {cx},
where co is not in R. The lines L of the geometry are:

[m, k] = {(z,y) 1y = T(z,m,k)} U{(m)} forallm,keR
[oo, k] = {(k,y) :y € R} U{oco} forallke R
loo = {{m) :m € R} U {o0}.
Observe the following facts about I1.

(1) Two points lie together on exactly one line.
(2) Two lines intersect in exactly one point.
(3) There exist four points, three of which are not on a line.

These three items axiomatize a class of geometric structures called projective
planes. Conversely, from a given set of points and lines which satisfy the axioms
of a projective plane, we may construct a ternary ring. The method we use is due
to M. Hall and is outlined in [H]:

(1) In the projective plane, choose four points X, Y, O, I, no three on a line.
We will refer to a line by naming two points, which is sufficient by Axiom 1.

(2) We will assign coordinates to each point in the plane, except those on the
line XY, which we think of as the “line at infinity”. To the point O assign
the coordinates (0,0). To the point I assign the coordinates (1,1). Let
C = XY NOI and represent C by (1). Represent the point Y by (oo).

(3) For the remaining point of OI, assign the coordinates (a,a). Do not assign
distinct points the same coordinates.
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(4) Take any point P not on XY. Suppose Y P intersects O in a point with
coordinates (a, a) and suppose X P intersects OI in a point with coordinates
(¢, ¢). Then assign P the coordinates (a, c).

(5) Designate the intersection of XY and (0,0)(1,b) by (b). The plane is now
sufficiently coordinatized.

(6) If (x,y) is on the line (0, ¢)(b), then we define T'(z, b,c) = y.

Here is a diagram of what we’re doing:

¥
®

(L)

a1y

may

o)

Qa0 fad) “m Xe=(0

A Partial Coordinatization of a Projective Plane

Theorem 4.2. Let I be a projective plane. The ternary operation T'(x, b, ¢) defined
above together with the set {a : (a,a) are the coordinates of a point on OI} forms
a ternary ring.

Proof. Observe that the points with coordinates (0, a) lie on the line OY, points
with coordinates (a,0) lie on OX, and the points represented by (b) lie on XY

(i) T(0,b,¢) = cand T'(a,0,¢) = ¢, T(1,a,0) = a and T(a, 1,0) = a.

The line through (0, ¢) and (b) intersects the line OY in exactly one point: (0, c).
Thus the second coordinate of a point (0,y) on the line through (0,¢) and (b) is
¢, 8o T'(0,b,¢) = ¢. The line through (0,0) and (1,0) is OX, so X is represented
by (0). The line through (0, ¢) and (0) = X intersects OI at (c,c), and hence any
point on this line has second coordinate ¢, so T'(a,0,¢) = c.

The point (a) lies on the line through (0,0) and (1, a) by definition. Any point
P = (1,y) lies on the line through ¥ and (1,0). This line intersects the line through
(0,0) and (1,a) in exactly one point: (1,a). So if P lies on (0,0)(1,a), P = (1, a).
Thus 7'(1,a,0) = a. If P = (a,y), then Y P intersects O in (a,a). If P also lies on
(0,0)(1) = OI, then P is the unique intersection of OJ and Y P, so P = (a,a) and
T(a,1,0) = a.

(i) There is a unique element z such that 7'(a, b, z) = c.

z exists because the lines (b)(a,c) and (0,0)Y intersect. The intersection is not
on the line XY since (b) # Y, so it has some coordinates (0, z). This intersection
point is unique by Axiom 2.

(iii) If a # ¢, there is a unique z such that T'(z,a,b) = T'(z, ¢, d).

Since a # ¢, the lines (0,b)(a) and (0, d)(c) do not intersect at a point on XY.
Rather, they intersect at a unique point with coordinates (z,y).

(iv) If a # ¢, there is a unique ordered pair (z,y) such that T'(a,z,y) = b and
T(c,z,y) =d.
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The two poinis (a,b) and (e, d) determine a unique line. Since a # ¢, this line is
not the line through (a,0) and Y. Hence the line through (a, b) and (c, d) intersects
XY in a unique point (z) # Y and OY in a unique point (0,y).

(v} If @ # 0, there exist unique elements z and y such that T(z,a,b} = ¢ and
T(a,y,b) =c.

