ERRATA IN A PRIMER OF SUBQUASIVARIETY LATTICES

Here are the errors we have found so far in A Primer of Subquasivariety Lattices.
(1) Page 99, line -4 should say "Thus $\operatorname{Pre}(\mathbf{G})$ contains the two preclops in that figure." In fact, there is a third preclop not drawn in Figure 4.3, with $\gamma(s)=v$ and $\gamma(x)=1$, so that $\mu<\gamma<\lambda$.
(2) Page 99, line -2 would be better as "In Example A. 4 of Sect. 4.1 ..."
(3) Pages 167-169. The assignment of predicates and finding the laws of \mathcal{K} are described here. For each compact element $p \in S$ except $\hat{z}=0_{\mathbf{S}}$, there is a predicate P in the language corresponding to p. In Step 6 of the construction, the predicate \mathcal{O} (or W) assigned to $1_{\mathbf{S}}$ is interpreted so that $\mathcal{O}(x)$ becomes $x \approx e$ for a constant e. In order for this to make sense, $1_{\mathbf{S}}$ should be compact. This was not made clear in the Primer, though it was implicit in the paper Nation [91] on which this part is based.
(4) Page 193 The hypothesis of (β) in Lemma 7.19 should include that \mathbf{S} is finitely generated.
(5) Page 194, line 6, ker σ could also contain relations $P(u)$ with $u \in W \backslash S$ that do not hold in U. This does not affect the conclusion.
(6) Page 194. Theorem 7.20, when properly dissected, actually describes sufficient conditions for Step 6 of a shortstyle representation to work. This omission has been supplied in a later paper of Hyndman and Nation. It can be stated thusly:

Theorem 1. Assume $\mathbf{L} \cong \mathrm{S}_{\mathrm{p}}(\mathbf{S}, H)$ with $1_{\mathbf{S}}$ compact and satisfying one of the following properties. Then there exists a quasivariety \mathcal{K} in a language with equality such that $\mathbf{L} \cong \mathrm{L}_{\mathrm{q}}(\mathcal{K})$.
(2) H consists of a single operator h satisfying $h^{2}(x)=h(x) \geq$ x.
(3) The operators of H form a right-zero semigroup, i.e., $h k(x)=$ $k(x)$ for all h, k and at least one $h \in H$ is increasing, $h(x) \geq x$.

[^0]

Figure 1. A 2-generated quasicritical structure \mathbf{W} in the quasivariety \mathcal{N} of Example 7.31. To simplify the drawing, the constant e appears twice. The predicate E holds at every element except x.
(4) The operators are increasing, $h_{j}(x) \geq x$, and form a finite chain under composition, $h_{1}<h_{2}<\cdots<h_{k}$ so that $h_{i} h_{j}=h_{\max (i, j)}$.
(7) Page 195, it would be useful to add that the structure in Figure 7.23 satisfies $\eta^{3} x=\eta^{2} x$.
(8) Page 196, Figure 7.24 should also include $\hat{a} \& \hat{b} \rightarrow \hat{z}$ and $\hat{a} \& \hat{c} \rightarrow$ \hat{z}.
(9) Page 206, Figure 7.35 the dotted loop on $\kappa(x)$ should be a solid loop (\mathcal{K} satisfies $\kappa^{2}(x)=\kappa(x)$).
(10) There are some problems in Section 7.6, which consists of 4 examples of so-called mediumstyle representations.

Example 7.29 is correct as it stands.
The statement of Example 7.30 is correct. The claim in the proof that " k-generated structures in \mathcal{M} consist of $m \leq k$ components ... glued over $\{e\}$ " is incorrect. More complicated gluings can occur in \mathcal{M}, but Lemma 7.19 with the condition $(ß)^{\prime}$ applies to all of them, and in fact every quasicritical structure in \mathcal{M} is 1-generated.

Example 7.31 is wrong. This example attempts to represent the lattice $\mathbf{L}_{15}=(\mathbf{3} \times \mathbf{3})[m]$ as $\mathrm{L}_{\mathrm{q}}(\mathcal{K})$ for a quasivariety with equality. The quasivariety \mathcal{N} presented there contains a 2-generated quasicritical structure \mathbf{W}, given in Figure 1. In the notation of the example (see Figure 7.46), \mathbf{W} is a subdirect product of \mathbf{S}, \mathbf{T} and \mathbf{U}, so it is in \mathcal{N}. However, $\mathbf{U} \not \leq \mathbf{W}$ making W quasicritical.

Example 7.32 depends on Example 7.31, so it is also in doubt. We still do not know whether \mathbf{L}_{15} or the pair (\mathbf{W}, μ) can be represented as subquasivariety lattices.
(11) Page 227, line -3 , should read: if $H \leq K$, then $\mathrm{S}_{\mathrm{p}}(\mathbf{S}, K) \leq$ $\mathrm{S}_{\mathrm{p}}(\mathbf{S}, H)$.
(12) Page 262, lines 12-13 claim that the operator γ_{4} on \mathbf{N} does not have a longstyle representation. A slight modification of the subsemilattice representation given there does in fact yield a longstyle representation of $\left(\mathbf{N}, \gamma_{4}\right)$. This will be included in a paper of Hyndman and Nation.
(13) Page 263. $\mathbf{B}_{3}[c]$ can be represented as $\operatorname{Sub}(\mathbf{S}, \wedge, 1, H)$, but the construction given in Figure A. 2 is wrong. This is rectified in the upcoming paper of Hyndman and Nation.

[^0]: Date: January 9, 2023.

