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In this dark, when we all talk at once, some of us must learn to
whistle. - Walt Kelly
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Varieties and quasivarieties

A variety is a class of algebras determined by equations, or
more generally, a class of structures determined by atomic
formulas.

x(yz) ≈ (xy)z
x1 ≈ x

x ≤ y

A quasivariety is a class of algebras or structures determined
by implications.

x2 ≈ 1→ xy ≈ yx
x ≤ y & y ≤ z → x ≤ z

P(x)→ Q(x)

Lv(V) denotes the subvarieties contained in V.
Lq(Q) denotes the subquasivarieties contained in Q.
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Subvariety lattices

Let Lv(V) denote the lattice of subvarieties of V.
Lv(V) is dually algebraic.
If V is a variety of algebras, then Lv(V) satisfies Lampe’s
Zipper Condition:
If ai ∨ c = z for all i ∈ I and

∧
i∈I ai = 0, then c = z.

(Pigozzi and Tardos): If K is a dually algebraic lattice, then
there is a variety V of algebras such that 1 + K ∼= Lv(V ).
For any dually algebraic lattice L, there is a quasivariety Q

of 1-element relational structures such that L ∼= Lv(Q).

K

1 + K
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Subquasivariety lattices

Let Lq(K) denote the lattice of subquasivarieties of a
quasivariety K. In general, these lattices

are dually algebraic,
are atomic (every element is above an atom),
are join semidistributive,

x ∨ y ≈ x ∨ z → x ∨ y ≈ x ∨ (y ∧ z)

support an equational closure operator,
for many K, satisfy no lattice identity.

Problem: Characterize subquasivariety lattices Lq(K)?
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Semidistributive but not Lq(K)

We will see many examples, NOT including these:

H J
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Quasivarieties of modular lattices (Grätzer and Lakser)

Q(M+
3,3)

T

D

Q(M3)

Q(M4)

Q(M5)

Q(Mω)

Q(M+
3,3) ∨Q(Mω)

Q(M3,3)

M
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V. Tumanov (1983):
Every finite distributive lattice is isomorphic to Lq(K) for some
quasivariety K.
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Which infinite distributive lattices are subquasivariety lattices?
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First complication: (ω + 1)d 6∼= Lq(K) because it is not atomic
(though dually algebraic and distributive).

cω

c0

c1

c2

c3
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Second complication: subquasivariety lattices Lq(K) admit an
equaclosure operator (and most lattices don’t!)

For S ≤ K, let Γ(S) = V(S) ∩K = H(S) ∩K.

x ≈ y

s ≈ t → u ≈ v

p ≈ q

K
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Another example.

x ≈ e

B(x)→ x ≈ e B(x)

Q

Q has a unary predicate B, a constant e, and the law B(e).
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Equaclosure operator on Lq(M)

Q(M+
3,3)

T

D

Q(M3)

Q(M4)

Q(M5)

Q(Mω)

Q(M+
3,3) ∨Q(Mω)

Q(M3,3)

M
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Small modular lattices

M3 M3,3 M+
3,3
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On a dually algebraic, distributive lattice with dually compact 0,
the identity operator Γ(x) = x is an equaclosure operator.

YES NO

Γ(x) = x means that every subquasivariety is a subvariety!
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Classical lemma

TFAE for a complete lattice D.
D is distributive, algebraic, and dually algebraic.
D is distributive, dually algebraic, and upper continuous.
D ∼= O(P) for an ordered set P.

In that case, the least element 0D is dually compact iff P has
finitely many minimal elements, and every p ∈ P is above at
least one of them.

For a finite distributive lattice, P ∼= J(D) ∼= M(D).
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Distributive subquasivariety lattices

If the least element ∅ of O(P) is dually compact, then O(P) is
isomorphic to Lq(Q) for some quasivariety Q.

If D is a dually algebraic distributive lattice, then 1 + D is
isomorphic to Lq(R) for some quasivariety R.

There exist dually algebraic distributive lattices that are not
isomorphic to any Lq(S) for S a quasivariety of structures in a
language with equality, e.g., (ω + 1)d .

Every dually algebraic distributive lattice is isomorphic to Lq(U)
for some quasivariety U in a language that does not contain
equality.
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Primitive lattice varieties

A locally finite lattice variety W is said to be primitive if every
subquasivariety Q ≤W is a subvariety.

Equivalently, Γ(Q) = Q.

Example: the modular varieties V(Mk ) for 1 ≤ k ≤ ω are
primitive.

If W is primitive, Lq(W) = Lv(W) is distributive.

Mk
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Lots more primitive lattice varieties

Nk
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Lots more primitive lattice varieties

Jk
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Even more ...

There is an uncountable ideal of primitive lattice varieties in the
lattice Λ of all lattice varieties. (Jipsen, JBN)
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Mahalo!
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∗Coming soon to a store near you!
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