We handle T'(z,a,b) = ¢ first. In this case, the line (a)(0,b) does not contain
the point X since a $# 0. The line through Y and (e, ¢) intersects (a)(0, b), so there
is a point P = (x,¢) on the line for some z, which is uniquely determined by the
intersection of X P with OI.

Now we consider the case T'(a,y,b) = ¢. Since a # 0, the line (a,¢)(0,b) does
not contain Y, so it intersects XY in a unique point (y). O

So it is clear that every ternary ring determines a projective plane and vice versa.
The process of constructing a ternary ring from a given projective plane does not,
in general, yield a unique ternary ring. We will see that the induced ternary ring
is unique up to a useful equivalence relation, however.

Definition 4.3. Let Ry = (Ry,T1) and Ry = (Ra,T2) be ternary rings. An
isotopism from R onto Rs is a set of three 1-1 functions {f,g,h} from Ry to Ry
such that h(0) = 0 and h(T1(a,b,c)) = Ta(f(a), g(b), h(c)) for all a,b,c € Ry. An
isotopism in which h 1s the identity map is called a principal isotopism.

One easily observes that ternary ring isotopy is an equivalence relation.
In his dissertation [K], Knuth proves several important facts about ternary ring
isotopy. We state some of his results here without proof.

Theorem 4.4. Let R be a ternary ring and let y, z € R be nonzero. Let ¢ = Ly, be
left multiplication by y (i.e. Ly(z) = T(y,=,0)) and let = R, be right multiplica-
tion by z. If f =4~ and g = ¢~ ! and we define Ty (a, b, c) = T(f(a), g(b),c), then
R, = (R,T1) is a ternary ring isotopic to R with 1z, = T'(y, z,0). Furthermore,
all ternary rings isotopic to R can be constructed this way, up to isomorphism.

Theorem 4.5. Isotopic ternary rings coordinatize isomorphic projective planes.
Conversely, if an isomorphism of projective planes fizes the points with coordinates
(0,0), (0), and (c0) (defined above) then the ternary rings of the planes are isotopic.

Corollary 4.6. All isotopic ternary rings coordinatize the same projective plane.
The automorphisms of a projective plane which fix the points with coordinates (0,0),
(0), and (o0) form a group isomorphic to the group of autotopisms of one of the
plane’s ternary rings.

Theorem 4.7. Let R be a ternary ring with n elements. The number of non-
isomorphic ternary rings isotopic to R is at most (n — 1)2.

Knuth observes that this estimate is best possible, as there is a ternary ring of
order 32 with 312 non-isomorphic isotopes. Furthermore, if the ternary ring is a
finite field, all isotopes of R are isomorphic to R. We will come back to the notion

.of isotopy in the next chapter.

The connection between ternary rings and projective planes has been very useful
in working towards the solution of a long outstanding problem related to finite
projective planes; that is, planes whose set of points has finite cardinality. Here are
three important, but elementary, facts about projective planes.
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Lemma 4.8. Let II be a projective plane. If p is a point not on a line [ in I, then
there is a one-to-one correspondence between the lines through p and the points on

L

Theorem 4.9. In a projective plane, the number of points on every line is the
same, and that is the same as the number of lines through any point.

Corollary 4.10. If1I is a finite projective plane with n + 1 points on every line,
(and hence n+ 1 lines through every point) then I1 has n? +n+ 1 points and lines.
Furthermore, by construction, the induced ternary ring contains n elements.

Definition 4.11. The number n in Corollary 4.10 is called the order of I1 [or the
order of the ternary ring R).

The open problem relating to finite projective planes is: For what values of n
is there a projective plane of order n. The only known projective planes of finite
order are those of prime power order (e.g. those coordinatized by finite fields).

The main (and only) result which eliminates an infinite class of possible orders
is due to Bruck and Ryser.

Theorem 4.12. If n = 1(mod 4) or n = 2(mod 4), and n is not the sum of two
squares, then there is no projective plane (or ternary ring) of order n.

The only other result on this problem is that 10 is not the order of a projective
plane or ternary ring, which was determined by an exhaustive computer search.

