ERRATA IN A PRIMER OF SUBQUASIVARIETY LATTICES

Here are the errors we have found so far in A Primer of Subquasivariety Lattices.

- (1) Page 99, line -4 should say "Thus $Pre(\mathbf{G})$ contains the two preclops in that figure." In fact, there is a third preclop not drawn in Figure 4.3, with $\gamma(s) = v$ and $\gamma(x) = 1$, so that $\mu < \gamma < \lambda$.
- (2) Page 99, line -2 would be better as "In Example A.4 of Sect. 4.1 ..."
- (3) Pages 167–169. The assignment of predicates and finding the laws of \mathcal{K} are described here. For each compact element $p \in S$ except $\hat{z} = 0_{\mathbf{S}}$, there is a predicate P in the language corresponding to p. In Step 6 of the construction, the predicate \mathcal{O} (or W) assigned to $1_{\mathbf{S}}$ is interpreted so that $\mathcal{O}(x)$ becomes $x \approx e$ for a constant e. In order for this to make sense, $1_{\mathbf{S}}$ should be compact. This was not made clear in the Primer, though it was implicit in the paper Nation [91] on which this part is based.
- (4) Page 193 The hypothesis of (β) in Lemma 7.19 should include that **S** is finitely generated.
- (5) Page 194, line 6, ker σ could also contain relations P(u) with $u \in W \setminus S$ that do not hold in **U**. This does not affect the conclusion.
- (6) Page 194. Theorem 7.20, when properly dissected, actually describes sufficient conditions for Step 6 of a shortstyle representation to work. This omission has been supplied in a later paper of Hyndman and Nation. It can be stated thusly:
 - **Theorem 1.** Assume $\mathbf{L} \cong S_p(\mathbf{S}, H)$ with $1_{\mathbf{S}}$ compact and satisfying one of the following properties. Then there exists a quasivariety K in a language with equality such that $\mathbf{L} \cong L_q(K)$.
 - (2) H consists of a single operator h satisfying $h^2(x) = h(x) \ge x$.
 - (3) The operators of H form a right-zero semigroup, i.e., hk(x) = k(x) for all h, k and at least one $h \in H$ is increasing, $h(x) \ge x$.

Date: January 9, 2023.

FIGURE 1. A 2-generated quasicritical structure **W** in the quasivariety \mathcal{N} of Example 7.31. To simplify the drawing, the constant e appears twice. The predicate E holds at every element except x.

- (4) The operators are increasing, $h_j(x) \ge x$, and form a finite chain under composition, $h_1 < h_2 < \cdots < h_k$ so that $h_i h_j = h_{\max(i,j)}$.
- (7) Page 195, it would be useful to add that the structure in Figure 7.23 satisfies $\eta^3 x = \eta^2 x$.
- (8) Page 196, Figure 7.24 should also include $\hat{a} \& \hat{b} \to \hat{z}$ and $\hat{a} \& \hat{c} \to \hat{z}$.
- (9) Page 206, Figure 7.35 the dotted loop on $\kappa(x)$ should be a solid loop (\mathcal{K} satisfies $\kappa^2(x) = \kappa(x)$).
- (10) There are some problems in Section 7.6, which consists of 4 examples of so-called *mediumstyle* representations.

Example 7.29 is correct as it stands.

The statement of Example 7.30 is correct. The claim in the proof that "k-generated structures in \mathcal{M} consist of $m \leq k$ components ... glued over $\{e\}$ " is incorrect. More complicated gluings can occur in \mathcal{M} , but Lemma 7.19 with the condition (\mathfrak{G})' applies to all of them, and in fact every quasicritical structure in \mathcal{M} is 1-generated.

Example 7.31 is wrong. This example attempts to represent the lattice $\mathbf{L}_{15} = (\mathbf{3} \times \mathbf{3})[m]$ as $\mathbf{L}_{\mathbf{q}}(\mathcal{K})$ for a quasivariety with equality. The quasivariety \mathcal{N} presented there contains a 2-generated quasicritical structure \mathbf{W} , given in Figure 1. In the notation of the example (see Figure 7.46), \mathbf{W} is a subdirect product of \mathbf{S} , \mathbf{T} and \mathbf{U} , so it is in \mathcal{N} . However, $\mathbf{U} \nleq \mathbf{W}$ making \mathbf{W} quasicritical.

Example 7.32 depends on Example 7.31, so it is also in doubt. We still do not know whether \mathbf{L}_{15} or the pair (\mathbf{W}, μ) can be represented as subquasivariety lattices.

- (11) Page 227, line -3, should read: if $H \leq K$, then $S_p(\mathbf{S}, K) \leq S_p(\mathbf{S}, H)$.
- (12) Page 262, lines 12–13 claim that the operator γ_4 on \mathbf{N} does not have a longstyle representation. A slight modification of the subsemilattice representation given there does in fact yield a longstyle representation of (\mathbf{N}, γ_4) . This will be included in a paper of Hyndman and Nation.
- (13) Page 263. $\mathbf{B}_3[c]$ can be represented as $\mathrm{Sub}(\mathbf{S}, \wedge, 1, H)$, but the construction given in Figure A.2 is wrong. This is rectified in the upcoming paper of Hyndman and Nation.