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You’re sitting there, minding your own business, when someone
walks up and asks, “Does there exist a lattice with the following
properties ...” What do you do?
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Join semilattices with 0

Think of a finite lattice as being given by a join semilattice
presentation: L = 〈X∨ |R〉 where

the elements of X are join irreducible,
R is a collection of inclusions p ≤ r and (minimal) nontrivial
join covers p ≤

∨
Q.

This is equivalent to a closure system (or closure operator)
description, so it should be familiar.
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Test question

Is there a convex geometry whose congruence lattice is

Translation: Does

L1 = 〈{a,b, c,d ,e}∨ | a ≤ e, a ≤ b ∨ c, b, c ≤ d ∨ e〉

have unique irredundant join decompositions?
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Three more examples

L2 = 〈{a,b, c,d}∨ | a ≤ c, b ≤ d , c ≤ a ∨ d , d ≤ b ∨ c〉

a b

c d

L3 = 〈{a,b, c}∨ | a ≤ b ∨ c〉

b a c
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Three more examples

L4 = 〈{a,b, c,d}∨ | b ≤ a ∨ c, c ≤ b ∨ d , b, c ≤ a ∨ d〉

a b c d

Adaricheva, Freese, Nation Semidistributive Semilattices



Semidistributivity

The join semidistributive law (JSD) is

a ∨ b = a ∨ c → a ∨ b = a ∨ (b ∧ c)

Fact 1: L is JSD iff every element of L has a unique
non-refinable join decomposition.

Meet semidistributivity (MSD) is the dual.

Semidistributivity is both (SD= JSD + MSD).
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Lower bounded lattices

For x , y join irreducible define x D y if y ∈ Y for some mntjc
x ≤

∨
Y .

L is lower bounded if it contains no D-cycle

x0 D x1 D x2 D . . . D xn−1 D x0

Equivalently, L is lower bounded if the reflexive, transitive
closure of the D relation is a partial order on J(L).

Fact 2: If L is lower bounded then it is JSD.
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Testing LB

L1 = 〈{a,b, c,d ,e}∨ | a ≤ e, a ≤ b ∨ c, b, c ≤ d ∨ e〉

Lower bounded

L2 = 〈{a,b, c,d}∨ | a ≤ c, b ≤ d , c ≤ a ∨ d, d ≤ b ∨ c〉

c D d D c so L2 is not LB

L3 = 〈{a,b, c}∨ | a ≤ b ∨ c〉

Lower bounded

L4 = 〈{a,b, c,d}∨ | b ≤ a ∨ c, c ≤ b ∨ d , b, c ≤ a ∨ d〉

b D c D b so L4 is not LB (though it is JSD)

Adaricheva, Freese, Nation Semidistributive Semilattices



The K theorems

Assume X = J(L).
Define x† =

∨
{y ∈ X : y < x}.

Define K (x) = {a ∈ L : a is maximal wrt a ≥ x†, a � x}.
Both x† and K (x) are easily computed.
Standard arguments give

⋃
x∈X K (x) = M(L).

b a c

K (a) = {b, c}
K (b) = {ac}
K (c) = {ab}
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The K theorems

Fact 3: Let L = X∨ with X = J(L).
1 L is JSD iff x 6= x ′ implies K (x) ∩ K (x ′) = ∅.
2 L is MSD iff |K (x)| = 1 for all x .
3 L is SD iff K is a bijection twixt J(L) and M(L).

L3 is JSD not MSD

Distributive lattices illustrate (3), the diamond M3 is an example
of none of the above.
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The K theorems

L4 is JSD not MSD

a b c d

K (a) = {bcd}
K (b) = {a, cd}
K (c) = {d ,ab}
K (d) = {abc}

Fact 4: In an MSD lattice, atoms are join prime.
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The K theorems

L2 is MSD not JSD

a b

c d

K (a) = {d}
K (b) = {c}
K (c) = {ab}
K (d) = {ab}
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Convex geometries

Fact 5: L is a convex geometry iff every element of L has a
unique irredundant join decomposition.

NON-EXAMPLES. M3, the pentagon N.

q1

p
q2
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Convex geometries

Fact 6: Let L be a finite JSD lattice. Then L is a convex
geometry iff it has no mntjc p ≤

∨
Q with q < p for some q ∈ Q.

EXAMPLE. L1 is a convex geometry. (The element e is join
prime.)

L1 = 〈{a,b, c,d ,e}∨ | a ≤ e, a ≤ b ∨ c, b, c ≤ d ∨ e〉

Corollary: An atomistic JSD lattice is a convex geometry.

EXAMPLE. Co(P) is a convex geometry for any ordered set P
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Back to the original question

Fact 7: Let D a finite distributive lattice with D ∼= O(P), and let
M denote the maximal members of P. TFAE:

1 D ∼= Con L for a finite JSD lattice L.
2 D ∼= Con G for a finite convex geometry G.
3 For all x ∈ P \M, | ↑x ∩M| ≥ 2.

EXAMPLE.

P
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An infinite, simple SD lattice

Fact 8: Every JSD lattice with 1 has 2 as a homomorphic
image.

In particular, there is no finite, simple JSD lattice (or MSD
lattice) except 2. Is there a simple semidistributive lattice
besides 2?

In order to adapt the methods discussed here, define a lattice L
to be strongly locally finite if every interval [u, v ] is finite.
Ralph and I found a presentation 〈X ,R〉 that is strongly locally
finite, simple, SD.

Fact 9: There is an infinite, simple SD lattice.
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Conclusion

You can understand some lattices that are too hard to draw!

Mahalo!
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