It is not the goal of this paper to produce a result on the possible orders of
projective planes, but to use tame congruence analysis to see if any interesting
or useful structure is shared among finite ternary rings which may lead to future
results.
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5. QUASIGROUPS AND LOOPS

The theory of binary systems figures prominently in the study of ternary rings.
We will see how in a moment. Recall,

Definition 5.1. An algebra (G, ), where - is a binary operation, is a quasigroup
if the equations a -z = ¢ and y - b = ¢ have unique solutions in G for all a,b,c € G.
A quasigroup which has an identity element is called a loop.

Examples.
e Any group is a loop.
e Any algebra (G, ), where - is a binary operation whose Cayley table is a
latin square is a quasigroup.
Lemma 5.2. Let R = (R,T) be a ternary ring. Then (R,4+) and (R — {0},"),

where a + b = T(a,1,b) and a - b = T(a,b,0), are loops (called the addition and
multiplication loops respectively).

Proof. The fact that (R, +) is a loop with identity O follows immediately from
properties (i), (i), and (v) of ternary rings. Properties (i) and (v) show that
(R — {0r}, x) is a loop. o

Corollary 5.3. The addition and multiplication loops of finite ternary rings are
Mal’cev algebras, and their type sets are subsets of {2,3}.

Proof. This follows from Lemma 2.7 and Lemma 3.18. 0

Observe that we could define a + b = T(1, a,b) without affecting the conclusion
of the lemma. Since loops are essentially just groups without associativity, many
of the basic theorems of groups also hold in loops.

Lemma 5.4. Let L be a finite set and let f be a binary operation on L such that
(L, f) is a loop. Then for each a € L, there is a least element k € Z* for which
f(k];l[a, a) = e, where e is the identity element in (L, f).

Proof. Since the positive integers are well-ordered, we need only show the existence
of one such k.

Suppose |L| = m for some m € Z*. Then for a € L, there are distinct
i,j € {1,2,...,m + 1} with ¢ > j for which f{ (a,a) = f})(a;a). By def-
inition, f(f;l_)l(a,a),a,) =b = f(ffl_)l(a,, a),a) for some b € L, and by prop-
erty (iii) of loops, f(il_)l(a, a) = f(j]_)l(a, a). Repeating this argument j — 1 times,
fg]ij(a, a) = f?l)(a, a) = a.

So f;l_)j (a,a) = f(f(il_)j_l(a, a),a) = a = f(e,a) by property (i) of loops, and so
by the uniqueness in property (iii), ffl_)j_l(a, a) =e. Sincei > j, k=i—j € Z*. O

Note: If the loop operation is addition or multiplication, we will write ka or a®

instead of f(kl;l(a, a). Keep in mind that this value is different, in general, than
-f(kz;l(a,, a) or any other way of multiplying a by itself k times, since the loop need
not be associative.

Definition 5.5. Let (L, f) be a loop. If a € L, then the order of a is the smallest
integer k € Z* for which f(kﬁ] (a,a) =e.
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Lemma 5.6. Let (L, f) be a loop. If a € L, ffl_)l(a, a) = e if and only if k|l where
k is the order of a.
Proof. Suppose ffl_)l(a, a) =e. If | =k, then k|, so assume [ # k. Since k is the
smallest positive integer for which f(kl;l(a, a) =e, I > k and hence | = kq + r for
some q,7 € Z*, 0 <r < k. Then fff)l a,a) = f(kl')"(a a). As in the proof of the
previous lemma, this means f(l (a a) = f(l)[a. a) = a, S0 gl_)k_l(a. a)=-ce kis
the smallest positive integer for which f (a, a)=e,sol-k>k Ifl-k=kFk
then | = 2k and L]E Otherwise, | — k > k. Repeating this process ¢ — 1 more
times, we get f (1) Mg, a) = f(l (a,a) = a. Now, I = kq +r, so we have f{},(a,a) =
fm(a a)=a= f(l)(a a). But0<r <k,sor=0,1= kg, and k|

Suppose k|l. Then for some ¢ € Z*, | = kq. If ¢ = 1, then f Ya,a)

{1 }l[a a) = e. Assume inductively that the result holds for each mLelrer n, 1 <
n < g. Then

q )= 1(& a) = e
f(l)_”(a,a) = a=f%aa)
k
o Ve,a) = fhlaa)
[T ee) = SN e =
So f(1)}(a,0) = [ H(a,0) =e. O

Definition 5.7. Let R = (R, T') be a finite ternary ring. For all x,y € R, define
® : R x R — R to be the unique element z € R for which T(z,1r,2) = y. By
condition (ii), this operation is well-defined. We will call the operation © left
subtraction, and instead of ©(z,y), we will use the more conventional notation
QY.

Similarly, we define right subtraction @ : Rx R — R to be the unique element
z € R for which T'(z,1p,y) = z.

Lemma 5.8. © is a term operation on R.

Proof. Let V(R) be the variety generated by the loop (R, +) and let F be the free
algebra in V(R) on two generators yg)(z,y). Let B be the smallest subset of
F containing y with the additional property that b€ B = z+ b€ B. Fis
cancellative, since (R, +) is a loop, so b+ x+bis a 1-1 map of B into B. The map
is onto by the minimality of B. Thusy =z + b for some b € B. But b € F, s0o b
is some term t(z,y). By the definition of ®, and by Theorem 1.6, ® = t(z,y) is a
term operation on R. 0

The notion of isotopy in ternary rings we encountered earlier is a generalization
of a similar notion used in the theory of binary systems.
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Definition 5.9. Let (G, *) and (H, o) be two quasigroups and let o, 8,v: G — H
be bijections. If a(z) o B(y) = v(z *y) for all z,y € G, then the triple (a, 3,7) is
said to be a quasigroup isotopism of G onto H and G is said to be isotopic to
or an isotope of H.

[sotopy is easily seen to be an equivalence relation, and it is easily seen that our
notion of isotopy in ternary rings reduces to isotopy in the multiplication loop by
taking ¢ = 0 in the definition of ternary ring isotopy. It is also clear that ternary
ring principal isotopy reduces to isotopy in the addition loop.

Definition 5.10. An isotopism (o, 8, Ig) of (G, *) onto (G, o), where I denotes
the identity map on G, is called a principal isotopism.

Principal isotopism is also seen to be an equivalence relation. Now, given an
isotopy (e, 8, ) of (G, *) onto (H, o), define (G, x) by

zxy=a (@) *B (7))

so (G, x) is a principal isotope of (G, %). Also,
a(a™ (v(z))) o BB~ (v(¥))) = 1(x) 0 ¥(y) = v(z x y).

So we have proved:

Lemma 5.11. FEvery isotope of a quasigroup is isomorphic to a principal isotope
of the quasigroup.

When we work with quasigroups it is useful to define two maps L., R, : Q@ — @
from the quasigroup @ to itself for all z,y € Q by

Lo(y) = xy and R.(y) = yz.

Since @ is a quasigroup, L, and R, are permutations of () and hence have inverse
maps L;! and R;L.

We now present part of a stronger theorem of Albert as published in his paper
Quasigroups I.

Theorem 5.12. If a loop (a quasigroup with a unique two-sided identity element)
Q° is o principal isotope of o quasigroup Q with left and right multiplication as
above, then

(1) the principal isotopism is (R;l, L;l, Ig), and

(2) right and left multiplication on Q° are given by RS = RL?(I]R}; and

L8 = Lo, L7t

il z)

Jor elements g, h € Q such that f = gh is the identity element of Q°.

Proof. [A] Suppose loop @V is a principal isotope of @ and let L, and R, be left
and right multiplication by z in Q. Let («, 3, Ig) be the principal isotopism. Then
_Lg = Lq(z)0 and Rg = Rpg(y)o. Let f be the identity element of Q°. Then

0 _ — T — P
Rf Rﬁ(f)(k - IQ = Lf = Lur[f]ﬂ

Put g = a(f) and h = B(f). Then f = a~(g) = Rn(g) = gh and we have (1) and
(2). O
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Let’s consider R;l for & moment. This is the mapping from quasigroup @ to
itself such that R; '(y) is the unique element = € @ for which zh = y. In other
words, R;l is right division by h and L;l is left division by g.

In Lemma 5.8, we saw that left and right subtraction were term operations on
the loop (R, +). By changing the operation from addition to multiplication we have
an analagous situation here, and hence R; ' and L;! are in Pol;(Q). But then the
loop multiplication defined by

THgoy = R;l(x) *0 Lg_"(y)
is a polynomial in @, so Pol(Q®) C Pol(Q). If we let @ be a loop, and keep in mind

that principal isotopy is an equivalence relation, we have the reverse inclusion as
well, so

Lemma 5.13. Principally isotopic loops are polynomially equivalent.
Corollary 5.14. Principally isotopic ternary rings are polynomially equivalent.

Corollary 5.15. Principally isotopic loops and ternary rings have the same con-
gruences and the same congruence lattice.

Corollary 5.16. Principally isotopic loops and ternary rings have the same type
set.

Proof. By Lemma 5.13 and Corollary 5.15, the (a, 3)-separating polynomials are
the same and hence the (@, 8)-minimal sets are the same. g

Corollary 5.17. Isotopic loops and ternary rings have the same type set.

Proof. By Lemma 5.11, Corollary 5.16, and the fact that isomorphic algebras have
the same type set (Lemma 3.16). O

Consider the two quasigroups below.

*11 2 3 4 5 6 ol 2 3 4 5 6
111 2 3 4 5 6 116 4 2 5 3 1
212 4 6 3 1 5 215 3 41 6 2
@Qi= 3|3 6 1 5 4 2 Q= 3|1 6 3 2 4 5
414 1 5 2 6 3 413 2 1 6 5 4
5(5 3 4 6 2 1 5(2 5 6 41 3
616 5 2 1 3 4 614 1 5 3 2 6

@, is isotopic to @2, as (Q2,0) was defined by
zoy = afz) = B(y)
where a = (1345)(26) and 8 = (125)(36) as permutations.
Using Ralph Freese’s computer program, we compute the type set of each of these

quasigroups and determine that typ(Q;) = {2} and typ(Q2) = {3}. So isotopy, and
in particular principal isotopy, does not preserve type sets in quasigroups.
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6. THE TYPE OF A FINITE ALGEBRA WITH A TERNARY DISCRIMINATOR TERM

Definition 6.1. A ternary discriminator for an algebra A is a ternary operation
d:Ax Ax A— A defined by

N

Examples.
e Let (A,+,—,-,0,1,g) be a ring with the additional unary operation

1 ifz#0
9(z) = {0 ifz=0

A special case of such a ring is a finite field of characteristic p > 0 with
g(z) = aP~ 1. Then t(z,y, z) = 2+ (z—2)g(y — ) is a ternary discriminator.

o ((zAz)VY')A(xzVz)is a ternary discriminator on the two element Boolean
algebra ({0,1},A,V,"). Note that this was also given as an example of
a Mal'cev term in Chapter 1. Indeed, we may observe that a ternary
discriminator ¢s a Mal’cev operation.

Corollary 6.2. A finite algebra with a ternary discriminator term operation is a
Mal'cev algebra.

Lemma 6.3. A finite algebra A with a ternary discriminator term operation is
functionally complete.

Proof. [W] Let d(z,y,z) be the ternary discriminator term operation. Define
z Ay =d{y,1,z), zVy = d(z,0,y), xo(z) = d(0,z,1), and for a # 0, xa(z) =
d(0,d(a,x,0),1). Then, by the Composition Theorem for Operations, every func-
tion f: A™ -+ A can be written as a composition of these and the n-ary constant
operations. O

Corollary 6.4. If A is a finite algebra with a ternary discriminator term operation,
then typ{A} C {2,3}.

Proof. By Lemma 3.18. 0

Lemma 6.5. A finite algebra A with a ternary discriminator term and all its
subalgebras are simple, and hence lame.

Proof. Let 8 be a subalgebra of A and let 0 # @ € Con(S). Let z,y € S, z8y,
and & # y. Let d(z,y, z) be the ternary discriminator term on A. Then for each
z € S, we have z = d(z,y, z)0d(z,z,2) = 2,50 # = 1 and S is simple. Since 0 <1
in Con(S), the quotient (0, 1) is tame, so S is tame. O

Simple is bad from the point of view of trying to understand an algebra as a
product of algebras. Nontrivial simple algebras are subdirectly irreducible, which
means that if A is a simple algebra, |A] > 1, and

fA-T]A
el
is a one to one homomorphism and the projection of f onto each coordinate
fi: A— A;is onto for all ¢ € I, then A = A; for some 1.



Next, we prove that for any finite algebra A with a ternary discriminator as a
term operation (a finite simple algebra), typ{A} = {3}. In particular, we show all
minimal subalgebras with more than one element are type 3.

Recall that the type set of a Mal’cev algebra is contained in {2,3}. The type
of a finite simple algebra, an algebra we have shown to be Mal'cev, is the type of
the congruence quotient (0, 1), which is given by the type of the minimal algebra
formed by restricting to a (0,1)-trace. Note that, by definition, the (0,1)-traces
(and hence (0,1)-minimal sets) of finite simple algebras must contain at least two
elements.

Proposition 6.6. If A s o finite simple algebra with more than one element and
a ternary discriminator term operation d(z,y, z), then all two-element subsets of A
are (0,1)-minimal. Moreover, if U is a (0,1)-minimal set, then |U| = 2.

Proof. Let a,b € A, a # b. A has a ternary discriminator d(z,y,z) as a term
operation, and d(a, d(a, x,b),b) is a unary polynomial on A which is nonconstant,
and whose range is a two-element set. Moreover, d(a,d(a,z,b),b) is idempotent.
Thus, all two-element subsets of A arise as ranges of (0, 1)-separating idempotent
polynomials, and since there are no one-clement (0, 1)-minimal sets, all two-element
subsets of A are (0, 1)-minimal.

By the discussion preceeding the proposition, |U| > 2. U € Ma(0,1), and since
all two-element sets are in Ma (0, 1), thereis a V € Ma(0,1) such that V C U and
|V| = 2. By definition of Ma(0,1), V =U, so |U| = 2. O

Note: If M is any minimal subalgebra of A and a,b € A are distinct, then
d|m(a,y,b) is a nonconstant unary polynomial on M with a two-element range.
Since M is minimal, d|s(a, y, b) must be a permutation, so |M| = 2 and all minimal
subalgebras of A with at least two elements are (0, 1)-minimal subalgebras.

Theorem 6.7. If A is a finite algebra with a ternary discriminator term operation,
then typ{A} = {3}.
Proof. To determine typ{A}, we need only determine typ(0,1), since A is simple.
Consider a (0, 1)-minimal set U of A. Note that U is its own unique (0, 1)-trace. By
Proposition 6.6, A|y is a two-element algebra. Let a,b € U be distinct elements.
Since A is functionally complete by Corollary 6.3, the function

u fx=y

n(z,y, u,v) = {U oty

is a polynomial on A. Observe that n|y(z, a,a,a) and n|y(z, a, b, a) are body twins.
The former is clearly constant, while the latter is a permutation. By Lemma 3.20,
typ(0,1) € {3,4,5}. But by Lemma 3.18, typ(0,1) € {2,3},so typ{A} ={3}. O

Corollary 6.8. In a finite algebra A with a ternary discriminator term, all minimal
subalgebras of A with more than one element have type 3.

The next theorem is an unpublished result of Ralph Freese.

‘Theorem 6.9. A finite ternary ring has a ternary discriminator as a term opera-
lion.

Proof. Let (R,T,0g, 1r) be a finite ternary ring. Recall the left subtraction opera-
tion © defined in Chapter 4. Observe that x ® y = Op if and only if x = y. Hence,
for any integer n > 0, (x © y)" = 0g if and only if z = y.
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Suppose = # y. By Lemma 5.4, there exists a least element ky, € Z* for which
(z ©@y)ksv = 1. Since R is finite, let

n =lem{k,, : 2,y € R,z # Or # y}.

By Lemma 5.6, (x ® y)" = 1 for all nonzero z,y € R.
Defined: R x R x R — R by

d(z,y,2) =T(T((z O y)",2,0r), 1R, T(1r © (z O )", 2,0r))

If z =y, then
d(z,y,2) = T(T'(Ogr,z,0r),1r,T(1r ®©0g, 2 0r))
= T(0r,1g,T(1g,2,0r))
= T(UR, 1R,z)
= z
1f « # y, then
d(z,y,2z) = T(T(lr,2,0r),1r,T(1g® 1g, 2 0g))
T(z,1g,T(0R, z,0r))
T(z,1r,0g)
= &

So d(z,y, z) is a ternary discriminator.
By Lemma 5.8, we have expressed d(z,y, z) as a composition of term operations,
so it is also a term operation. O

Corollary 6.10. A finite ternary ring R is a simple, functionally complete Mal’cev
algebra, and typ{R} = {3}.

The fact that finite ternary rings are all type 3 is a disappointment. There are
representation theorems of tame congruence theory for tame algebras of types 1
and 2, and those of types 4 and 5 at least have some interesting properties. There
are no representation theorems for type 3 akin to those for types 1 and 2, other
than that such an algebra is isomorphic to a subreduct of a [k]-th matrix power
of the two-element Boolean algebra, which is meaningless, since every algebra has
this property [HM].

We thus proceed to analyze common algebraic structures associated with ternary
rings.

Recall that we defined a multiplication operation on a ternary ring (R,7") by
a*b = T(a,b,0). Throughout, let A = (R — {0},*) and B = (R, *). We have
already seen that A is a loop.

NOTE: O0*xa = ax0 = 0 for all @ € R, and by the uniqueness in part (v)
of the definition of ternary ring, z *y = 0 if and only if z or y is 0. Thus A4,
the universe of A, is also a subuniverse of B. Subuniverses are closed under term
operations, so Clo(A) = {f|a; f € Clo(B)}. All polynomial operations arise by
substituting constants for variables in term operations, and, by the above, we see
that substituting the constant 0 into a term operation results in the constant zero
operation, so if h € Pol,(B), h(A") C A. Thus Pol{(A) = {h|a : h € Pol(B),h #
0}.
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Lemma 6.11. Let § € Con(B). Then |[0]5] =1 if and only if B # lcon(s)-

Proof. (=) is obvious. Let # € Con(B) and 0 # = € R. Let n be the multiplicative
order of 2. Suppose 0 8 z. Then

(0x2z™ 1) B (z+z" 1) = 08 1g = (0+y) B (lrxy) forally e R=> 08y forally € R =

yBzforally,z€ R =0 =lconm) =

Corollary 6.12. There is a 1-1 correspondence between elements of Con(A) and
Con(B) — {1} which preserves the latlice order.

Corollary 6.13. Let @ < 8 € Con(A). Let @, 3 € Con(B) be the corresponding .
congruences & = o U (0,0), B = BU(0,0). Then typ(a, 8) = typ(a, 3).

Proof. By the note above regarding the polynomials on each algebra, and with
the observation that Og is in every (a, 3)-minimal set, every (a, 3)-minimal set U
becomes (&, 8)-minimal by U’ = U U Og, and conversely every (&, 3)-minimal set
V becomes (@, #)-minimal by V' = V' N A. But by Lemma 6.11, Og is in the tail
of every (@&, §)-minimal set, so (&, 3)-traces N’ are identical to (o, §)-traces N and
the resulting minimal algebras B|y:/&|ns and A|y/a|y are identical. O

So in Con(B) there is only one quotient whose type cannot be determined using
elements from Con(A) - the quotient of 1¢,,(g) and its unique lower cover § (i.e.
loon(a) U (0,0)). Let U be a (8,1)-minimal set. Then the tail is empty and
the body consists of two §-classes, one of which is {Og}. The restriction of the
basic operation * to U is obviously a semilattice operation on the minimal algebra
B|u/Blu. The algebra is clearly semilattice type since for every h € Poly(B),
h(0,0) = h(0,1) = h(1,0) = 0.

Recall that every finite quasigroup is a Mal'cev algebra, and that every such
algebra has a type set contained in {2,3}. So typ{A} € {2,3} and typ{B} C
{2,3,5}. Whenever R is a finite field, A is an abelian group and every congruence
quotient has type 2, so typ{A} = {2}. The following is a multiplication loop table
derived from the Hall plane of order 9. Note that it is non-abelian.

-1 2 3 4 5 6 7 8
111 2 3 4 5 6 7 8
2(2 1 6 8 7 3 5 4
3|13 6 4 71 8 2 5
4({4 8 1 5 6 2 3 7
5(5 7 8 1 3 4 6 2
6(6 3 5 2 8 7 4 1
TIT 5 26 41 8 3
8(8 4 7 3 2 5 1 6

Moreover, this loop is simple. {Since loops are so closely related to groups, many
group theoretic concepts are generalized in loop theory. Moreover, many of the
same theorems hold. In particular, we have a concept of normal subloop and a
version of Lagrange's Theorem. For more on the theory of loops, see [B]). The
possible orders of proper normal subloops are 2 and 4. There is no element of order
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4 and only one of order 2, so a 4-subloop is impossible. There is only one 2-subloop,
namely {1,2}. Computing,
({1,2}3)4 = {2,7} and {1,2}(3-4) = {5, 7}

so {1, 2} is not normal. Thus this loop is simple and non-abelian. Such loops are
functionally complete by a result of Lemieux in [L], and as a result, the type set is
{3}. It is worth remarking that the addition loop of this ternary ring is Z3 x Z3, an
abelian group whose type set is {2}. There is absolutely no type correspondence
between addition and multiplation loops of a given ternary ring.

The following is a multiplication loop table derived from the Andre plane of
order 27. Its type set, computed by Ralph Freese’s program, is {2,3}.

(=)

4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

)

4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
18 16 9 25 19 4 1 17 13 23 8 11 7 10 20 24 14 26 21 22
16 24 18 19 21 4 22 8 26 2 9 6 14 20 13 15 25 10 1 Li i

8
6
i)
1
20 11 25 7 10 24 15 9 6 23 22 19 2 17 5 14 12 & 3 26 21
4
9
1
2

™ W

14 25 16 11 12 7 6 1 22 21 24 10 15 2 8 13 19 18 3 26
24 7 4 15 22 16 2 10 3 18 23 17 25 1 12 21 13 8 14 20
12 10 11 2 21 17 16 9 18 20 22 5 1 4 13 26 23 19 8 14
6 22 19 2 18 13 14 11 1 17 12 24 26 4 9 25 15 16 5
26 15 ¥ 16 17 14 25 5 2 24 12 20 1 11 6 3 8 18 22 23 13
22 9 6 2 16 18 5 17 15 8 19 3 25 4 11 21 20 26 13 12 24
8 6 1 10 9 13 2 15 7 21 26 12 16 5 25 19 23 24 20 18 3
1 3 13 26 19 10 8 21 24 25 17 15 22 23 20 5 6 16 7 & 2
10 18 23 3 24 17 19 26 12 7 11 285 21 22 14 6 2 4 16 5 1
14| 14 26 15 23 8 13 18 25 3 12 20 9 7 4 24 19 21 10 17 6 &5 1 11
15/ 15 11 23 2 10 17 5 3 1 25 16 14 8 26 4 6 7 22 18 21 12 24 19
1616 7 19 17 15 25 1 23 11 4 5 26 3 13 6 10 9 24 22 12 14 20 18
1717 10 21 5 2 1 4 20 6 11 25 19 24 18 7 9 15 26 14 3 23 13 12
18] 18 22 2 12 20 24 26 1 21 19 3 15 10 11 8 14 23 9 5 7 25 4 6
19| 19 18 17 21 24 22 14 11 20 23 8 16 15 7 13 12 3 2 1 9 4 6 10
20020 21 11 13 14 12 3 15 26 24 18 4 25 16 19 8 22 1 10 5 9 2 17
21|21 12 9 8 26 14 23 5 13 20 22 106 1 18 3 24 7 16 11 17 25 4
22|22 24 5 14 21 20 13 6 12 18 23 17 2 10 3 26 19 1 4 15 11 7 9
23|23 19 25 20 22 18 12 7 24 3 13 5 16 9 26 21 8 17 11 2 6 10 15
241 24 20 7 26 12 21 8 16 14 22 19 6 4 5 23 13 18 11 15 1 2 17 26
25125 15 13 1 17 11 6 26 10 7 4 20 14 21 9 2 16 23 3 22 24 19 8
26/ 26 13 4 19 3 8 22 9 23 14 211 5 2 20 18 12 25 7 17 10 15 16

This completes a set of examples showing that we cannot restrict type sets of
multiplication loops in any way beyond what is done by the Mal’cev term. Similar
examples can be given for the addition loops.
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Concluding Remarks. We have seen that a tame congruence analysis of finite
ternary rings in general leads essentially nowhere. The most encouraging results
came from examining isotopy. We saw a definition of isotopy in ternary rings which
reduced to the usual notion of isotopy in the multiplication and addition loops of
the ternary ring. The key theorem with regard to isotopy is that isotopic ternary
rings coordinatize isomorphic projective planes, and a partial converse. The full
converse can be easily demonstrated to be false by generating two ternary rings
from the same projective plane whose addition loops have different type sets. I
have done this with a semifield plane of order 16. One wonders if loop isotopy
is enough to force ternary ring isotopy. That is, are ternary rings with isotopic

multiplication or addition loops isotopic?
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